The quest for gamma-ray emission in galaxy clusters

Anders Pinzke

Stockholm Oct 24, 2013

Gamma-rays from clusters – origin

Point sources: AGNs, gamma-ray bursts **OBSERVED**

Dark matter:

massive/high densities, boosted by substructures? **NOT OBSERVED**

Cosmic-rays: signs of non-thermal activity NOT OBSERVED

Signs of non-thermal activity in galaxy clusters

Bullet Cluster

X-ray:NASA/CXC/CfA/Markevitch et al.; Optical:NASA/STScI;Magellan/U.Arizona /Clowe et al.; Lensing:NASA/STScI; ESO WFI; Magellan/U.Arizona/Clowe et al.

Relativistic populations and radiative processes in clusters:

Relativistic particle pop.:

Observational diagnostics:

Pfrommer et al. 2008

Relativistic populations and radiative processes in clusters:

Observational diagnostics:

Pfrommer et al. 2008

Relativistic populations and radiative processes in clusters:

Pfrommer et al. 2008

Which CR population is dominating?

Two main models with different radio and gamma-ray signatures

Reacceleration models

e.g. Brunetti+ 2001,2004,2012, Brunetti and Lazarian 2007, 2011, Petrosian 2001, Cassano and Brunetti 2005

Hadronic models

e.g.Ensslin+ 2011, Wiener+ 2013, Zandanel+ 2013, Pinzke and Pfrommer 2010, Pinzke+ 2012, Pfrommer+ 2004,2008

Hadronic models - CRs

Acceleration mechanism: diffusive shock acceleration Simulation based CR proton model with adiabatic transport Ensslin et al. 2006, Pfrommer et al. 2008, Pinzke et al. 2010, 2012

Gamma-ray emission dominated by decaying π° :s

Hadronic models – gamma rays

Magic Observation time: 85 h deepest observation of a cluster ever

Veritas Observation time: 19 h

→ IACT and Fermi-LAT start to constrain CR proton model
 → Magic factor ~3 from minimum gamma-ray flux

Hadronic models – gamma rays

Hadronic models – missing pieces

However, simple CR model is in tension with some observations of giant radio halos

Brunetti et al. 2013

Brown et al. 2011

BUT - large uncertainty in B-field (e.g. turbulence might amplify B-field *Keshet* 2009) might explain COMA profile => need gamma-ray observations to unambiguously probe the CR protons

Hadronic models – Streaming CRs

Gamma-ray emission suppressed by ~ 10 in low turbulent clusters Can reproduce the radio profile in most clusters (COMA a problem) **Need a leptonic component in cluster outskirts**

Reacceleration models - CRs

Acceleration mechanism: Compressible MHD turbulence

Brunetti and Lazarian 2007, 2011 Brunetti et al. 2012

Uncertainties

Efficiency acceleration mechanism
Fossil CRp and CRe spectrum

Reacceleration models - radio

Brunetti and Lazarian 07,11, Brunetti et al. 2012

Feretti at al, 2004

Reacceleration models – gamma rays

 →Fermi-LAT (2 yrs) upper limit factor 10 from predictions
 →IACTs will suffer from spatially extended emission (main gamma-ray emission outside R ~ 0.2 deg)

Summary – cosmic rays

Radio observations of clusters can *not* unambiguously determine the non-thermal component \rightarrow need gamma-ray observations

Model	Reacceleration	Hadronic without streaming	Hadronic with streaming and primary CRe
CRs	Mergers - flat profiles, convex spectra CC - suppressed	Mergers and CC - trace ICM, concave spectra	Mergers - trace ICM, concave spectrum CC - flat profiles, concave spectra with cutoff
radio	ok	 × Bimodality × Curved spectra × COMA profile 	ok
γ -ray	Not detectable in near future by LAT and IACTs Emission > R _c Factor few below current LAT limits	Detectable by LAT and IACTs π° -decay dominate, ~R _c Magic/LAT limit P _{CR} /P _{th} < few %	Mergers detectable by LAT and IACTs π° -decay dominate, $\sim R_{c}$ Magic/LAT limit P_{cR}/P_{th} < few %

Supersymmetric particles are Majorana particles ⇒ annihilate and produce gamma-rays

Intensity of annihilation radiation at **x** depends on:

- \Rightarrow Estimating intensities requires knowing $\rho(x)$
- ⇒ High resolution N-body simulations of halo formation

Why search for DM in galaxy clusters?

GALAXY CLUSTERS

DWARF GALAXIES

Combined limits for dwarf galaxies ~ 20 more constraining BUT

Very high resolution simulations of galaxy clusters show that CDM substructures could potentially boost the gamma-ray flux in clusters by several orders of magnitude.

e.g. Pinzke el al. 2011, Gao et al 2011

Enhancement from DM substructures

Springel et al., 2008

Norm $\propto M_{res}^{-0.226}$

Extrapolate to the minimal mass of dark matter halos (M_{min}) that can form. The cold dark matter scenario suggest $M_{min} \sim 10^{-6} M_{\odot}$.

Hofmann, Schwarz and Stöcker, 2008 Green, Hofmann and Schwarz, 2005

 $L_{sub}(< r) \mu (M_{200} / M_{res})^{0.226}$

Luminosity boosted by ~1000 in clusters Pinzke et al. 2011, Gao et al 2011

Enhancement from DM substructures

 M_{res} : Constant offset in luminosity from substructures between different 10^6 mass cuts in the simulation (M_{res}).

Norm $\propto M_{res}^{-0.226}$

Extrapolate to minimal mass of DM halos (M_{min}) that can form. The CDM scenario suggest $M_{min} \sim 10^{-6} M_{\odot}$.

Hofmann, Schwarz and Stöcker, 2008 Green, Hofmann and Schwarz, 2005

 $L_{\rm sub}(<\!r) \propto (M_{200} \ / \ M_{\rm res})^{0.226}$

Pinzke et al. 2011, Gao et al 2011

Large uncertainties in extrapolation

Main uncertainty in substructure boost factor from concentration-mass relation of sub $10^5~M_{\odot}$ scales

Semi analytic models predict a boost from substructures that is a factor 10-100 smaller than powerlaw extrapolation

No data on these scales!

Clusters incl. substructures vs. Dwarfs

GALAXY CLUSTERS

DWARF GALAXIES

Galaxy clusters about factor 10 more constraining than dwarf galaxies when substructures are included!

Clusters incl. substructures vs. Dwarfs

GALAXY CLUSTERS

DWARF GALAXIES

Galaxy clusters about factor 10 more constraining than dwarf galaxies when substructures are included!

large uncertainty in the boost from substructures

Spatial distribution of DM

 Choice of smooth density profile minor impact on annihilation luminosity outside center.

 Large boost from substructures in clusters (~1000), and smaller for galaxies (~200).

Majority of flux from smooth halo delivered by region around r_s / 3.

 Emission from substructures dominated by outer regions.

Spatially extended!

challenging for IACTs

Summary – dark matter

We have studied the possibility to detect gamma-ray emission from galaxy clusters using annihilating CDM

Luminosity from clusters boosted by ≤ 1000
 Flat brightness profiles and spatially extended
 Challenging for IACTs, better probed by Fermi-LAT

Constraints from Fermi-LAT observations:

Clusters more constraining than dwarf spheroidals with substructures (about factor 20), less constraining without (about factor 20)