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Chiral and non-chiral Topological States of Matter
Stability of edge states of 2D Topological Insulators: Zs2 anomaly

Partition function: electromagnetic and gravitational (discrete) responses

Topological Insulators with interacting & non-Abelian edges



Topological States of Matter

System with bulk gap but non-trivial at energies below the gap
global effects and global degrees of freedom (edge states, g.s. degeneracy)

described by topological field theory: Chern-Simons theory etc.

quantum Hall effect is chiral (B field, chiral edge states)

quantum spin Hall effect is non-chiral (edge states of both chiralities)

other systems: Chern Insulators, Topological Insulators,
Topological Superconductors, etc.

Topological Band Insulators (free fermions) have been observed in 2 & 3 D
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Questions/Answers

Q: systems of interacting fermions? (e.g. fractional topological insulators)

A: use quantum Hall modeling and CFTs

Q: but non-chiral edge states are stable?

A: generically NO

Q: stability with Time Reversal symmetry?

A: YES/NO; there is a Zo symmetry; if this is anomalous, they are stable



Chiral Topological States

Quantum Hall effect D,
chiral edge states

no Time-Reversal symmetry (TR) -»%A

Laughlin's argument: V=3
O D4+ Dy, HI[®+ Do = H[P] 7

Qr — Qr+ AQ = v, AQ = /dtd:c Oy = I//F =vn  chiral anomaly

® — & +ndy spectral flow between charge sectors {0} — {3} = {£} — {0}

edge chiral anomaly = response of topological bulk to e.m. background

chiral edge states cannot be gapped <= topological phase is stable

anomalous response extended to other systems and anomalies in any D=1,2,3,......

(S. Ryu, J. Moore, A. Ludwig '10)



Non-chiral topological states

Quantum Spin Hall Effect

take two v =1 Hall states of spins I l
system is Time Reversal invariant: /‘—-—.—-.
Ttk =%k, Uk = Yok

non-chiral CFT with U(1)g x U(1)s symmetry

}!g@*

adding flux pumps spin === [7(1)s anomaly (X-L Qi, S-C Zhang '08)

i”'i P III‘I AQ=AQ"+AQ*=1-1=0

T e

in Topological Insulators U(1)g is explicity broken by Spin-Orbit Coupling etc.

no currents og =0sgg = kg =0

28

but TR symmetry keeps Z2 symmetry (—1) Kramers theorem




Symmetry Protected Topological Phases

QSHE Topological Trivial
U(1)s Insulator Insulator
TR : Zo no T'R

* QSHE is used to describe Topological Insulators with Time-Reversal symmetry
but no spin symmetry: U(l)s — Zz of (—1)*°

Main issue: stability of TT <===p stability of non-chiral edge states

* e.g. TR symmetry forbids mass term in CFT with odd number of free fermions

T : Hins. = ’m/ﬂ% +h.c. = —Hin. Zo classification (free fermions)




Flux insertion argument . cane, mele ‘05.06,
Levin, Stern '10-13)

* TRsymmetry: TH[®T '=H[-®] & H[®+ $]| = H[D]

<I>0 3<I>0

* TRinvariant points: & =0, —, %5, —,...
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* Kane et al. define a TR-invariant Z2 polarization (bulk quantity) that:

- is topological and conserved by TR invariance

- is equal to parity of edge spin (=1)%% = (=) TN

- if (—1)** = -1 there exits a pair of edge states degenerate by Kramers theorem
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4 Kramers
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Conclusions
* topological phase is protected by TR symmetry if 3 edge Kramers pair ( N;odd)

* spin parity is anomalous, discrete remnant of spin anomaly U (1)s — Zs

2AS — 1

Fu-Kane argument is Laughlin's argument for Zo anomaly: (—1)
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Conclusions
* topological phase is protected by TR symmetry if 3 edge Kramers pair ( N;odd)

* spin parity is anomalous, discrete remnant of spin anomaly U (1)s — Zs

2AS — 1

Fu-Kane argument is Laughlin's argument for Zo anomaly: (—1)

Question: Can we extend this argument to interacting fermions?




Answer. Yes

Strategy:

* Study partition functions of TI (& QSHE) using known general results for QHE
(AC, Zemba '97; AC, Georgiev, Todorov '01; AC, Viola '10)

* Use them to analyze flux insertions and repeat stability argument

= /,5> classification extends to interacting & non-Abelian edges

(=1)22% = +1 unstable
—1 stable
oAg — OsH _ vT | spin-Hall conduct. = chiral Hall conduct.
er et minimal fractional charge

(Levin, Stern, '09, '12)
* Stability, i.e. Zo anomaly, is associated to a discrete gravitational anomaly, i.e.
to the lack of modular invariance of partition function (S. Ryu, S.-C. Zhang '12)

* As a backup: study time-reversal invariant edge interactions === same result

(Neupert et al. '11; AC, Randellini "14)



Partition Function of Topological Insulators

- Grand-canonical partition function of f

a single edge, combining the two chiralities ®

- Four sectors of fermionic systems

NS, NS, R, R, risp. (AA), (AP), (PA), (PP)

- Neveu-Schwarz sector describes ground state and integer flux insertions:

ZNS (7,0) = ZN5 (1, ¢+ 1), V:i(—=(+7 addsaflux & — &+
r=1i8/L, (= B(iV,+ u)
Dy 30y

- Ramond sector describes half-flux insertions: S g

N[

Vi ZNS(r,¢) = ZNS (T,C—FZ) =77 (¢,7)
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(Remark: each sector contains fractional charges, that are not relevant for the argument)



E.m. & gravitational responses
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Flux addition Modular transformations



Stability and modular non-invariance

*  Flux argument: add half fluxes and check (—1)**° = +1

(D> Dns =Yys — (1) Qg =—|y ==mmp Kramers pair

* Spin parities of Neveu-Schwarz and Ramond ground states are different
=) /o Spin-parity anomaly
Z = (ZNS, ZNS 7R Zﬁ) stable Topological Insulator
« Conversely, if (-1)22° =1 ,i.e. no anomaly:

7 — gNS L gNS | 7R | 7R unstable

TR symmetry + anomaly ====» no modular invariance ====p stable insulator

TR symmetry + modular invariance =sss=p no anomaly === trivial insulator




General stability index

Edge theory involves neutral excitations (possibly non-Abelian)
fractional charge sectors always parametrized by two integers (k.p)
minimal charge: ¢e* =1/p

Hall current: AQ=v=k/p

Add fluxes to create an electron excitation in the same charge sector:

(]S

k
VT ==

1% AS = AQT =

N |3

Kramers pair if k£ odd === stable TT

R
Levin-Sternindex 2AS =2, (—1)225=(—1)* fully general
e*

Remark: (non-Abelian) neutral states are left invariant by flux insertions



Examples

T
Levin-Sternindex 2AS =2, (=1)2A5 = (—1)F
6*
. k 1 T stable
- T —_ * = = — =
Jain-like TT V=T ¢ T okl 205 =— =k unstable
(331) & Pfaffian TT = % et — i 9IAS =2 unstable
Abelian TT K = ( | s ) =z, e ==, 2AS =3 stable
: k 1 stable
- T Y e 2AS =k
Read-Rezayi TT = ¢ T instable
. 1
NASS-like TT Ao 28 e 1 9AS— 9k unstable




Remarks

general expression of partition function allows to extend Levin-Stern stability
criterium to any TI with interacting fermions

Zio classification of TI protected by TR invariance

unprotected edge states do become fully gapped?

- Abelian states: yes, by careful analysis of possible TR-invariant interactions

(Levin, Stern; Neupert et al.; Y-M Lu, Vishwanath)

- non-Abelian states: yes, use projection from "parent” Abelian states

e.g. (331) -> Pfaffian because [projection, TR-symm.]=0 (A.C., Randellini '14)



Conclusions

Zio spin parity anomaly characterizes Topological Insulators protected by
Time Reversal symmetry (cf. Ringel, Stern; Koch-Janusz, Ringel)

R
anomaly signalled by index — (—1)?2% = —1, IANG = 2
e*

Pfaffian TTI is unstable

To do:

- stability of Topological Superconductors:  Z — Zg

- stability 3D systems and 2D-3D systems:  Zig



Gapping interactions for Pfaffian TT

(AC, Randellini, '14)

Gapping interactions for Abelian states defined by K matrix

Us = exp (iAZKCI)T—iKZKEO + h.c. a=1,...,n=c

For (331) state, they can be written in terms of Weyl fermions fields
Uy = 0], U429, ¥5 + he.

Up =0, 0,010 + he.

Projection (331) — Pfaffian, i.e. to identical layers ¥, ~ U1, — Vy
Up =: x0x : : XOX : neutral Majorana

Uy = V2V? V=V charged excit.

U; couples to fermion field, Us to charges modes, giving both mass

Analysis extends to Read-Rezayi and Ardonne-Schoutens NASS states



