

M. Renaud LUPM, Montpellier

2nd OKC-DIAS Workshop Science with H.E.S.S. II

SNRs and the sources of Galactic CRs

Galactic CR luminosity = $L_{CR} \sim 10^{41} \text{ erg/s} \rightarrow \eta_{CR} \sim 0.1 \times (R_{SN}/0.03 \text{ yr}^{-1}) \times (10^{51} \text{ erg/E}_{SN})$

Successes of the NLDSA theory towards the CR origin in SNRs (Helder et al. 2012)

Reduced heating (larger r, lower T_{down}) & Shock modification (precursor, r_{BW}/r_{CD} , concavity) X-ray filaments & knots $\rightarrow B > 100 \ \mu G$ (e.g. Völk et al. 2005, Bamba et al. 2005) Maximum energy $\rightarrow E_{max} \sim E_{knee}$ (Blasi et al. 2007, Eriksen et al. 2011, Bell et al. 2013) Balmer-dominated shocks \rightarrow high P_{CR} (e.g. RCW 86, Helder et al. 2009, 2013)

23–25 october 2013 M. Renaud « SNRs in the H.E.S.S. II era » OKC-DIAS workshop, Stockholm

Emission towards <u>SNRs in « isolation »</u>, with clear shell-type morphology

 \rightarrow naturally associated with SNR shells

Emission towards <u>SNRs in crowded fields</u>, with no clear shell-type morphology

 \rightarrow identification more difficult, sometimes doubtful

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Several statistical studies of gamma-ray emitting SNRs have been carried out

Several statistical studies of gamma-ray emitting SNRs have been carried out

	γ -ray	-bright S	Supernova F	Remnants			
Coordinates	SNR	Age(kyr) α_{GeV}	α_{TeV}	Refs.	"Confused»	PWNe
6.4 - 0.1	W28 North	35 - 45	2.09 ± 0.08	2.66 ± 0.27	[14, 31-34]		
	W28 A,B,C	35 - 45	2.19 ± 0.14	2.50 ± 0.20	[14, 31, 32]		
8.7 - 0.1	W30	10 - 50	2.4 ± 0.07	2.72 ± 0.06	[14, 35-38]	Others	PWN candidates
31.9 + 0.0	3C 391	4	2.33 ± 0.11		[35]		
34.7 - 0.4	W44	15	2.06 ± 0.03		[14, 39]		
43.3 - 0.2	W49B	1-4	2.18 ± 0.04	3.1 ± 0.3	[40]		
49.2 - 0.7	W51C	10 - 20	1.7 ± 0.3		[14, 41-43]	(Aharonian et al. 2008)	(Abdo et al. 2010)
106.3 + 2.7		10		2.29 ± 0.33	[14, 34, 44]		
119.5 - 2.1	Cas A	0.330	2.01 ± 0.1	2.3 ± 0.2	[14, 45-47]	• H.E.S.S.	- (a)
120.1 + 1.4	Tycho	0.438	2.3 ± 0.1	1.95 ± 0.50	[14, 48, 49]	8 PSR J1801-23	
189.1 + 3.0	IC443	30	1.93 ± 0.03	3.05 ± 0.40	[14, 34, 43, 50-54]	HESS J1801-233	23:00:00 Source N
205.5 + 0.5	Monoceros	30-150		2.53 ± 0.26	[14, 34, 55]		20.00.00
266.2 - 1.2	Vela Jr.	0.6 - 4		2.24 ± 0.04	[56, 57]		
315.4 + 2.3	RCW 86	1.825		2.41 ± 0.16	[58]		
327.6 + 14.6	SN1006 NE	1.004		2.54 ± 0.15	[59]		
	SN1006 SW	1.004		2.34 ± 0.22	[59]	GB0,11801-2320	
347.3 - 0.5	RX J1713.7-3946	1.6	1.5 ± 0.1	2.04 ± 0.04	[4, 60-63]		
348.5 ± 0.1	CTB 37A	1.617	$2.19 {\pm} 0.07$	2.30 ± 0.13	[14, 35, 64]		
348.7 ± 0.3	CTB 37B	2.7-4.9		2.65 ± 0.19	[64]	6.225-0.5	HESSELTS HESSELTS HESSELTS HESSELTS
349.7 + 0.2		2.8	2.10 ± 0.11		[35]		04.00.00
353.6 - 0.7	HESS J1731-347	27		2.26 ± 0.10	[65, 66]		24:00:00 A / C
Σ	(Other po	ssible candi	dates	- 19 C C C		Santree S
0.0 + 0.0	SGR A East	8	~ 2.2		[14, 36, 67]	W 28A2 C	
12.8 - 0.0	HESS J1813-178	0.3 - 25		2.09 ± 0.08	[36, 38]	HESS 11800-240 5. J2000.0 (hrs)	18:04:00 18:00:00
21.5 - 0.9	HESS J1833-105	0.8 - 1		2.08 ± 0.22	[68]	TIESS 0 1000-220	Pight According (12000)
23.3 - 0.3	W41	60-100		2.45 ± 0.16	[14, 36, 38, 69]	$\langle \langle \rangle \rangle$	Right Ascension (J2000)
27.8 ± 0.6		35 - 55			[34]	$\sum \left(\frac{1}{2} \right)$	
28.8 + 1.5	Contraction of the second	32			[34]		
29.7 - 0.3	Kes 75	0.7-0.8	8	2.26 ± 0.15	[68]	\mathbf{V}	
35.6 - 0.4	HESS J1858+020	30		2.2 ± 0.1	[66, 70]	Coomio rovo which h	ave diffused from M/202
40.5 - 0.5	HESS J1908+063	20 - 40		2.08 ± 0.10	[14, 68, 71]	Cosmic-rays which h	ave diffused from vv2o?
54.1 + 0.3		2.9		2.3 ± 0.3	[72]	Other legal courses (HIL regione SNDe/2
65.1 + 0.6	0FGL J1954.4+2838	4-14			[38, 43, 73]	Other local sources (
78.2 + 2.1	γ Cygni	5			[14, 34, 74]		
119.5 + 10.2	CTA 1	13-17			[34]		
132.7 + 1.3	HB3	30			[14, 34]		
296.4 - 9.45?	HESS J1507-662	1?		2.24 ± 0.16	[75, 76]		
338.3 ± 0.0	HESS J1640+465	20 - 40		2.42 ± 0.14	[36]		
343.0 - 0.6	RCW 114	20			[34]		
359.1 - 0.5	HESS J1745-303	20 - 50	~ 2.17	2.71 ± 0.11	[14, 76, 77]		

Several statistical studies of gamma-ray emitting SNRs have been carried out

Several statistical studies of gamma-ray emitting SNRs have been carried out

Broad-band modeling of GeV-TeV SNRs (Mandelartz & Tjus 2013)

SNR	Dist. [kpc]	Age [yr]	B_{\min} [μ G]	$B_{\rm eq}$ [μ G]	MeV-GeV	GeV-TeV	Energy
W28	1.9	33000 +	500	620	Р	B(P)	М
W28C	1.9	?	40	40	B(P)	B(P)	M/P
W30	4	25000	100	110	Р	B+C	М
W33	4	1200	18	18	B?(P)	B(P)	Р
W41	4.2	100000	9	9	B(P)	B(P)	Р
3C391	7.2	4000	27	130	Р	Р	Р
W44	3	10000	40	130	Р	В	Μ
G40.5– <mark>0.</mark> 5	3.4	30000	90	159	Р	Р	Μ
W49B	10	1000 +	100	307	Р	Р	Р
W51C	7.2	26000	120	130	Р	В	Μ
Cygnus Loop	0.58	14000	35	100	Р	Р	Μ
Cassiopeia A	3.5	332	37	?	B(P)	C(P)	Р
Tycho	3.5	440	45	100	Р	Р	Р
IC443	1.5	3000 +	35	40	B	B+P	Μ
Puppis A	2	4500	33	33	B(P)	B+C(P)	M/P
Vela Jr	1.3	2500	9	9	C(P)	C(P)	Р
MSH 11-62	6.2	1300 +	10	21	Р	100	E + M
RCW 86	2.3	1827	13	13	?	C	Р
SN 1006	2.2	1006	29	30	?(P)	C(P)	Р
RX J1713.7	3.5	1619?	27	10	C	C	P
CTB 37A	7.9	2000	138	?	Р	P/B?	M
CTB 37B	13.2	1750	30	30	C(P)	C(P)	Р
$G349.7 {+} 0.2$	18.3	3500	45	>100	Р	Р	Р
G359.1-0.5	7.6	10000 +	41	41	B	B	M

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Several statistical studies of gamma-ray emitting SNRs have been carried out

Monte-Carlo simulations of Galactic « isolated » SNRs (Cristofari et al. 2013)

Young, isolated, TeV-bright SNRs

^{23–25} october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Young, isolated, TeV-bright SNRs

(Aharonian et al. 2006 ; 2007 ; 2009 ; 2011 ; 2012)

Gamma-ray spectrum in the form : $dN/dE = N_0 E^{-\Gamma} \exp(-(E/E_c)^{\beta})$ $\pi^0 \rightarrow 2\gamma, dN_p/dE_p$ with $\exp(-(E_p/E_{cut})) \rightarrow \beta = 1/2$ (Kelner et al. 2006)

IC, dN_e/dE_e with $exp(-(E_e/E_{cut})^{\zeta})$ for D α p^{ζ -1} Regular B-field $\rightarrow \beta = 1/2$ for $\zeta = 2$ Turbulent B-field $\rightarrow \beta = 1/3$ for $\zeta = 2$ (Zirakashvili & Aharonian 2007, 2010)

N.B. : increasing the statistics above ~30 TeV could lead to a clear detection \rightarrow hadrons!

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Young, isolated, TeV-bright SNRs

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

2-10 GeV count maps (Fermi/LAT collab., Uchiyama 2011)

Middle-aged SNRs ~ $(1-4) \times 10^4$ yr

Bright at radio wavelengths Interacting with molecular clouds (Koo & Moon 1997, Reach et al. 2005, Hewitt et al. 2006 ; 2008)

Extended GeV emission consistent with the size of the radio SNR (except W28)

Extended TeV emission detected by HESS, VERITAS & MAGIC (except W44) (Albert et al. 2007, Aharonian et al. 2008, Acciari et al. 2009, Fiasson et al. 2009, Aleksic et al. 2012)

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era » C

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Origin of HE spectral breaks

Several scenarios involving acceleration/diffusion effects due to the interaction of a SNR shock with a dense, partially ionized, medium:

1) ion-neutral collisions \rightarrow Alfven wave damping \rightarrow reduction of confinement & escape \rightarrow break with $\Delta\Gamma$ = 1 at $E_{br} \sim 10 B_{uG}^{2} T_{4}^{-0.4} n_{0}^{-1} n_{i}^{-1/2}$ GeV (Malkov et al. 2011, 2012)

Origin of HE spectral breaks

Several scenarios involving acceleration/diffusion effects due to the interaction of a SNR shock with a dense, partially ionized, medium:

1) ion-neutral collisions \rightarrow Alfven wave damping \rightarrow reduction of confinement \rightarrow escape \rightarrow break with $\Delta\Gamma$ = 1 at $E_{br} \sim 10 B_{\mu G}^{2} T_{4}^{-0.4} n_{0}^{-1} n_{i}^{-1/2}$ GeV (Malkov et al. 2011, 2012)

2) Reacceleration of Galactic CRs in crushed clouds (Uchiyama et al. 2010)

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

Origin of HE spectral breaks

Several scenarios involving acceleration/diffusion effects due to the interaction of a SNR shock with a dense, partially ionized, medium:

- 1) ion-neutral collisions \rightarrow Alfven wave damping \rightarrow reduction of confinement \rightarrow escape \rightarrow break with ΔΓ = 1 at $E_{br} \sim 10 B_{uG}^2 T_4^{-0.4} n_0^{-1} n_i^{-1/2}$ GeV (Malkov et al. 2011, 2012)
- 2) Reacceleration of Galactic CRs in crushed clouds (Uchiyama et al. 2010)
- 3) Two-step acceleration model with secondary shocks (Inoue et al. 2010)

4) Diffusion of escaping CRs from interacting SNRs (Ohira et al. 2011, Li & Chen 2010; 2012)

Besides the breaks due to the finiteness of the source and target regions, one break is interpreted as being $E_{D,max}$ when the shock encountered the MC

Good fits... at the expense of several (poorly constrained) parameters related to diffusion and MC properties...

M. Renaud « SNRs in the H.E.S.S. II era »

Origin of HE spectral breaks

Several scenarios involving acceleration/diffusion effects due to the interaction of a SNR shock with a dense, partially ionized, medium:

- 1) ion-neutral collisions \rightarrow Alfven wave damping \rightarrow reduction of confinement \rightarrow escape \rightarrow break with $\Delta\Gamma$ = 1 at $E_{br} \sim 10 B_{uG}^{-2} T_4^{-0.4} n_0^{-1} n_i^{-1/2}$ GeV (Malkov et al. 2011, 2012)
- 2) Reacceleration of Galactic CRs in crushed clouds (Uchiyama et al. 2010)
- 3) Two-step acceleration model with secondary shocks (Inoue et al. 2010)

W28 : SNR/MC interaction and escaping CRs

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

W44 : SNR/MC interaction and escaping CRs

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

W30 : Origin of the HE/VHE emission

HESS J1640-465 : Origin of the HE/VHE emission

Originally discovered in the H.E.S.S. Galactic Plane Survey (Aharonian et al. 2006) toward SNR G338.3-0.0 which hosts a X-ray PSR/PWN candidate (Funk et al. 2007, Lemière et al. 2009)

Fermi/LAT data revealed emission coincident with HESS J1640-465 with no evidence for a cutoff at \sim 1–10 GeV, reminiscent of pulsars (Slane et al. 2010)

If HE/VHE emissions are of the same origin \rightarrow PWN scenario « spectrally » disfavored \rightarrow New TeV SNR with $W_p n_H \sim 4 \times 10^{52} d_{10 \text{kpc}}^2 \text{ erg cm}^{-3}$ (H.E.S.S. Collaboration, in prep.)

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era » OKC-DIAS workshop, Stockholm

SNRs with H.E.S.S. II

Isolated, « clean » SNRs

Precise spectral measurements in the brightest TeV SNRs (RX J1713-3946) Search for gamma-ray emission from young SNRs (Kepler)

Interacting, « crowded » SNRs

Origin of the GeV spectral breaks (W28, W44)

Constraints on diffusion properties of CRs escaping & interacting with MCs (W28, W44) Revealing the nature of several VHE sources (W30, HESS J1640-465)

1FHL (E > 10 GeV) source catalog recently released (2013arXiv1306.6772T)

1FHL Name	2FGL Name	SNR Name	PWN Name	TeV Name	Common Name
J1111.5-6038	J1112.1-6040	G291.0-00.1	G291.0-0.1		
J1552.6-5610	J1552.8-5609	G326.3-01.8		12.01	Kes 25
J1640.5-4634	J1640.5-4633	G338.3-00.0	G338.3-0.0	HESS J1640-465	
J1717.9-3725	J1718.1-3725	G350.1-00.3			1.1.1
J1745.6-2900	J1745.6-2858	G000.0+00.0	G359.98-0.05		Sgr A East
J1834.6-0703	J1834.7-0705c	G024.7+00.6	2.2.2	1223	

Table 5. Potential Associations for Sources Near SNRs

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

HE sky from *Fermi*/LAT

5-yr all-sky image (E > 1 GeV)

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »

HE sky from *Fermi*/LAT

VHE sky from IACTs

VHE sky from IACTs

23-25 october 2013

M. Renaud « SNRs in the H.E.S.S. II era »