LIV studies with HESS II

LPNHE

PARIS

H.E.S.S.

2nd OKC DIAS Workshop, Stockholm, 23-25 October 2013

Outline

LIV in Fundamental Theories

LIV tests with Cherenkov Telescopes

HESS II performance: Monte Carlo Studies

Summary and Conclusions

LIV in Fundamental Theories

- Lorentz Invariance/Symmetry: Einstein's Relativity & Standard Model
- At Planck scale~10⁻³⁵ m (10¹⁹ GeV), nature of space-time needs to account for microscopic effects
- → Quantum Gravity (QG)
- Some models of QG lead to Lorentz Invariance Violation
- → D branes String model (foamy structure of space-time)
- → Non-commutative geometry
- → Spontaneous symmetry breaking (SME)
- → LQG
- LIV can be tested in different ways:
- > Photon decay, Vacuum Cherenkov Radiation
- Modified GZK cutoff, and TeV γ -ray spectra of extra-galactic sources.
- → Vacuum birefringence
- → Dipersion of light in vacuum

Modification of dispersion relations in vacuum

• LIV modifies dispersion relation for the photon:

$$c^{2}p^{2} = E^{2}(1 + \xi(E/E_{planck}) + \zeta(E/E_{planck})^{2} + ...)$$

• Leading order corrections to the speed of light (c) in vacuum:

$$v = \delta E / \delta p = c (1 - \xi (E / E_{planck}) - \zeta (E / E_{planck})^2)$$

• Figure of merit of LIV:

Best sensitivity for : Fast variability sources Distant sources Energetic sources superluminal

subluminal

Vacuum dispersion

• 2 photons of energies \mathbf{E}_1 and $\mathbf{E}_2(>\mathbf{E}_1)$ emitted at time **t** • observed with a relative $\Delta \mathbf{t}_{\text{LIV}} = \mathbf{t}_2 - \mathbf{t}_1$ (>0 for subluminal, <0 for superluminal)

→Source effect is major caveat : only redshift dependence study can distinguish

LIV tests with Cherenkov Telescopes

• Energy dispersion of time of arrivals in observed gamma rays.

Present QG limits on linear term

• Apart from large redshift GRBs & PKS 2155-304, Crab pulsar good competitor.

Astrophysical probes of LIV with HESS II

	Pulsar	Active Galactic Nuclei	Gamma Ray Burst	
	 Permanent pulsations 	•Extragalactic	• Extragalactic	
Ad.	•Distinguish between LIV/source effects	• Up to TeV	•Up to TeV ?	
Disad.	• Galactic	Source effects	Source effects	
	• Up to 400 GeV(Crab) to be confirmed with H.E.S.S.2	• Random transient evts	• Obs. based on luck	
HESS II running mode	 Mono Access lower energies (crucial with pulsars) 	 Hybrid Access higher energies (crucial with AGNs) 	• Hybrid	

The method of time-lag measurement

• Strategy adapted from Martinez & Errando (Astropart.Phys. 31 (2009) 226)

$$P(E,t) = N \int_0^\infty A(E_s) \Gamma(E_s) G(E - E_s, \sigma(E_s)) F_s(t_s - \tau_n E_s^n) dE_s$$

A(E_s): Acceptance of telescope G(E-E_s): Energy smearing functon

• The time-lag parameter : (s/TeV for n=1) (s/TeV² for n=2) $\Gamma(\mathbf{E}_{s})$: Spectrum at source $\mathbf{F}_{s}(\mathbf{t}_{s})$: Light curve at source

$$\tau_n = \frac{\Delta t}{\Delta E} \approx \frac{(n+1)\xi}{2E_p^n H_o} \int_0^z \frac{(1+z)}{\sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda}} dz$$

Parametrize Template Light curve F_s(t_s) at low energy and spectrum A(E_s)
 Use Maximum Likelihood at high energy to estimate the time lag parameter.

•The likelihood is the product of the p.d.f's over all the photons in the fit:

$$L = \prod_{i} P(E, t)$$

HESS II performances with pulsars The method

- Time delay due to LIV:
- → phase delay between photons of \neq energies in the reconstructed phasogram.

HESS II performances with pulsars

- 1 single pulse in phasogram
- $\rightarrow \sigma_{\text{pulse}} = 2x10^{-2}$ (rotational phases)
- Power law spectrum $E^{-\Gamma} \Gamma = 3.3$
- Acceptance & energy resolution
- → H.E.S.S.2 mono
- $\textbf{\textbf{\textbf{+}}} \Delta E/E \sim 35\%$
- 2 studies:
- → **B1 model**: S/B=∞ (>30 GeV)
- → **B2 model**: S/B=1 (>30 GeV)

Model is optimistic: >Pulse shape not Gaussian >S/B could be >1 due to hadron bckg suppression problems

HESS II performances with pulsars Template phasogram and spectrum

• **B1:** S/B=∞:

→Fit phasogram using Gaussian pulse.→Fit spectrum with power law (>55GeV)

B2: S/B=1:
Fit phasogram using (1-β) x Gaussian(Φ) + β x Uniform (Φ)

ien, 2nd DIAS workshop

HESS II performances with pulsars Results

• Estimate on phase-lag parameter given by minimum of $-2\Delta \ln(L)$.

- → Red : B1 model (no background)
- → Blue: B2 model (S/B=1)
- → Wider "parabola" due to background contamination.

HESS II performances with pulsars Calibration of the method

HESS II performances with pulsars Calibration of confidence intervals

• 95% CL upper/lower limits on phase lag parameter are derived from $-2\Delta \ln(L)$.

Improper coverage, mainly due to:
Template phasogram uncertainties
Spectrum parametrization

Refine threshold on -2∆ln(L) to get proper coverage.
 →Derive mean upper/lower limits on linear and quadratic phase lag parameter
 →Lower limits on quantum gravity scale E_{OG}

HESS II performances with pulsars Sensitivity (linear correction, subluminal)

B1: S/B=∞

M.Chrétien, 2nd DIAS workshop

HESS II performances with pulsars

E _{QG} ^{95% LL} (GeV) for H.E.S.S.2 pulsar candidates	Lin	ear	Quadratic			
	S/B=∞	S/B=1	S/B=∞	S/B=1		
Crab	1.04x10 ¹⁸	5.47x10 ¹⁷	1.74x10 ¹⁰	1.48x10 ¹⁰		
PSR J1826-1256*	< 3.18x10 ¹⁸	< 1.83x10 ¹⁸	< 3.19x10 ¹⁰	< 2.72x10 ¹⁰		
PSR J1709-4429	3.19x10 ¹⁷	1.84x10 ¹⁷	1.01x10 ¹⁰	8.63x10 ⁹		
PSR J1809-2332	1.64x10 ¹⁷	9.5x10 ¹⁶	7.25x10 ⁹	6.20x10 ⁹		
Vela	4.69x10 ¹⁶	2.71x10 ¹⁶	3.87x10 ⁹	3.31x10 ⁹		

* from published upper limit on distance (Fermi 2nd year catalog), distance to the Galaxy's edge

HESS II performances with AGNs Toy MC simulations

Modest flare from PKS 2155-304:

- 1 gaussian pulse in 25 min
- → 1000 events > 0.3 TeV
- $\rightarrow \sigma_{\text{flare}} = 250 \text{ s}$
- → Power law spectrum E^{-Γ} Γ=3.2

Acceptance and resolution: HESS II hybrid/mono

- → Estimation of no of events in the low energy range for a Template LC
- → HESS I/ HESS II sensitivity ratio in 0.15 1.0 TeV range ~ 2
- → Safe range for likelihood fit (> 0.15 TeV) with respect to: Efficient background suppression Assuming a power law spectrum reconstruction

HESS II performances with AGNs Error calibration

HESS 2 mono E > 0.15 TeV

• Statistical precision measurement: calibrated error p.d.f.s

HESS 1 E > 0.3 TeV

InL minima - MC InL minima - MC h99 h99 180 Entries 900 Entries 900 120 0.1126 Mean Mean 0.6839 RMS 8.517 RMS 11.34 160 Underflow 57 Underflow Overflow 71 Overflow 100 140 y²∫ndf 8.732/8 2.773/8 χ^2 / ndf 0.3654 Prob Prob 0.9478 94.54 ± 4.82 Constant 120 Constant 162.5 ± 6.9 Mean 2.017 ± 0.692 Mean 2.255 ± 0.308 80 14.23 ± 0.88 Sigma 8.762 ± 0.247 Sigma 100 80 60 60 40 40 $\sigma_{\rm T} = 8.7 \pm 0.2$ σ_τ = 14.2 ± 0.9 s/TeV 20 20 10 15 20 15 -20 -15 -10 -20 -15 10 -5 5 A. Jacholkowska

HESS II performances with AGNs Error calibration

M.Chrétien, 2nd DIAS workshop

HESS II performances with AGNs Summary

A. Jacholkowska

Mode	N _{evt}	Calibrated error $\sigma_{ au}~(s/T_eV)$	Template LC range (TeV)	Remarks		
HESS 1 E > 0.3 TeV	1000	8.7 ± 0.2	0.15 – 0.25	Low intensity flare BF calibration: 5.5 s/TeV		
HESS 2 mono E > 0.15 TeV	1100	14.2 ± 0.9	0.05 - 0.12	Not competitive alone		
HESS 1 + HESS 2 mono E > 0.3 E > 0.15 T _e V	2100	8.0 ± 0.2	0.15 - 0.25 0.05 - 0.12	Suitable for tests: 2 template LCs		
HESS 2 hybrid E > 0.2 TeV	3600	7.2 ± 0.2	0.05 - 0.12	error: 25% improvement		
With systematics $\sigma_{syst} \approx \sigma_{stat}$ $E_{QG}^{-1} > 3.50 \times 10^{18} \text{ GeV}$ (95% CL)						

Summary and Conclusions

• Overall:

- → Increase in sensitivity <0.2 TeV, better Template at low energy
- → Larger statistics
- If pulsars confirmed with HESS II (Mono running mode)
- → Permanent pulsations, low systematics
- → "Crab like" competitors to AGNs
- → With millisecond pulsars, could reach the Planck scale.
- With AGNs (PKS 2155-304)
- Hybrid running mode
- → 25% improvement on statistical error compared to HESS I
- With GRBs
- → Work is ongoing, preliminary result (z=0.5): E_{OG}^{-1} > 1.02x10²⁰ GeV
- White paper before end of the year

Thanks Tack!

"That's a violation of the law of Lorentz invariance, baby" Futurama, "Law and Oracle" (2011)

Backup slides HESS II telescope running modes

Hybrid
→Higher energy threshold
→Access higher energies

Mono

→Lower energy threshold (smaller effective area)
→Access lower energies (~<100 GeV)

Backup slides Calibration curves

M.Chrétien, 2nd DIAS workshop

Backup slides Calibration curves

Backup slides

Distribution of reconstructed phase lag (no LIV)

27

Backup slides Distribution of reconstructed phase lag (no LIV)

28

Backup slides Effect of LIV on phasogram

• Inject phase-lag parameter from -0.05 to 0.05 TeV⁻¹(⁻²).

• 2 energy intervals: low energy (30 – 55 GeV) and high energy (55 GeV – 1 TeV)

Backup slides Pulsar candidates for HESS II

Name	$\operatorname{zenith}_{culm}$	$\log 10(F_{10-100GeV})$	$\log 10(F_{1-100GeV})$ [2]	$\Delta\beta$
(PSR)	(°)	$(cm^{-2}s^{-1})$	$(cm^{-2}s^{-1})$	
J0835-4510*	22	-8.01	-5.87	
J1709-4429	21	-8.63	-6.72	3.20 - 3.70
J1809-2332	0	-9.28	-7.16	3.50 - 3.70
J1907 + 0602	29	-9.47	-7.42	2.90 - 3.50
J1826-1256	10	-9.51	-7.27	3.00 - 3.60
J1732-3131	8	-9.57	-7.43	3.10 - 3.50
J1833-1034	13	-9.63	-7.99	2.30 - 2.70
J0633 + 0632	30	-9.72	-7.81	3.00 - 3.10
J1614-2230	1	-10.11	-8.34	2.60 - 2.70
J2124-3358	11	-10.16	-8.13	2.10 - 2.30

Table 1: Top-ten list of the best candidates to reach 5σ in 100 hours for observation zenith angles $<30^{\circ}$. The columns represent (by left-right order): the source culmination zenith angle, the logarithm of the energy flux between 1 and 100 GeV (F_{1 - 100 GeV} for Crab pulsar is 1.8×10^{-7} cm⁻²s⁻¹) and the range of values in β allowed in our simulation for each pulsar. The asterisk (*) following Vela pulsar's name indicates that it is the top-ten list besides of having a strong indication of an exponential cut-off at high energies, since it is the most energetic one in the Southern hemisphere.

Backup slides 6 Fermi millisecond pulsars

Pulsar name	l, b	P (ms)	<i>d</i> (pc)	Log <i>Ė</i> (ergs s ⁻¹)	δ	Δ	Photon flux >0.1 GeV (10 ⁻⁸ photons cm ⁻² s ⁻¹)	Energy flux >0.1 GeV (10 ⁻¹¹ ergs cm ⁻² s ⁻¹)	Spectral index	Exponential cutoff energy (GeV)	η (%)
]0030+0451	113.1°, –57.6°	4.865	300 ± 90	33.54	0.16	0.45	5.5 ± 0.7	$\textbf{4.9} \pm \textbf{0.3}$	$\textbf{1.3} \pm \textbf{0.2}$	$\textbf{1.9} \pm \textbf{0.4}$	15 ± 9
J0218+4232 (b)	139.5°, –17.5°	2.323	$\textbf{2700} \pm \textbf{600*}$	35.39	0.50	_	$\textbf{5.6} \pm \textbf{1.3}$	$\textbf{3.5}~\pm~\textbf{0.5}$	$\textbf{2.0} \pm \textbf{0.2}$	7 ± 4	13 ± 6
J0437-4715 (b)	253.4°, –42.0°	5.757	156 ± 2	33.46	0.45	_	$\textbf{4.4} \pm \textbf{1.0}$	$\textbf{1.9} \pm \textbf{0.3}$	$\textbf{2.1} \pm \textbf{0.3}$	$\textbf{2.1} \pm \textbf{1.1}$	$\textbf{1.9} \pm \textbf{0.3}$
J0613-0200 (b)	210.4°, –9.3°	3.061	$\textbf{480} \pm \textbf{140}$	34.10	0.42	_	$\textbf{3.1} \pm \textbf{0.7}$	$\textbf{3.1} \pm \textbf{0.3}$	$\textbf{1.4} \pm \textbf{0.2}$	$\textbf{2.9} \pm \textbf{0.7}$	7 ± 4
J0751+1807 (b)	202.7°, 21.1°	3.479	$\textbf{620} \pm \textbf{310}$	33.85	0.42	_	$\textbf{2.0} \pm \textbf{0.7}$	$\textbf{1.7}~\pm~\textbf{0.2}$	$\textbf{1.6} \pm \textbf{0.2}$	$\textbf{3.4} \pm \textbf{1.2}$	11 ± 11
J1614-2230 (b)	352.5°, 20.3°	3.151	1300 \pm 250*	33.7	0.20	0.48	$\textbf{2.3} \pm \textbf{2.1}$	$\textbf{2.5}~\pm~\textbf{0.8}$	$\textbf{1.0} \pm \textbf{0.3}$	1.2 \pm 0.5	$\textbf{100} \pm \textbf{80}$
]1744–1134	14.8°, 9.2°	4.075	$\textbf{470} \pm \textbf{90}$	33.60	0.85	_	$\textbf{7.1} \pm \textbf{1.4}$	$\textbf{4.0} \pm \textbf{1.0}$	$\textbf{1.5} \pm \textbf{0.2}$	$\textbf{1.1} \pm \textbf{0.2}$	27 ± 12
]2124–3358	10.9°, -45.4°	4.931	$\textbf{250} \pm \textbf{125}$	33.6	0.85	—	$\textbf{2.9} \pm \textbf{0.5}$	$\textbf{3.4} \pm \textbf{0.3}$	$\textbf{1.3} \pm \textbf{0.2}$	$\textbf{2.9} \pm \textbf{0.9}$	6 ± 6

A. A. Abdo *et al. Science* **325**, 848 (2009);

Backup slides Sensitivity (linear correction)

Backup slides

Distinguish between LIV and source intrinsic delays

- LIV delay:
- → P(t)=P+ dP/dt t and $\Delta \Phi(t)=\Delta t/P(t)$ in pulsar frame
- $\Delta \Phi$ decreases with time for LIV delays.
- Source Intrinsic delay:
- $\Delta \Phi$ =Constant in pulsar frame (if not correlated with period increase)
- → No change with time

