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1) Theoretical & Experimental
Background

-as shown by Kitaev, a 1 dimensional p-wave
“superconductor” can be in a topological phase
characterized by a Majorana mode at each end,
weakly coupled [exp (-L/€)] to each other
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(Yo.+iV,,)/2 annihilates a zero mode that lives at
both ends of system. This topological phase persists
for a range of A and p (chemical potential).



Kitaev model is simplified description of a quantum
wire with spin-orbit coupling in magnetic field,
proximate to an ordinary s-wave superconductor.

(A 1 d d o, ;
H=fdx[w (—zmclxz+V(x)—lade +B(x)o )qj+(A(x)szzp¢ +hc.)}

(gus/2 set to 1, sum over spin indices implied
in gt term.)

Now gapless Majorana modes occur at
edges of region where pairing term ~A, exists.



This phase may have been seen in InSb quantum
wires proximate at one end to a Nb superconductor.
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2. A Simple Model
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We consider 2 (or more) Luttinger liquid channels
corresponding to a T-junction or multi-channel wire.
Interesting critical behavior occurs when both
channels couple to the Majorana mode.



Following L. Fidkowski et al. we consider a low
energy model of a long interacting normal region
coupled to a long superconducting region. At energy
scales below gap of superconducting portion of
wire we integrate out all degrees of freedom of
superconductor except for 1 Majorana mode.



In a tight binding model for the system we
represent the topological superconductor by

a single site, 0, at the end of the chain, with
Co=(y+iy’)/2. Only (c,* +c,) appears in Hamiltonian,
not (c,*-c,). We, in general, include interactions
between the two channels, but are interested in
cases where they both remain gapless, due to
different chemical potentials:
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H. =

We can write a low energy effective Hamiltonian
in terms of Dirac fermions coupled to the
Majorana mode:
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For 2 channels, after bosonizing:
e Sl a0 i)
ox ox _

= zyEt I'.cos [\/7 7 ¢, (0)]

after bosonlzmg. The Majorana mode, y, couples
linearly to the fermion field in each channel. T; are
Klein factors. Boundary conditions 6,(0)=0 are
imposed. ¢, ¢, are linear combinations of
¢, ®,. For free fermions, K,=1, t; have RG
scaling dimension dj=1/2. dj iIncrease
with repulsive interactions.
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Diagonalization of general bulk model:

o1\ [ rcosa rlsina Dy

2 —rs8ing reosa @,
(e (86,
AA((‘)I) + A ((")I)]

4 universal parameters classifying bulk model are
2 Luttinger parameters, K, K, and 2 anisotropy
parameters, o and r (plus 2 velocities, u; and u,).

I L N
Hy \Lﬂ ; A dx
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3) Renormalization Group analysis
and non-trivial critical point

If t,=0, we expect t, flows to o= under
renormalization. y and ', couple together to
form a Dirac fermion: Y ,=(y+il;)/2,

H, =2t,apip, —1/2)cos [Nx ¢,(0)] il =2, -1

At strong coupling fixed point, ®,(0) is pinned

at either 0 or , V= depending on whether U

state is filled or empty. This is a Schroedinger’s cat
state: electron has equal amplitude to be in
superconductor or normal wire.
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Using v, ,, <exp iNT($ = 0)

weak coupling boundary condition, 6,(0)=0,
corresponds to normal reflection boundary
conditions on fermions: Y, (0)=,(0). Strong
coupling boundary condition, ¢,(0)=0, is

Y, (0) =9, (0)

corresponding to perfect Andreev reflection
of electrons at SN junction, at low energies
and 2e?/h conductance from superconductor
to normal lead at zero temperature. (Can be
checked explicitly for non-interacting, K=1 case.)
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What happens when Majorana mode couples to

both normal channels, t,, t,>07?

dt,
—L et +---
dl

dt,

— =€f, +...
a o

H, = yE t [ .(0) = (0)]

where dj=1-ej.

For non-interacting, or SU(2) symmetric case, we
can change basis '~ t,\,+t,, etc. and then
bosonize. Expect perfect Andreev scattering in
W." channel, normal scattering in Y, channel.
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For general bulk interactions we can’t make this
transformation. Can Majorana mode couple
strongly to two channels? This would violate
principle of “Majorana monogamy”. 2 Majorana
modes make a Dirac mode, not 3. We can study
what happens, for barely relevant tunnelling,
small g;, by calculating next order term in

B functions: |
dt, F depends on details of bulk

interactions, vanishes with

% —e1, - Fri*+... SU(2) symmetry
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These RG equations predict a fixed point:

t, =A+l&/F, t,=4/&/F

For small g;, higher order terms in B-functions are
negligible near fixed point.
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The non-trivial critical point (NTCP) is unstable. Any
imbalance of t; and t, leads to a flow to

“AxN” fixed point, t,===, t,=0 or vice versa. So

a Majorana mode acts as a switch. Slightly
increasing one of tunnel couplings leads to

2eZ/h conductance to 1 channel and 0 to the other.
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4) Conductance

We may calculate conductance at NTCP in

lowest order perturbation theory in the t;,

setting them equal to t,.. We can also

calculate the crossover of the conductance versus
source-drain voltage. In the case of small bare t;:

£ 1

F 1+ (V/V#%)*

G takes fixed point value at V=20 and vanishes
For V>>V*, a cross-over scale. Similar scaling

with T or w. 8

2

e
= —(Qn)’
h()



With a small imbalance of the t;, t;>t,,

G,,=20, G;=>2e?%/h at low V.

If the Luttinger liquids of length L are connected
adiabatically to Fermi liquid leads, we expect this
to produce a cross-over to the non-interacting
conductance for V below a cross-over scale v./L.
Conductance can be shown to be robust

against disorder near SN interface, by topological
arguments.
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5) Further Support for Phase Diagram

Starting with a tight-binding version of the Luttinger
liquid-topological superconductor model and then
making a Jordan-Wigner transformation gives a

spin chain impurity model. A 2-leg xxz ladder
coupled to an impurity spin at one end, arising
from Majorana mode.
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If t,=0, [S5.H]=0 and this is equivalent to a spin
ladder with a boundary magnetic field, acting on
1 leg only, in £ x direction.

If t,, t,>0, the spin at zero, corresponding to the

Majorana mode, is in a non-trivial state and there
is magnetic frustration.

25



What if Majorana mode couples to centre of
single channel Luttinger liquid?

Superconductor
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A tight-binding version of model is now:

H,+H_ = E[—J(c;cj+1 +hc)+Vn.n,, ]

j=_w

H, =t(d+d")(c; -c,)
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U o - op \’ 90 '\’
H,=— [ ax|K (i) +K‘1(—)
2 Y0 ox

H, = iy|1, cos[ N (§(0) + 0(0)) ]+ 1, cos[\x (9(0) - 60))]|

Essentially same model as before with 2 channels
corresponding to right and left movers,
$b+0. We get same B-function:

— =gt - Ftit +... . .
da "t but now F<O0, for interactions
4 et P+, nottoo large
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NB: If F<O stable fixed points would correspond
to Andreev transmission for right movers and
normal transmission for left movers. With F<0
flow is to non-trivial critical point, now

occurring at strong coupling.
9

Or, if PT symmetry
(parity-time reversal)

Is broken, flow is to fixed
point with chain broken

into 2 parts at origin, with
perfect Andreev reflection on
1 side, normal on other.
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PT symmetry complex conjugates c-numbers

and takes: ¢, c
This symmetry can be broken in tight-binding

model, for instance, by:

OH =J'c;(c,-c_)+hc.
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6. Realizing the Model with a
Single Quantum Wire

Even for a single qguantum wire, two channels
are naturally present due to spin or
dispersion curve due to Rashba coupling but:
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in topological phase, 4, must obey:

T
X**2/24+sqrt(14+4*x**2)
X*#2/2-sqrt(1+4*x**2)

If 1, B are constant, only 1 channel since,

mao?=4B




By letting B(x) and/or a gate voltage, p(x)
vary rapidly along wire near edge of
superconductor, we can have 2 channels
in the normal region.

Quantum wire :B¢()i)¢l l l l

FM SC
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We are calculating effective couplings of Majorana
mode to 2 channels from conductance to each
channel, in non-interacting case, obtained from
BTK formula

2)-

Here r;'s are reflection matrices for ee (normal)
Andreev (Andreev) reflection, at Fermi energy.
v. are Fermi velocities in each channel. By tuning
B, 1, we expect to be able to make G,=G,,
corresponding to equal couplings to Majorana.
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eV/t x 103
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These considerations, and others, support
universality of our phase diagram. A Majorana
mode coupled to 2 Luttinger liquid channels acts
as a switch, producing perfect Andreev reflection
In 1 channel, perfect normal reflection in the
other. Frustration, due to Majorana monogamy
produces non-trivial critical point when both
channels are coupled to the Majorana mode
with equal strength.
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