

Andrea Cappelli (INFN and Physics Dept., Florence) with E. Randellini (Florence)

<u>Outline</u>

- Chiral and non-chiral Topological States of Matter
- Stability of edge states of 2D Topological Insulators: $\underline{\mathbb{Z}}_2$ anomaly
- Partition function: electromagnetic and gravitational (discrete) responses
- Topological Insulators with interacting & non-Abelian edges

Topological States of Matter

- System with <u>bulk gap</u> but non-trivial at energies below the gap
- global effects and global degrees of freedom (edge states, g.s. degeneracy)
- described by topological field theory: <u>Chern-Simons theory etc.</u>
- quantum Hall effect is <u>chiral</u> (B field, chiral edge states)
- quantum spin Hall effect is non-chiral (edge states of both chiralities)
- <u>other systems</u>: Chern Insulators, Topological Insulators, Topological Superconductors, etc.
- Topological Band Insulators (free fermions) have been observed in 2 & 3 D
 << excitement >>

Questions/Answers

- Q: systems of interacting fermions? (e.g. fractional topological insulators)
- A: use quantum Hall modeling and CFTs
- Q: <u>but non-chiral edge states are stable?</u>
- A: generically NO
- Q: stability with Time Reversal symmetry?
- A: YES/NO; there is a \mathbb{Z}_2 symmetry; if this is anomalous, they are stable

Chiral Topological States

 Φ_0

Quantum Hall effect

- chiral edge states
- no Time-Reversal symmetry (TR)
- Laughlin's argument: $\nu = \frac{1}{3}$ $\Phi \rightarrow \Phi + \Phi_0, \quad H \left[\Phi + \Phi_0 \right] = H \left[\Phi \right]$ $Q_R \rightarrow Q_R + \Delta Q = \nu, \quad \Delta Q = \int dt dx \; \partial_t J_R^0 = \nu \int F = \nu \, n$ chiral anomaly
- $\Phi \to \Phi + n\Phi_0$ spectral flow between charge sectors $\{0\} \to \left\{\frac{1}{3}\right\} \to \left\{\frac{2}{3}\right\} \to \{0\}$
- edge chiral anomaly = response of topological bulk to e.m. background
- <u>chiral edge states cannot be gapped</u> \longleftrightarrow <u>topological phase is stable</u>
- anomalous response extended to other systems and anomalies in any D=1,2,3,..... (S. Ryu, J. Moore, A. Ludwig '10)

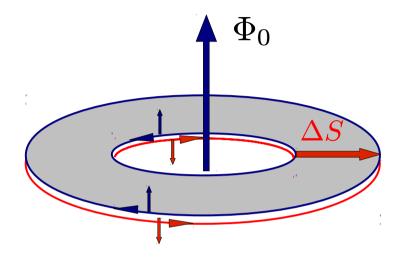
Non-chiral topological states

Quantum Spin Hall Effect

- take two $\nu = 1$ Hall states of spins
- system is Time Reversal invariant:

 $\mathcal{T}: \ \psi_{k\uparrow} \to \psi_{-k\downarrow} \ , \qquad \psi_{k\downarrow} \to -\psi_{-k\uparrow}$

- non-chiral CFT with $U(1)_Q \times U(1)_S$ symmetry
- adding flux pumps spin $\longrightarrow U(1)_S$ anomaly Φ_0 $\Delta S = \Delta S = \Delta S$



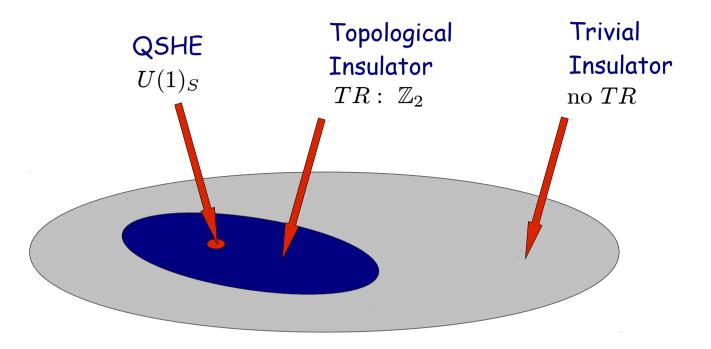
(X-L Qi, S-C Zhang '08)

$$\Delta Q = \Delta Q^{\uparrow} + \Delta Q^{\downarrow} = 1 - 1 = 0$$
$$\Delta S = \frac{1}{2} - \left(-\frac{1}{2}\right) = 1$$
$$\Delta S = \Delta Q^{\uparrow} = \nu^{\uparrow} = 1$$

- in Topological Insulators $U(1)_S$ is explicitly broken by Spin-Orbit Coupling etc.
- no currents $\sigma_H = \sigma_{sH} = \kappa_H = 0$
- but TR symmetry keeps $\underline{\mathbb{Z}_2}$ symmetry $(-1)^{2S}$

Kramers theorem

Symmetry Protected Topological Phases



• QSHE is used to describe Topological Insulators with Time-Reversal symmetry but no spin symmetry: $U(1)_S \rightarrow \mathbb{Z}_2$ of $(-1)^{2S}$

Main issue: stability of TI + stability of non-chiral edge states

e.g. TR symmetry forbids mass term in CFT with odd number of free fermions

$$\mathcal{T}: H_{\text{int.}} = m \int \psi_{\uparrow}^{\dagger} \psi_{\downarrow} + h.c. \rightarrow -H_{\text{int.}}$$

 \mathbb{Z}_2 classification (free fermions)

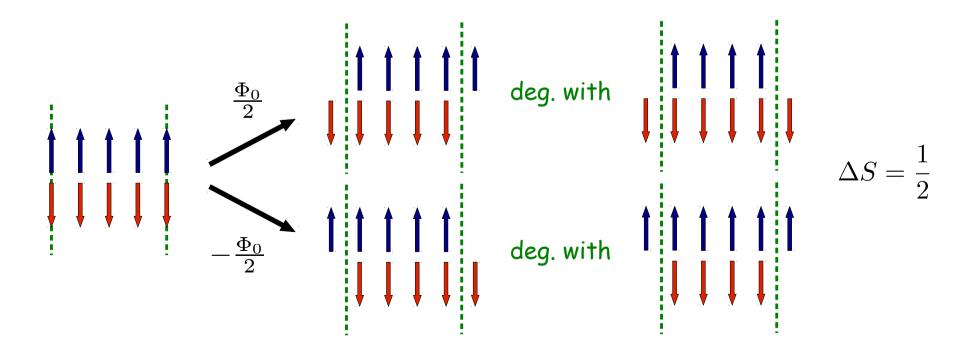
Flux insertion argument

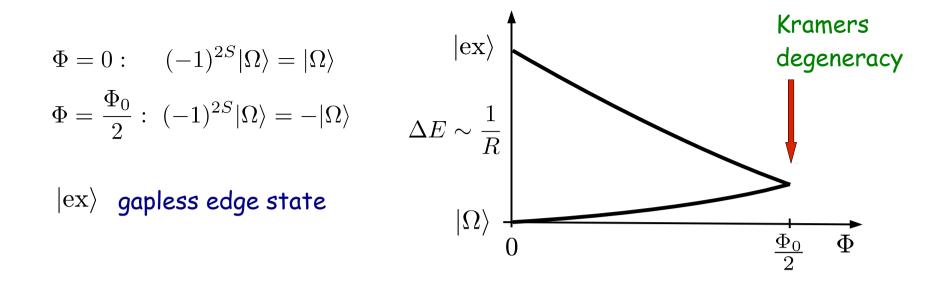
(Fu, Kane, Mele '05-06; Levin, Stern '10-13)

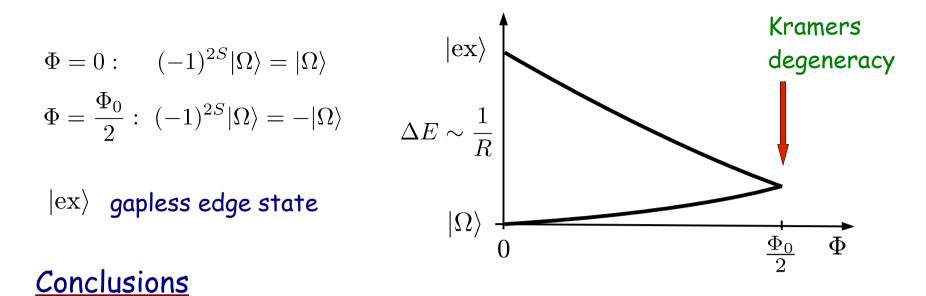
- TR symmetry: $\mathcal{T}H[\Phi]\mathcal{T}^{-1} = H[-\Phi]$ & $H[\Phi + \Phi_0] = H[\Phi]$
- TR invariant points: $\Phi = 0, \frac{\Phi_0}{2}, \Phi_0, \frac{3\Phi_0}{2}, \dots$
- Kane et al. define a <u>TR-invariant</u> \mathbb{Z}_2 polarization (bulk quantity) that:
 - is topological and conserved by TR invariance
 - is equal to parity of edge spin

$$(-1)^{2S} = (-1)^{N_{\uparrow} + N_{\downarrow}}$$

- if $(-1)^{2S} = -1$ there exits a pair of edge states degenerate by Kramers theorem

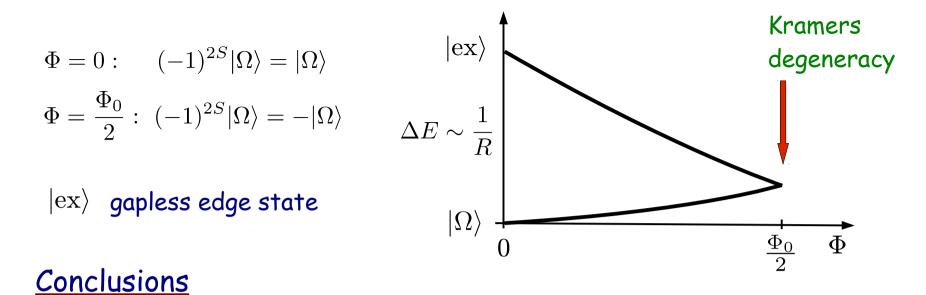






- topological phase is protected by TR symmetry if \exists edge Kramers pair (N_f odd)
- spin parity is anomalous, discrete remnant of spin anomaly $U(1)_S o \mathbb{Z}_2$

Fu-Kane argument is Laughlin's argument for \mathbb{Z}_2 anomaly: $(-1)^{2\Delta S} = -1$



- topological phase is protected by TR symmetry if \exists edge Kramers pair (N_f odd)
- spin parity is anomalous, discrete remnant of spin anomaly $U(1)_S o \mathbb{Z}_2$

Fu-Kane argument is Laughlin's argument for \mathbb{Z}_2 anomaly: $(-1)^{2\Delta S} = -1$

Question: Can we extend this argument to interacting fermions?

Answer: Yes

<u>Strategy:</u>

• Study partition functions of TI (& QSHE) using known general results for QHE

(AC, Zemba '97; AC, Georgiev, Todorov '01; AC, Viola '10)

• Use them to analyze flux insertions and repeat stability argument

 \blacksquare \mathbb{Z}_2 classification extends to interacting & non-Abelian edges

$$\begin{array}{ll} (-1)^{2\Delta S}=+1 & \text{unstable} \\ -1 & \text{stable} \end{array}$$

$$2\Delta S=\frac{\sigma_{sH}}{e^*}=\frac{\nu^{\uparrow}}{e^*} & \frac{\text{spin-Hall conduct. = chiral Hall conduct.}}{\text{minimal fractional charge}} \\ (\text{Levin, Stern, '09, '12}) \end{array}$$

- Stability, i.e. \mathbb{Z}_2 anomaly, is associated to a discrete gravitational anomaly, i.e. to the lack of modular invariance of partition function (S. Ryu, S.-C. Zhang '12)
- <u>As a backup</u>: study time-reversal invariant edge interactions <u>same result</u>

(Neupert et al. '11; AC, Randellini '14)

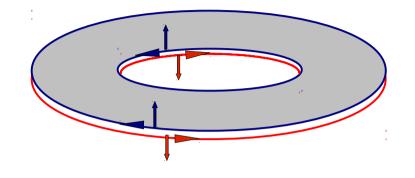
Partition Function of Topological Insulators

- Grand-canonical partition function of

a single edge, combining the two chiralities

- Four sectors of fermionic systems

 $NS, \ \widetilde{NS}, \ R, \ \widetilde{R}, \ risp. \ (AA), \ (AP), \ (PA), \ (PP)$



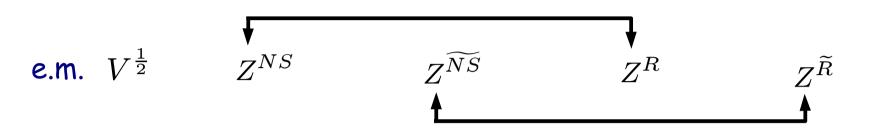
- Neveu-Schwarz sector describes ground state and integer flux insertions:
 - $$\begin{split} Z^{NS}\left(\tau,\zeta\right) &= Z^{NS}\left(\tau,\zeta+\tau\right), \qquad V:\zeta\to\zeta+\tau \quad \text{adds a flux} \quad \Phi\to\Phi+\Phi_0, \\ \tau &= i\beta/L, \quad \zeta &= \beta(iV_o+\mu) \end{split}$$
- Ramond sector describes half-flux insertions:

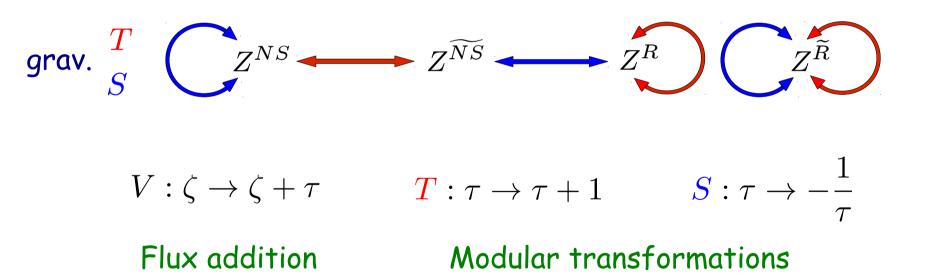
$$\frac{\Phi_0}{2}, \frac{3\Phi_0}{2}, \dots$$

$$V^{\frac{1}{2}}: Z^{NS}\left(\tau,\zeta\right) \rightarrow Z^{NS}\left(\tau,\zeta+\frac{\tau}{2}\right) = Z^{R}\left(\zeta,\tau\right)$$

(Remark: each sector contains fractional charges, that are not relevant for the argument)

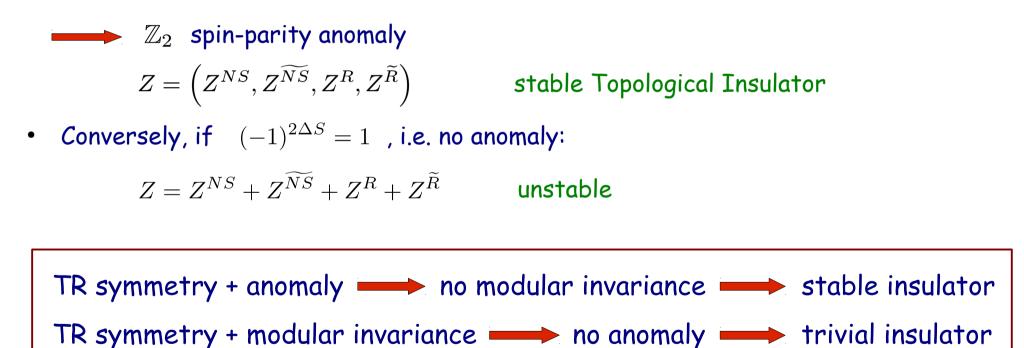
E.m. & gravitational responses





Stability and modular non-invariance

- Flux argument: add half fluxes and check $(-1)^{2\Delta S} = \pm 1$ $(-1)^{2S} |\Omega\rangle_{NS} = |\Omega\rangle_{NS} \longrightarrow (-1)^{2S} |\Omega\rangle_{R} = -|\Omega\rangle_{R}$ Kramers pair
- Spin parities of Neveu-Schwarz and Ramond ground states are different



<u>General stability index</u>

- Edge theory involves neutral excitations (possibly non-Abelian)
- fractional charge sectors always parametrized by two integers (k, p)
- minimal charge: $e^* = 1/p$
- Hall current: $\Delta Q = \nu^{\uparrow} = k/p$
- Add fluxes to create an electron excitation in the same charge sector:

$$V^{rac{p}{2}}: \Delta S = \Delta Q^{\uparrow} = rac{p}{2} \
u^{\uparrow} = rac{k}{2}$$
 Kramers pair if k odd \longrightarrow stable TI

Levin-Stern index $2\Delta S = \frac{\nu^{\uparrow}}{e^*}$, $(-1)^{2\Delta S} = (-1)^k$ fully general

Remark: (non-Abelian) neutral states are left invariant by flux insertions

Examples

Levin-Stern index
$$2\Delta S = \frac{\nu^{\uparrow}}{e^*}, \quad (-1)^{2\Delta S} = (-1)^k$$

• Jain-like TI
$$\nu^{\uparrow} = \frac{k}{2nk+1}, \quad e^* = \frac{1}{2nk+1}, \quad 2\Delta S = \frac{\nu^{\uparrow}}{e^*} = k$$
 stable unstable

• (331) & Pfaffian TI
$$u^{\uparrow} = rac{1}{2}, \quad e^* = rac{1}{4}, \quad 2\Delta S = 2 \quad \text{unstable}$$

• Abelian TI
$$K = \begin{pmatrix} 3 & 1 \\ 1 & 5 \end{pmatrix}$$
 $\nu^{\uparrow} = \frac{3}{7}, e^* = \frac{1}{7},$ $2\Delta S = 3$ stable

• Read-Rezayi TI
$$\nu^{\uparrow} = \frac{k}{kM+2}, \ e^* = \frac{1}{kM+2}, \qquad 2\Delta S = k$$
 stable unstable

• <u>NASS-like TI</u> $\nu^{\uparrow} = \frac{2k}{2kM+3}, \ e^* = \frac{1}{2kM+3}, \ 2\Delta S = 2k$ unstable

<u>Remarks</u>

• general expression of partition function allows to extend Levin-Stern stability criterium to <u>any TI with interacting fermions</u>

 \mathbb{Z}_2 classification of TI protected by TR invariance

- <u>unprotected edge states do become fully gapped?</u>
 - Abelian states: <u>yes</u>, by careful analysis of possible TR-invariant interactions

(Levin, Stern; Neupert et al.; Y-M Lu, Vishwanath)

- non-Abelian states: <u>yes</u>, use projection from "parent" Abelian states

e.g. (331) -> Pfaffian because [projection, TR-symm.]=0 (A.C., Randellini '14)

Conclusions

• \mathbb{Z}_2 spin parity anomaly characterizes Topological Insulators protected by Time Reversal symmetry (cf. Ringel, Stern; Koch-Janusz, Ringel)

• anomaly signalled by index
$$(-1)^{2\Delta S} = -1, \qquad 2\Delta S = \frac{\nu^{\uparrow}}{e^*}$$

- Pfaffian TI is unstable
- <u>To do:</u>
 - stability of Topological Superconductors: $\mathbb{Z} \to \mathbb{Z}_8$
 - stability 3D systems and 2D-3D systems: \mathbb{Z}_{16}

Gapping interactions for Pfaffian TI

(AC, Randellini, '14)

- Gapping interactions for Abelian states defined by \boldsymbol{K} matrix

$$U_{\alpha} = \exp\left(i\Lambda_{\alpha}^{T}K\Phi_{\uparrow} - i\overline{\Lambda}_{\alpha}^{T}K\overline{\Phi}_{\downarrow}\right) + \text{h.c.} \qquad \alpha = 1, \dots, n = c$$

• For (331) state, they can be written in terms of Weyl fermions fields $U_1 = \Psi_{\uparrow 1}^{\dagger} \Psi_{\uparrow 2} \Psi_{\downarrow 1}^{\dagger} \Psi_{\downarrow 2} + \text{h.c.}$

$$U_2 = \Psi_{\uparrow 1}^{\dagger} \Psi_{\uparrow 2}^{\dagger} \Psi_{\downarrow 1} \Psi_{\downarrow 2} + \text{h.c.}$$

- Projection (331) \rightarrow Pfaffian, i.e. to identical layers $\Psi_{\uparrow 1}^{\dagger} \sim \Psi_{\uparrow 2}^{\dagger} \rightarrow V \chi$ $U_1 =: \chi \partial \chi :: \bar{\chi} \bar{\partial} \bar{\chi} :$ neutral Majorana $U_2 =: V^2 \ \bar{V}^2 :, \qquad V = e^{i\sqrt{2}\phi}$ charged excit.
- U_1 couples to fermion field, U_2 to charges modes, giving both mass
- Analysis extends to Read-Rezayi and Ardonne-Schoutens NASS states