Search for axion-like particle signatures in gamma-ray spectra with H.E.S.S. II

Manuel Meyer*

October 24, 2013 2nd OKC DIAS workshop: science with H.E.S.S. II

<u>manuel.meyer@fysik.su.se</u> *Oskar Klein Centre, Stockholm University

Threshold energy:

$$E\epsilon_{\rm thr} = (m_e c^2)^2$$

Peak wavelength of cross section:

$$\lambda_* = 1.24 \left(\frac{E}{\text{TeV}}\right) \,\mu\text{m}$$

[Nikishov 1962; Jelley 1966; Gould & Schréder 1966, 1967]

е

9

Investigate opacity of the Universe

Indication for pair-production anomaly

- Fit function to absorption corrected spectra
- Calculate **residuals** $\chi_i = (F_{meas,i} - F_{theo}(E_i)) / \sigma_i$
- Expectation: mean of residuals $\langle \chi \rangle = 0$, test with Student's t test
- Result: *p*_t=4.3σ indication for overcorrection for τ > 2
- Systematics: energy calibration and resolution strongest effect (reduces pt

to 2*σ*, however, no indication in mock data sample, energy cross calibration of the order of 5%; Meyer et al. 2010)

[Horns & MM, 2012]

Search for low opacity in Fermi-LAT data

- Associate photons with AGN (listed in 2FGL, known redshift)
- For each photon, calculate optical depth
- From intrinsic spectrum: calculate probability to observe detected photons
- Combining results from all sources and correct for trials
- **Preliminary** results for *Pass* 7:
 - $P_{\text{post-trial}}(\tau_{\gamma\gamma} \geq 1) = 0.06$
 - $P_{\text{post-trial}}(\tau_{\gamma\gamma} \geq 2) = 1.2 \times 10^{-4}$
- Redo analysis with Pass 7 reprocessed and Pass 8

[Horns and **MM** 2013, see also **MM**, PhD thesis 2013 – Disclaimer: analysis conducted *before* joining the *Fermi* -LAT collaboration]

Observation of sources with $\tau > 4$

Pepa Becerra et al., MAGIC Gamma-ray SED Peak PG1553+113,z>0.4 VERITAS-Contemporaneous Fermi Dataset Full Fermi Dataset (MJD 54682-56443) Full VERITAS Observed VHE Spectrum 2009/2011/2013 z=0.6035 Absorption-corrected Spectrum using Finke et al. 2010 dN [TeV1 cm2 s'] 10¹³ Preliminary z=0.6035 Absorption-corrected Spectrum using Gilmore et al. 2012 (ZH VC) [^]H² H² PG1553+113 z=0.4 10¹¹ [erg cm⁻² s¹] 500 600 70 Energy, E [GeV] 300 400 [courtesy of Amy Furniss for the VERITAS collaboration] ų²-12 5 **10**⁻¹ 10^{2} Energy (GeV) 10^{3} 10

- Recent observations of sources correspond to high optical depth
- **Spectral hardening** towards highest energies
- **PG 1553+113: z > 0.4** [Danforth et al., 2010]
- PKS 1424+240, z > 0.6035 [Furniss et al., 2013]

Conversion of photons into axion-like particles

(ALPs)

- ALPs: **pseudo-Nambu Goldstone bosons**, arise in extensions of Standard Model
- Similar to axions, proposed to cure the strong CP problem in QCD [Peccei & Quinn, 1977; Weinberg, 1978; Wilczek, 1978]
- Couple to photons in the presence of magnetic fields
 - Evade pair production, can propagate over cosmological distances
 - ALPs with masses $m_a \leq 1$ µeV required

$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma} \mathbf{E} \cdot \mathbf{B} a$$

[e.g., Csaki et al., 2003; Hooper & Serpico, 2007; De Angelis et al., 2007,2011; Mirizzi et al., 2007]

[e.g., De Angelis et al., 2007,2011; Mirizzi et al., 2007; Simet et al., 2008; Sanchez-Condé et al., 2009; Horns et al. 2012; Tavecchio et al. 2012]

Photon-ALP mixing in coherent B field

 Δ terms are combinations of parameters $B, m_a, g_{a\chi}, n_{el}$, and energy

[e.g., Raffelt & Stodolsky 1988; Csaki et al., 2003;Hooper & Serpico 2007; De Angelis et al., 2007,2011;Mirizzi et al., 2007; Bassan & Roncadelli 2009]

- Mixing in random intracluster magnetic field (ICMF) & GMF
- IGMF morphology: cell-like structure

Conversion in Galactic magnetic field

pure ALP beam in strong mixing regime, with ALP mass $m_a = 1$ neV GMF model (regular component) by Jansson & Farrar, (2012)

Coupling $g_{a_{\chi}}$ to explain opacity hint

- Lower limits on couplings to explain reduced opacity close to upper imits from CAST experiment [Andriamonje et al., 2007]
- In reach of future dedicated ALP searches such as ALPS II and IAXO
- Reach into region to explain white dwarf cooling hint [Isern et al., 2008]

[MM, Horns, Raue 2013]

A closer look on PKS 1424+240

A closer look on PKS 1424+240

A closer look on PKS 1424+240

Steps in spectra observed?

- "Step" feature observed in blazars with Fermi-LAT
- Explanations: absorption of gammarays in BLR? [Stern & Poutanen, 2011]
- Or: Conversion into ALPs? [Mena & Razzaque, 2013]

Conclusions

- Indications for a reduced opacity have been found in IACT and Fermi-LAT spectra (preliminary!) of blazars at a ~4σ confidence level and growing number of sources observed at high optical depths
- Spectral features observed with Fermi-LAT
- H.E.S.S. Phase II:
 - Identify promising sources at high redhshift (e.g. PKS 0426-380 in flaring state), GRBs
 - Increased energy range: lever arm for intrinsic blazar spectrum
 - high S/N observations to search for spectral features (step near critical energy, irregularities) – also galactic sources!

ALP parameter space

Backup slides

Light curve of PKS 0426-380

MJD

Method to search for low opacity

Method to search for low opacity

- apply absorptioncorrection with KD model to observed spectrum
- Fit corrected spectrum with analytical function (either power law or log parabola)

[Horns & MM, 2012]

Method to search for low opacity

- apply absorptioncorrection with KD model to observed spectrum
- Fit corrected spectrum with analytical function (either power law or log parabola)
- Fit residuals should follow (0,1) normal distribution, also for $\tau_{\gamma\gamma} \ge 2$
- If $\chi > 0$: overcorrection

$$\chi_i = (F_{meas, i} - F_{theo}(E_i)) / \sigma_i$$

[Horns & MM, 2012]

No hint for low opacity from H.E.S.S. Data?

[Figure from H.E.S.S. Collaboration, 2013]

- Reduced opacity should become visible in residuals of recent
 H.E.S.S. analysis of EBL imprint in blazar spectra
- No excess seen (although hard to tell from the plot)
- Sources binned into 3 redshift bins, might mask the effect

Test opacity with KS test

- Fit VHE spectra in optical thin regime, i.e., $\tau_{\gamma} < 1$
- extrapolate to higher optical depths
- calculate ratio between extrapolation and absorptioncorrected data points
- compare distributions of ratios for $1 < \tau_{\gamma\gamma} \le 2$ and $\tau_{\gamma\gamma} \ge 2$ with Kolomogorov-Smirnov test
- Results in 4 σ significance that distributions are nor drawn from same underlying probability distribution function

Cumulative significance of PPA for VHE analysis

Study of systematic uncertainties: energy resolution and calibration

- Limited energy resolution might cause spill-over effect
- Energy calibration (ΔΕ/Ε ~ 15%) uncertain [however: Cross calibration with LAT ⇒ only energy shift of ~ 5% necessary, see Meyer et al., 2010]
- Test repeated with energy points scaled by -15% and last energy point removed ⇒ significance reduced to 2 σ
- However: Mock data sample with Galactic sources does not show indication
- Further tests conducted: source intrinsic effects (spectral hardening, selection bias), different EBL models

[Horns & MM, 2012]

Study of systematic uncertainties II

• Study of mock data sample:

- Redshift assigned to Galactic VHE spectra
- No absorption correction applied
- Test repeated, no indication found

Different EBL models:

- Repeated test with EBL model of Franceschini et al., 2008, additionally scaled optical depth by 1.3 [suggested by H.E.S.S. measurements, H.E.S.S. collaboration, 2013]
- Indication less significant, but trend still present

[Horns & MM, 2012]
No trend in energy seen

Spectral fits I

Spectral fits II

M. Meyer | ALPs and H.E.S.S. II | October 24, 2013 | 39

Cross checks for VHE opacity analysis

Systematic check	Significa	ince	Significance						
Systematic check	$p_{\rm KS}$		p_t						
-15 % energy scaling	2.93×10^{-4}	3.44σ	1.18×10^{-4}	3.68σ					
Removed last energy point	1.02×10^{-3}	3.09σ	6.74×10^{-3}	2.44σ					
Removed last energy point and -15 % energy scaling	6.74×10^{-3}	2.44σ	2.33×10^{-2}	1.99 σ					
FRV model	1.66×10^{-2}	2.13σ	4.61×10^{-3}	2.60σ					
FRV model scaled by 1.3	0.17	0.97σ	2.33×10^{-4}	3.50σ					
KD model scaled by 0.7	4.34×10^{-3}	2.63σ	4.23×10^{-2}	1.73σ					
No absorption correction	0.32	0.47σ	3.37×10^{-2}	1.83σ					

Note: PKS 1424+420 not included here

Backup: B-fields

Intracluster magnetic fields

[Figure from Bonafede et al., 2010; see, e.g., Feretti et al., 2012, for a review]

- Observational evidence:
 - Non-thermal (synchrotron) emission of intracluster medium
 - Rotation measure measurements
- Field strength between 0.1 and 10 µG
- Extent: up to few Mpc
- Magnetic field follows thermal electron distribution n_e(r)

$$\Delta \Psi = \Psi - \Psi_0 = \lambda^2 (RM)$$

Rotation measure map with 5 GHz contours of galaxy NGC 4869 in the Coma cluster L/kpc

Simulated B field (blue) and analytical profile (magenta) of the Coma cluster

$$RM = 812$$

$$n_e B_{||} \,\mathrm{d}\ell\,(\mathrm{rad}\,\mathrm{m}^{-2})$$

Intergalactic magnetic fields

- Zeeman splitting of 21cm line of distant quasars in IGMF cannot be stronger than splitting due to galactic magnetic field
- Faraday rotation of polarized radio emission of distant quasars - depends on correlation length and assumed electron density in the IGM
- Theoretical limits from simulations of magnetic fields in galaxies and galaxy clusters

[see, e.g., Neronov & Vovk, 2009, for a review, Figure from same reference]

Galactic magnetic field model

- Regular component of Galactic magnetic field (GMF) model of Jansson & Farrar (2012)
- Consists of three components:
 - 1. Disk
 - 2. Halo
 - 3. X
- Derived from χ^2 -fit to WMAP7 synchrotron emission maps and Faraday rotation measurements
- Additionally: purely turbulent and striated component

[Figures reproduced from regular component of the GMF model of Jansson & Farrar, 2012]

Axion and ALPs

The strong CP problem

 QCD allows for CP violating term in Lagrangian

$$\mathcal{L}_{\rm CP} = \frac{\alpha_S}{4\pi} \theta \operatorname{tr} \left[G_{\mu\nu} \tilde{G}^{\mu\nu} \right]$$

- Observable effect: electric dipole moment of the neutron, strength depends on θ, expected of order unity
- measurement gives rise to strong CP problem:

 $|\bar{\theta}| = |\theta + \arg \det \mathcal{M}_q| \lesssim 10^{-10}$

- Solution: introduce new symmetry U(1)_{PQ}, spontaneously broken at scale f_a
- θ replaced by field *a*, associated with U(1)_{PQ}, relaxes to zero $\langle a \rangle = 0$, solves strong CP problem

$$\theta \to a/f_a$$

 Symmetry breaking gives rise to pseudo-Nambu-Goldstone boson, the axion

$$m_a \sim 6 \,\mathrm{meV} \frac{10^9 \mathrm{GeV}}{f_a}$$

Electric dipole moment of neutron violates *T* symmetry (and thus *CP* symmetry, since *CPT* is conserved)

[Figure from http://oldwww.phys.washington.edu/users/wcgriff/romalis/EDM/image A8M.gif]

[Peccei & Quinn, 1977; Weinberg, 1978; Wilczek, 1978]

Photon-ALPs Lagrangian

Propagation of photon in external magnetic field:

EoM of ALPs

• From Lagrangian, derive equation of motion:

$$\left[i\partial_{x_3} + E + \mathcal{M}_0\right]\psi(x_3) = 0$$

- ALPs only mix with $E_{\mathbb{I}}$
- Solve with Ansatz:

$$\psi(x_3) = (A_{\perp}(x_3), A_{\parallel}(x_3), a(x_3))^T$$

$$\psi(x_3) = e^{iE(x_3 - x_{3,0})} \mathcal{T}(x_3, x_{3,0}) \psi(x_{3,0})$$

 Diagonalize mixing matrix, transfer matrix given by: 3

$$\mathcal{T}(x_3, x_{3,0}) = \sum_{j=1}^{\infty} e^{i\lambda_j (x_3 - x_{3,0})} T_j$$

Photon-ALP mixing matrix

$$\mathcal{M}_{0} = \begin{pmatrix} \Delta_{\perp} & 0 & 0\\ 0 & \Delta_{\parallel} & \Delta_{a\gamma} \\ 0 & \Delta_{a\gamma} & \Delta_{a} \end{pmatrix}$$
$$\Delta_{\mathrm{pl}} = -1.1 \times 10^{-7} \left(\frac{n_{\mathrm{el}}}{10^{-3} \mathrm{cm}^{-3}} \right) \left(\frac{E}{\mathrm{GeV}} \right)^{-1} \mathrm{kpc}^{-1},$$
$$\Delta_{\mathrm{QED}} = 4.1 \times 10^{-9} \left(\frac{E}{\mathrm{GeV}} \right) \left(\frac{B_{\perp}}{\mu \mathrm{G}} \right)^{2} \mathrm{kpc}^{-1},$$
$$\Delta_{a} = -7.8 \times 10^{-2} \left(\frac{m_{a}}{\mathrm{neV}} \right)^{2} \left(\frac{E}{\mathrm{GeV}} \right)^{-1} \mathrm{kpc}^{-1},$$
$$\Delta_{\mu} = -\omega^{2}/(2E)$$

- Neglected: Cotton-Mouton effect, i.e., assumed $\Delta_{pl} = \Delta_{pl} = \Delta_{pl}$
- Neglected: Faraday rotation
- Both effects proportional to λ^2 , small contributions at γ -ray energies

Density matrix formalism

 Polarization of VHE -rays cannot be measured, use density matrix formalism to describe photon-ALP conversions:

$$\rho(x_3) = \begin{pmatrix} A_1(x_3) \\ A_2(x_3) \\ a(x_3) \end{pmatrix} \otimes \begin{pmatrix} A_1(x_3) & A_2(x_3) & a(x_3) \end{pmatrix}^*$$

• **Evolution** of density matrix given by von-Neumann like equation:

$$i\frac{\mathrm{d}\rho}{\mathrm{d}x_3} = [\rho, \mathcal{M}_0]$$

• **Probability** to find photons in polarization final:

$$P_{\text{final}} = \text{Tr}(\rho_{\text{final}} \mathcal{T} \rho_{\text{init}} \mathcal{T}^{\dagger})$$

• **Unpolarized** initial matrix:

$$\rho_{\rm unpol} = 1/2 \, {\rm diag}(1, 1, 0)$$

Any Light Particle Search (ALPS) Phase II

Laser

Laser

Laser

Laser

 $\sim 10 \text{ m}$

cavity mirrors

 $\sim 10 \text{ m}$

- Next generation "Light shining through a wall" experiment
- Several upgrades compared to ALPS I:
 - Higher laser power (using a 1064nm laser instead of 532nm)
 - Transition Edge
 Sensor instead of a
 CCD
 - **Regeneration** cavity
 - Maximizing *B x L*: final stage with 20
 straightened HERA
 dipole magnets

[ALPS II Technical design report, Bähre et al., 2013]

wall

 $\sim 10 \text{ m}$

ALPS I

Detector

ALPS IIa

Detector

HERA magnet

International Axion Observatory (IAXO)

- Next generation axion helioscope
- Toroidal magnetic field design (like ATLAS experiment) to increase geometrical cross section to several m²
- X-ray optics as used in space missions (e.g. NuStar)
- State of the art X-ray detectors
- will probe couplings down to $g_{a\gamma} \gtrsim 10^{-12} \text{ GeV}^{-1}$

[Irastorza et al., 2011]

White dwarfs and ALPs

- Luminosity function of WD:
 suggest extra cooling agent
- Including ALPs improves fit to data
- Magnetic WD: linear polarization of 5% observed, none expected
- Derive limits on photon-ALP coupling: ALPs should not overproduce polarization
- On the other hand: ALPs could also explain observed linear polarization

[Isern et al., 2008; Gill & Heyl 2011]

[http://eso.org/public/archives/images/screen/eso1034a.jpg]

Lower limits on photon-ALP coupling

B-field scenarios

	B ^o IGMF (nG)	λ ^с ідмғ (Mpc)	Β ^ο ιсмғ (μG)	λ^{c}_{ICMF} (kpc)	r _{cluster} (Mpc)	GMF
Optimistic ICMF	-	-	10	10	1	1
Optimistic IGMF	5	50	-	-	-	✓
Fiducial	0.01	10	1	10	2/3	1

Intracluster and intergalactic B fields: modeled with domain like structure: strength constant, orientation changes randomly from one cell to the next

 In optimistic ICMF scenario: all AGN assumed to be located in clusters, in fiducial scenario only if observational evidence exists

[MM, Horns, Raue 2013]

Effect on VHE spectra

- Compared to case w/o ALPs: residuals close to zero
- No overcorrection anymore
- Depends on realization of random B field

[MM, Horns, Raue 2013]

Lower limits for optimistic ICMF scenario

Lower limits for optimistic ICMF scenario

• Example: calculate 5000 random *B*-field realizations in *optimistic ICMF* scenario for one (m_a, g_{ay}) pair

Better accordance between model and data [MM, Horns, Raue 2013]

- Example: calculate 5000 random *B*-field realizations in *optimistic ICMF* scenario for one (m_a, g_a) pair
- Demand accordance between model and data of $p_t > 0.01$

Better accordance between model and data [MM, Horns, Raue 2013]

- Example: calculate 5000 random *B*-field realizations in *optimistic ICMF* scenario for one (m_a, g_{ay}) pair
- Demand accordance between model and data of *p*_t > 0.01
- Demand that at least 5% of all realizations result in pt > 0.01 (p95value)

Better accordance between model and data

- Example: calculate
 5000 random *B*-field
 realizations in
 optimistic ICMF
 scenario for one (ma,
 gay) pair
- Demand accordance between model and data of $p_t > 0.01$
- Demand that at least 5% of all realizations result in pt > 0.01 (psvalue)

Better accordance between model and data

Lower limits on $g_{a\gamma}$ for EBL model of Kneiske & Dole (2010)

- Lower limits for KD model more stringent than in FRV case
- Reason: Significance of PPA higher w/o ALPs than in FRV case
- For same level of improvement as in FRV case: use 4.0 contour line

Determination of optimistic *B*-field values

[MM, Horns, Raue 2013]

Determination of optimistic *B*-field values

Features in lower limts on gay

Features in lower limts on gay

Indications for low opacity in Fermi-LAT data

Search for PPA in Fermi-LAT data

- Associate photons detected within first 4.3 years of *Fermi*-LAT with AGN listed in 2FGL with known redshift
- Photon associated if angular separation < 68% confidence radius of point spread function (r₆₈)
- Consider only photons with E > 10 GeV outside galactic plane (b > 10°) from "ULTRACLEAN" sample
- For each associated photon, calculate optical depth

[Horns & MM, 2013; MM, PhD thesis 2013 – Disclaimer: analysis conducted *before* joining the *Fermi* -LAT collaboration]

Fermi-LAT counts map with *E* > 10 GeV and 2FGL source positions

Assess probability to observe the HOP

- For each associated photon, fit power law to intrinsic spectrum
- Extrapolate spectrum, assume EBL model
- Calculate **expected number** of **source** photons, λ_{pred} , and **background** photons λ_{bkg}
- Probability to observe at least number of detected photons n₀ of source *i*:

 $\lambda_i = \lambda_{i,\text{pred}} + \lambda_{i,\text{bkg}}$

$$p_i \equiv p(n \ge n_{0,i}) = 1 - \sum_{k=0}^{n_{0,i}-1} \frac{\lambda_i^k}{k!} \exp(-\lambda_i)$$

M. Meyer | ALPs and H.E.S.S. II | October 24, 2013 | 70

[Horns and MM 2013, see also MM, PhD thesis

2013 – Disclaimer: analysis conducted before

joining the *Fermi* -LAT collaboration]

Combine probabilities from all AGN

- Each source: independent hypothesis test
- Include only sources for which photon is associated with 90% confidence
- combine probabilities using Fisher's method [Fisher, 1925]
- **Tested various systematics** (energy resolution, different intrinsic spectra, different background estimation, etc.)
- Account for multi-trial factors
- Result: probability to observe detected photons for α = 1:
 - $P_{\text{PPA, post-trial}} = 0.06 \ (\tau_{\gamma\gamma} \ge 1)$
 - $P_{\text{PPA, post-trial}} = 1.2 \times 10^{-4} \ (\tau_{\gamma\gamma} \ge 2)$

[Horns and **MM** 2013, see also **MM**, PhD thesis 2013 – Disclaimer: analysis conducted *before* joining the *Fermi* -LAT collaboration]

Cumulative significance for Fermi-LAT analysis

Cross check for Fermi-LAT analysis

[MM, PhD thesis 2013 – Disclaimer: analysis conducted *before* joining the *Fermi* -LAT collaboration]

Cross check for Fermi-LAT analysis

Cross check	$P_{\rm PPA}(\alpha = 1; \alpha$	$\tau_{\gamma\gamma} \ge 1$	$P_{\rm PPA}(\alpha = 1; \alpha)$	$\tau_{\gamma\gamma} \ge 2$)	
fiducial ^a	1.37×10^{-8}	5.56 σ	6.57×10^{-6}	4.36 <i>σ</i>	
Intrinsic spectrum and spectral hardening					
LP all spectra	5.30×10^{-14}	7.43σ	9.69×10^{-7}	4.76 <i>σ</i>	
LP for $TS_{fit} > 8$	5.12×10^{-10}	6.12σ			
Intrinsic index $\Gamma - \sigma_{\Gamma}$	9.21×10^{-7}	4.77σ	1.85×10^{-5}	4.16σ	
Intrinsic index $\Gamma - 2\sigma_{\Gamma}$	6.21×10^{-5}	3.84σ	6.08×10^{-5}	3.84σ	
Normalization $N_0^{t_{\text{HOP}}}$	5.81×10^{-7}	4.86σ	5.15×10^{-6}	4.41σ	
	Energy resolution				
$E_{\rm HOP} - \Delta E$	7.32×10^{-8}	5.26σ	3.34×10^{-5}	3.99 <i>σ</i>	
$E_{\rm HOP} - 2\Delta E$	4.96×10^{-6}	4.42σ	1.91×10^{-4}	3.55σ	
Source probability $P_{\rm src}(\alpha = 0)$ and number of background photons					
$P_{\rm src} = 0.95$	3.84×10^{-7}	4.94σ	2.62×10^{-4}	3.47σ	
$P_{\rm src} = 0.5$	7.50×10^{-12}	6.75σ	6.96×10^{-7}	4.83σ	
$P_{\rm src} = 0.05$	8.65×10^{-13}	7.06σ	7.69×10^{-8}	5.24σ	
$\lambda_{ m all}$	5.54×10^{-5}	3.87σ	8.13×10^{-4}	3.15σ	
	EBL models				
KD model	5.06×10^{-9}	5.73σ	7.75×10^{-6}	4.32σ	
Domínguez et al. (2011)	1.27×10^{-8}	5.57σ	5.90×10^{-6}	4.38σ	
Inoue et al. (2012)	1.34×10^{-8}	5.56σ	2.41×10^{-5}	4.06σ	
Trial factors					
Including trials	0.06	1.57σ	1.17×10^{-4}	3.68σ	
		[MM, Ph	D thesis 2013 –	Disclaim	
	before joining the Fe				

Including all *Fermi*-LAT detected AGN in opacity analysis

- Fermi-LAT: all-sky instrument, 2FGL lists ~400 AGN with sufficient redshift to potentially emit $\tau_{T} \ge 1$ ($\tau_{T} \ge 2$) photon
- If analysis is repeated with all sources that are firmly detected with Fermi-LAT, in total, 25 (3.5) photons are expected for *τ*₁₇ ≥ 1 (*τ*₁₇ ≥ 2) (*Fermi*-LAT not sensitive enough?)
- If instead of a power law, a log parabola is assumed as intrinsic spectrum, only 9 (1) photons are expected for $\tau_{\gamma} \ge 1$ ($\tau_{\gamma} \ge 2$)
- Numbers dominated by a few bright sources
- Pass 8: maybe more definite answer

[MM, PhD thesis 2013 – Disclaimer: analysis conducted *before* joining the *Fermi* -LAT collaboration]

Expected number of photons measured with *Fermi*-LAT including ALPs

[MM, PhD thesis 2013 – Disclaimer: analysis conducted **before** joining the *Fermi* -LAT collaboration]