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•  Several baths (macroscopic, at equilibrium) 
•  Out-of-equilibrium forcing  
•  Flow (of charge, spin, energy, …) through impurity 
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γ2	
γ1	
 T2 , µ2 , B2 , … T1 , µ1 , B1 , … 

 Questions: currents  I(µ1,µ2,…) ? 
         fluctuations ΔI(µ1,µ2,…) ? 
         state of the system ? ΔI 



•  Quantum dots: 
       2D electron gas 

   Quantum Hall edge states 

(W. Wernsdorfer, 
Institut Néel) 

200 nm 
200 nm 
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•  Molecules: metallic electrodes 
   break junctions 

  electromigration 

(C. Marcus, Harvard) 

(F. Pierre, LPN) 
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At low energy :  
strong coupling regime 
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At low energy :  
strong coupling regime 

“Physics is non perturbative” € 

E << TKStrong coupling limit, 

€ 
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« Kondo resonance is a  
strong coupling phenomenon » 
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€ 

ˆ ρ (t) =  U (0,t) ˆ ρ (0) U (0,t)
−1

  How to control approximate methods / other approaches? 
•  truncated EOM, diagrammatic methods, 
•  real-time RG, FRG, 

  Integrability provides a non-perturbative approach 

  Keldysh method:  
•  allows for a formal expression of the out-of-equilibrium density matrix 

•  but how to evaluate/resum the perturbative expansion? 
 Fails in the strong coupling regime 

  

€ 

U (0,t) =  P e
− i γ dt 'H

I
( t ' )

0

t
∫ B 



    a few available solutions ! 
•   Dressed TBA  

–  Quantum Hall edge states tunneling 
–  Self-dual Interacting Resonant Level Model  

•   Map to equilibrium problem  
–  Boundary sine Gordon model 

•   Effectively non-interacting systems (map to free fermions) 
–  1-ch Kondo 
–  Luttinger Liquid 
–  2-ch Kondo 

•  Out-of-equilibrium forcing generically destroys 
integrable quasiparticles! 

•  Dynamical forcing (AC…) ? Heat transport ? 
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(A. Schiller, U. Hershfield 1998) 
(A. Komnik, O. Gogolin 2003) 
(E. Sela, I. Affleck 2009) 

(V.Bazhanov, S.Lukyanov, A.B.Zamolodchikov 1999) 

(P.Fendley, A.W.W.Ludwig, H.Saleur 1995) 

Toulouse point 
QCP & vicinity 

(E.B., P.Schmitteckert, H.Saleur 2008)  



•  Integrable theories have nevertheless a rich 
structure: 
–  Infinite number of conserved quantities  
–  Renormalization group flow is controlled non-perturbatively 

•  Can one use this rich structure to develop a 
controlled expansion out of equilibrium, in the strong 
coupling regime ? 
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Yes (at least in some cases) 

200 nm 
Integrable Strong Coupling Expansion 

€ 

V ,T,ω,...≤ TK



•  Modes that couple to the impurity are 1D (conduction channel) 
•  Linearize the spectrum 
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 Chiral theory involving only right-moving fields: scattering problem 

S 
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 Chiral theory involving only right-moving fields: scattering problem € 

ρout = ???

€ 

ρin = ρ1 ⊗ ρ2
S 
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Kondo stems from Anderson model 

Parameters:  - bare exchange coupling J 
  - anisotropy of couplings to the wires θ	
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Want to describe the strong coupling regime   

1. Incoporate out-of-equilibrium forcing AT the fixed point 
  yields a deformed CFT 

2. Use integrability to build the (many-body) S-matrix 
      incoporate (many-nody) back scattering      

3. Expand in inverse powers of TK 

  Net result: Taylor expansion of the universal scaling  
functions for local observables, at arbitrary order in principle    

€ 

T,V ,ω ...≤ TK



•  Perturbation is relevant 
•  Strong coupling fixed point 

 described by BCFT 

•  Step 1: Out-of-equilibrium SC fixed point 
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Weak coupling 
(UV fixed point) 

Strong coupling 
(IR fixed point) 

€ 

(TK = ∞)



•  Boundary conditions: 

•  “Transparent fields”:                              
  They don’t see the impurity!  

•  Forcing out-of-equilibrium easily represented! 

•  Amounts to a gauge transformation        for the transparent fields 
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€ 

Φ(x = 0−) = B ⋅ Φ(x = 0+)

€ 

Ψ1
Ψ2

€ 

θ = π
2    (γ1 = γ 2)

Symmetric case: 

€ 

ρout = ρ2 ⊗ ρ1

€ 

ρin = ρ1 ⊗ ρ2

€ 

I = 2e2 h( )  µ1(t) − µ2(t)( )

€ 

ρin ∝  e
−  
H0 [Ψ1 ] −  µ1Q1

T1 ⊗  e
−  
H0 [Ψ2 ] −  µ2Q2

T2 Recover the linear regime 
for the charge current 

BC for fermions: π/2 phase shift	


€ 

˜ Φ (x < 0) =Φ (x)   ;   ˜ Φ (x > 0) = B ⋅ Φ(x)

€ 

˜ Ψ 1/ 2(x < 0) =Ψ1/ 2(x)
˜ Ψ 1/ 2(x > 0) =Ψ2 /1(x)

  

€ 

UN .Equ(z)



•  The strong coupling fixed point has conformal symmetry ; transparent 
fields        are holomorphic (functions of z = i(t-x) )	


•  The forcing out of equilibrium can be absorbed by a gauge 
transformation («  doping ») 

•  It’s a deformation of the CFT (no geometrical interpretation unlike finite 
temperature CFT) 
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€ 

UN .Equ(z) =
i dω  Ξ a (w ) ˜ Q a (w )

z
∫e     ;    Ξa (z = i(t − x)) = dt'µa (t ')

0

t−x
∫€ 

˜ Φ 

mixing in  
each level mixing  

among levels Id	
 Id	
 Id	


IR boundary  
  conditions 

Doping (voltage) 

Original basis 

€ 

Ψ
Transparent basis 

€ 

˜ Ψ 

Out-of-equilibrium 
transparent basis 

€ 

ˆ Ψ 

  

€ 

ˆ Ψ (z) = UN .Equ(z) ⋅  ˜ Ψ (z)

  

€ 

A1(x1,t1) A2(x2,t2)...
N .Equ

= ˆ A 1(x1,t1) ˆ A 2(x2,t2)...
Equ.

   ;   ˆ A = UN .Equ ⋅ A
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Weak coupling 
(UV fixed point) 

Strong coupling 
(IR fixed point) 

TK	


Physics is controlled  
by backscattering (many body!) 

•  Step 2: Incorporate backscattering 



€ 

HB
SC =  g2n

(TK )2n−1  ˆ O 2n (x = 0)
n =1

∞

∑

€ 

H = H0
SC + HB

SC

Integrability completely fixes the RG flow 
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Weak coupling 
(UV fixed point) 

Strong coupling 
(IR fixed point) 

TK	


(F. Lesage, H.Saleur 1999) 
The full approach to the IR fixed point can be  
described exactly by a dual theory. 



•  The operators  O2n  are the (infinitely many) conserved quantities 
stemming from integrability. 

•  The couplings gn are pure numbers, fixed by integrability. 

•  Fermi liquid: the least irrelevant operator is O2=T , an energy 
momentum tensor. 

•  Higher order processes have  integer  dimensions = 4,6,8,… 
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€ 

HB
SC =  g2n

(TK )2n−1  ˆ O 2n (x = 0)
n =1

∞

∑

€ 

H = H0
SC + HB

SC

Backscattering transfers integer charges (electrons) 
“SUPER FERMI LIQUID” 



•  Start at time              at the SC fixed point  

•  Switch on backscattering at time t=0 
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€ 

ρ(−∞) = ρSC = e−H0
SC / kBT

t 
€ 

1
TB (t)

  

€ 

ρ(t) =U(t)ρSCU(t)†

U(t) =  PKe
−i γ dt 'HB

SC (t ' )−∞
t∫

€ 

(TK = ∞)

€ 

t = −∞



In a super Fermi liquid, the Keldysh expansion bears a simple form: 

       Each (local) operator can be replaced by an effective operator: 
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€ 

Aeff (z) = UBS (z) • A(z)

          = e
−i dt HB (t )

z
∫

• A(z) = (−i)n
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∞

∑ dt1
z
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A(z)	


Complete many-body scattering   



•  Operators undergo a dressing by scattering when 
crossing the impurity: 
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x x 

x =0 x =0 

A(x)	
 Aeff(x)	


  

€ 

A(x,t) N .Equ = UN .Equ(z) •UBS (z) • A(z)
0
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€ 

X = X /TK
Rescaled quantities 
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€ 

F =
5
3
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  A generic – but perturbative – method for some integrable systems: 
super Fermi liquids  

  Gives exact (formal) expression for the out-of-equilibrium density 
matrix 

 Yields exact results in variety of conditions: 
 Voltage (AC/DC) 
 Finite temperature(s) 
 Particle-hole asymmetry 
 Magnetic field 

 Perspectives: 
 (Slow) quenches 
 Non Fermi liquid fixed points? 


