
Dirac Equation

(α · p+ βm)Ψ = i ∂∂tΨ

α, β ∼ Dirac matrices, Ψ ∼ complex
spinor

,p = −i∇
Ψ = e−iEt ψ

(α · p+ βm)ψ = E ψ

Dirac ∼ ±
√

−∇2 +m2 ⇒ E ≶ 0

(diverse dimension d)

particle physics: condensed matter physics:

E > 0 particles conduction electrons

E < 0 anti-particles valence electrons

m mass gap
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Extensions of Dirac equation (condensed matter)

(i) diverse dimensions (d = 1,2,3)

(ii) position dependent mass: m→ ϕ(r)

ϕ(r) topologically non trivial

⇒ (α · p+ βϕ(r))ψ = Eψ

E ≶ as before

also E = 0 when ϕ(r) is topologically non trivial

QE=0state = (−/+)12, empty/filled! [d = 1,3 Rebbi & RJ (76)]

Q = ±1
2 eigenvalue, not VEV!
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EXPERIMENTAL USES OF FRACTIONAL CHARGE

d = 1 polyacetylene [Peierls’ instability breaks Z2 symmetry;

kink ∼ domain wall between phases;

Su, Schrieffer & Heeger (1979)]

d = 2 quantum Hall effect [not defect based]

d = 2 graphene [gapless Dirac equation: Semenoff (1985); manufacture

and verification: Geim & Novoselov (2005); Kekulé dis-

tortion induces mass gap, breaks chiral symmetry, vortex

interpolates;charge fractionalizes: Chamon et al. (2006),

Jackiw & Pi (2007)].
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Majorana Equation

Dirac equation describes charged fermions

and anti-fermions by a complex field Ψ

In nature one observes uncharged, self-conjugate

bosons that are their own anti-particles and are

described by a real field

e.g. neutral pion S = 0
photon S = 1

[hypothetical] graviton S = 2

All are bosons! Are there self-conjugate fermions?

Not yet seen in nature, but used in theoretical and experimental
speculation: e.g.

• neutrinos may be self-conjugate particles;
• super symmetry partners of self conjugate bosons

should be self conjugate fermions;
• speculation about dark matter

question: how to describe self-conjugate fermions?

answer: by a Dirac equation for REAL Ψ!!
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Majorana Equation

(α · p+ βm)Ψ = i
∂

∂t
Ψ

Ψ real = Ψ∗

α real = α
∗

β imaginary = −β∗

Majorana Representation

α1
M =

(

0 σ1
σ1 0

)

α2
M =

(

I 0
0 −I

)

α3
M =

(

0 σ3
σ3 0

)

βM =

(

0 σ2
σ2 0

)

Ψ∗
M = ΨM

Equivalently Cα
∗C−1 = α, Cβ∗C−1 = −β CΨ∗ = Ψ

C = 1 in Majorana representation

e.g. Weyl representation

α=

(

σ 0
0 −σ

)

β=

(

0 I
I 0

)

C=

(

0 −iσ2
iσ2 0

)
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Weyl-Majorana Ψ =

(

ψ
χ

)

(

σ · p m

m −σ · p

)

(

ψ
χ

)

= i
∂

∂t

(

ψ
χ

)

Cψ∗ = ψ ⇒ χ = iσ2ψ
∗

σ · pψ+ iσ2mψ∗ = i
∂

∂t
ψ (2× 2)

NB: Majorana mass term does not preserve any quantum numbers; there
is no distinction between particle and anti-particle since there are no
quantum numbers to tell them apart.

Field expansion for charged Dirac field

Ψ =
∑

E>0

(

aE e
−iEtΨE + b†E e

iEtCΨ∗
E

)

with a annihilating and b† creating particles and anti-particles respectively

Field expansion for self-conjugate Majorana field

Ψ =
∑

E>0

(

aE e
−iEtΨE + a†E e

iEtCΨ∗
E

)

anti-particle operators (b, b†) have disappeared!
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Remarkable Fact:

Condensed Matter theorist have encountered essentially same equation in a
description of a superconductor in contact with a topological insulator. The relevant
2-dimensional Hamiltonian reads

H = ψ∗ (σ · 1
i
∇− µ) ψ+

1

2
(△ψ∗ i σ2ψ∗ + h.c.)

ψ =

(

ψ↑

ψ↓

)

,σ = (σ1, σ2), µ is chemical potential and △ is the order parameter that

may be constant: △ = △0 or takes vortex profile, △ = v(r)eiθ, v(0) = 0, v(∞) = △0

Equation of motion

(σ · p− µ) ψ+△ i σ2ψ
∗ = i

∂

∂t
ψ

2− d Majorana equation (with chemical potential)
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Zero Mode

In the presence of a single vortex order parameter ∆(r) = v(r)eiθ there exists a zero-
energy (static) isolated mode
[

Fu & Kane, PRL 100, 096407 (08); Rossi & RJ NPB 190, 681 (81)
]

ψ0 = #

(

J0(µr) exp {−iπ/4− V (r)}
J1(µr) exp {i(θ+ π/4)− V (r)}

)

# real constant, V ′(r) = v(r)

Majorana field expansion:
Ψ = ................ + aψ0

E 6=0 modes

where zero mode operator a satisfies

{a, a†} = 1, a† = a⇒ a2 = 1/2

How to realize a on states? Two Possibilities!
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[Chamon, Nishida, Pi, Santos & RJ; PRB 81, 224515 (10)]

(i) Two 1-dimensional realizations: take vacuum state to be eigenstate of a, with
possible eigenvalue ±1/

√
2.

a |0±〉 = ± 1√
2

|0±〉

There are two ground states |0+〉 and |0−〉. Two towers of states are constructed

by repeated application of a†E. No operator connects the two towers.

Fermion parity is broken because a is a fermionic operator. Like in spontaneous
breaking, a vacuum |0+〉 or |0−〉 must be chosen, and no tunneling connects to
the other ground state.

(ii) One 2-dimensional realization: vacuum doubly degenerate |1〉 , |2〉, and a connects
the two vacua.

a |1〉 = 1√
2

|2〉

a |2〉 = 1√
2

|1〉

Two towers of states are constructed by repeated application of a†E. a connects
the towers. Fermion parity is preserved.

We shall assume that fermion parity is preserved, and adopt second possibility
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• Curious fact in (1-d)

total L for scalar kink ⊕ fermions

L = 1
2
∂µΦ ∂µΦ+ µ

2
2Φ2 − λ

8

2
Φ4 + iΨ̄ γµ ∂µΨ− gΦΨ̄Ψ

L possesses SUSY for g = λ,Ψ Majorana

Center anomaly in SUSY algebra ⇒ fermion parity can be absent.

[Losev, Shifman & Vainshtein, PLB 522, 327 (01)

Any relevance for condensed matter?

Semenoff & Sodano, EJTP 10, 57 (08)]
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Multiple Vortices

With N vortices, governed by operators a1, a2, . . . , aN that satisfy

{ai, aj} = 2 δij (Clifford algebra)

one can show that one needs

N = 2
N

2 states for even N

and N = 2
N+1

2 states for odd N

N = 1 N = 2 σ1 or σ2 (not σ3) (2× 2)

N = 2 N = 2 σ1 and σ2 (not σ3) (2× 2)

N = 3 N = 4 α1 α2 α3 or β (not diagonal) (4× 4)

N = 4 N = 4 α1 α2 α3 and β (not diagonal) (4× 4)

etc.

Clifford algebra, with a restriction: use for ai Pauli, Dirac, . . . , matrices

excluding diagonal one since it would correspond to diagonalizing a mode operator

and would produce fermion parity violation [Pi & RJ, PRB 85, 033102 (12)]
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