Atom chip: controlling quantum gases on the (sub)micron scale

PETER KRÜGER MIDLANDS ULTRACOLD ATOM RESEARCH CENTRE UNIVERSITY OF NOTTINGHAM, UK

Quantum gases

LASER COOLING, OPTICAL/MAGNETIC TRAPPING, EVAPORATIVE COOLING OF ALKALI AND OTHER ATOMS ARE NOW ESTABLISHED TECHNIQUES COLD (DEGENERATE) GASES FUNCTION AS HIGHLY CONTROLLED QUANTUM SYSTEM

Atom chips

Activities

Non-equilibrium phenomenta

Analog models/ quantum simulators

Bose-Fermi mixtures (L. Hackermuller)

Atom-surface interfaces

Rotation sensors (T. Fernholz)

Portable devices

Outline

* Atom chip applications

- Shaping quantum gas environments on a (sub)micron scale
- ***** Supersonic motion
- ***** Bosonic transport
- * Challenges on the way to submicron trapping
- * Approach to overcome limitations

Applications of atom chips: Interferometry

in situ absorption image

- STABLE FRINGES SHOW THAT SPLITTING IS COHERENT
 COHERENCE PROPERTIES AND EVOLUTION OF 1D GAS
- DIFFERENTIAL FORCES CAN BE MEASURED

Applications of atom chips: 1d dynamics

INTERFERENCE ALLOWS FOR SEPARATION OF CONDENSATE FRACTION IN 1D DECREASED EFFICIENCY OF THERMALIZING COLLISIONS CAN BE OBSERVED

PK AT EL, PRL 2010

Applications of atom chips: Portable devices

* Atom source for integrated sensor device (total volume < 100 l)</p>

* Chip in combination with mm-cm sized mini-traps (not micro)

* EU-collaboration
iSense

PICCARDO-SELG ET AL., IN PREP 2014

Atoms & surfaces

COLD ATOMS IN VACUUM

Isolated (closed) quantum system, **cm** away from solids

PLACING ATOMS AND BUILDING MOLECULES ON SURFACES

Surface-mounted atoms become part of solid with intimate coupling on **Angstrom** scale

WHAT ABOUT THE GAP IN BETWEEN?

Closer surface approach

- Quantum gases can be structured with high spatial (and temporal) resolution; spatial frequency k is damped exponentially with char. length 1/k
- * Small defects, rough disorder, proximity effects
- # High resolution, high sensitivity microscopy
- * Backaction onto surface: detectors, quantum interfaces

BEC microscope

ATOMIC PROBE PROVIDES UNIQUE COMBINATION OF HIGH SENSITIVITY (NANOTESLA) AND HIGH RESOLUTION (MICRONS)

WILDERMUTH ET AL, NATURE 2005

Magnetic sensing

BEC sensor

Single shot image (~10us) contains large field-ofview (>100 um) 1d information

- Resolution in scanning direction given by precisely controllable position and small size (< 100nm) of 1d qBEC</p>
- * Good for snapshots of dynamic processes with high resolution & sensitivity over large fields-ofview

Inhomogeneous interactions

INTER-ATOMIC INTERACTIONS CONTROLLED BY MAGNETIC FIELDS (FESHBACH RESONANCES)

Dynamical effects

STATICALLY HOMOGENEOUS SYSTEM (NONLINEAR AND LINEAR POTENTIALS CANCEL) CAN ONLY BE DISTINGUISHED IN DYNAMICAL SITUATIONS

NUMERICAL EXPERIMENT: DRAGGING A DEFECT THROUGH A GAS

Dynamical effects

CONSTANT VELOCITY FLOW IN A POTENTIAL TUBE WITH INHOMOGENEOUS SPEED OF SOUND

PHONON PAIR PRODUCTION AT BOUNDARY ANALOGOUS TO HAWKING RADIATION EMERGING FROM BLACK HOLE EVENT HORIZON

Landau criterion

FOR BEC LANDAU CRITICAL VELOCITY IS SPEED OF SOUND

THIS TYPE OF *ENERGETIC* INSTABILITY ARISES WHEN EXCITATIONS BECOME ENERGETICALLY FAVORABLE, THE GROWTH WITH TIME IS *POLYNOMIAL*

Linear case: Ramsauer-Townsend Effect

ARE THERE CONTINUATIONS OF BASIC QUANTUM EFFECT INTO NON-LINEAR REGIME ?

Interacting gas: Do resonances persist ?

CASE STUDY: (SLOWLY) RAISE RECTANGULAR BARRIER INTO FLOWING GAS

Numerical experiment

Bounded growth rates

Velocity dependence

Interaction dependence

1d transport of bosons

TWO 3D RESERVOIRS ARE CONNECTED VIA 1D CHANNEL WITH WEAK LINK CONNECTIONS PHASE DIFFERENCE AT EQUAL CHEMICAL POTENTIAL DRIVES CURRENT JOSEPHSON LIKE BEHAVIOR FOR BOSONS?

 Mean field treatment (not perturbative) leads to linear (in J) scaling of current

Spontaneous flip of direction, metastable states and hysteresis instead of sinusoidal current

SIMPSON ET AL, PRL 2014

Experimental realization

- * Double layer trapping wires with varying width
- * Third layer barrier wires on micron scale
- Direct or interferometric readout

- * Potential corrugation
- ***** Attractive surface forces
- # Johnson noise

Geometries & materials

Summary

* Atom chips have been demonstrated to be versatile tools for fundamental studies on complex quantum systems and for device applications alike

* Further miniaturization opens new prospects for engineered environments for quantum gases, for microscopic sensing, and ultimately for atomsurface interfaces

People

* Atom chips exp: Anton Piccardo-Selg, Gal Aviv, Tom Barrett, Fedja Orucevic, Thomas Fernholz

*** Surface exp:** Samanta Piano, Robert Hollenstein, Amruta Gadge, Lu Bo, Christian Koller

*** Fabrication:** Jessica Maclean, Chris Mellor

* Theory: Francesco Intravaia, Mark Fromhold; David Simpson, Dima Gangardt, Igor Lerner (Birmingham); Andrea Trombettoni (SISSA)

* Collaborators: Jorg Schmiedmayer, Ron Folman, Thomas Fernholz, Igor Lesanovsky, Kai Bongs