May 2013 - Latest Results in Dark Matter Searches

Future Noble Liquid Dark Matter Detectors

Patrick Decowski

GRAPPA - University of Amsterdam / Nikhef decowski@nikhef.nl

Noble Gases

- Monolithic detectors
- Good self-shielding and homogenous, with high electron mobility
- Inert and excellent scintillators

	Unit	Argon	Xenon
Z		18	54
А		40	~ 32
Liquid Density	g/cm ³	I.4	3.06
Energy Loss (dE/dX)	MeV/cm	2.1	3.8
Radiation Length	cm	14	2.8
Boiling Point @ I bar	٥K	87.3	165
Scintillation Wavelength	nm	125	175
Scintillation	ph/keV	40	42
lonization	e⁻/keV	42	64
Lifetime of triplet molecule	ns	1600	22
Background Isotope		³⁹ Ar (I Bq/kg)	¹³⁶ Xe
Price		\$ (but UAr)	\$\$\$

WIMP-nucleon spin-independent cross section grows as A^2 \rightarrow Using xenon attractive

Particle-dependent Response

Image E.Pantic

- Need many photons
- Works well in
 - LAr, LNe
- But also in
- LXe, Nal, Csl Patrick Decowski - Nikhef/UNA

Possible to achieve very high ER/NR discrimination

Typical ER/NR discrimination: LXe [no PSD]: 99.75% LAr [with PSD]: 99.9999%

General Considerations

Dual Phase

General Considerations

Single Phase

Dual Phase

- Simple design
- 4pi PMT coverage
- Position reconstruction ~cm
- Large detector scalability

- Electron drift allows ER / NR discrimination
- Position reconstruction ~mm
- Scalability up to a certain degree, then modularity

General Considerations

Single Phase

Dual Phase

- Simple design
- 4pi PMT coverage
- Position reconstruction ~cm
- Large detector scalability

<u>Argon</u>

- Cheap material
- Pulse shape discrimination capability
- Does not have $2\nu 2\beta$ decay isotope
- No isotope with spin
- ³⁹Ar decays at IBq/kg → underground argon
- Higher energy thresholds

- Electron drift allows ER / NR discrimination
- Position reconstruction ~mm
- Scalability up to a certain degree, then modularity

<u>Xenon</u>

- Attractive WIMP-nucleon SI cross section scaling
- Excellent self-shielding
- Spin-dependent couplings
- Other than ¹³⁶Xe no natural radioactive isotopes
- Expensive per unit mass

Underground Labs with DM Experiments

inPing

O

Soudan SNOLab

Canfranc Gran Sasso (LNGS)

Boulby

Kamioka Yangyang

South Pole

Underground Labs with DM Experiments

InPing

0

Soudan Soudan NOLab

Canfranc Gran Sasso (LNGS)

Boulby

South Pole

DEAP-3600

- Initially using atmospheric Ar
- Plan to also use UAr
- 255 high-QE PMTs
- 50cm light guides for nmoderation
- Pulse Shape Discrimination
 - DEAP-I: 3x10⁻⁸ suppression
- Detector in 8m Water Tank
- Installation underway
- Start science in Oct 2014, Ist results in early 2015

DEAP-3600

Patrick Decowski - Nikhef

DEAP-3600

Patrick Decowski - Nikhef/UNA

XMASS-I

- 100kg / 835kg
- Dark Matter
- Commissioning Run
- BG among the lowest achieved so far:
 - 8.2±0.5 mBq ²²²Rn
 - <0.28 mBg ²²⁰Rn
 - < 2.7 ppt ^{nat}Kr
- 14.7 PE/keV

<u>XMASS-1.5</u>

- Iton / 5ton
- Dark Matter "XENONIT sensitivity"
- Construction 2014-2015
- Science 2016

- XMASS-II
- 10ton / 25ton
- Multi-purpose:
 - DM
 - solar pp-V
 - 0ν2β

XMASS

XMASS Background

100

Refurbishment reduced BG to 1/100

 \rightarrow New PMTs for XMASS 1.5

XMASS-I Refurbishment

DarkSide-G2

- Scale up of DS-50, using same Boron loaded Liq. Scint. neutron veto system
- ~3.6t fiducial / 3.8t active LUAr (e.g. depleted ³⁹Ar)
- Will use both S2/S1 identification and Pulse Shape Discrimination
 - Allows excellent BG rejection
- If funded, commissioning in 2017

PandaX

Patrick Decowski - Nikhef

- Everything built for 1 ton target, staged approach:
 - Phase-Ia:
 - 25kg fiducial / 120kg total [ongoing]
 - Phase-Ib:
 - 300kg fiducial / 500kg total
 - Phase-2:
 - I ton fiducial / I.5 total
- Phase-Ia science run started ~Feb 2014
- Phase-1b late 2014

Projected PandaX Sensitivity

Phase-Ib: 300 kg Patrick Decowski - Nikhef/UNA

LZ Fiducial Claim

Patrick Decowski - Nikhef/UNA

XENONnT

Double amount of LXe (~7 tons), ~double # PMTs Design XENONIT with as much reuse as possible

Calibration Aspects

How to bring calibration sources close to the detector?

Patrick Decowski - Nikhef/UNA

DARWIN: the ultimate DM detector

ASPERA Design Study

Start construction in 2020

21t LXe total \rightarrow 14t Fiducial

DARWIN

Neutrino fluxes

- Neutrino background will start to dominate
 - Solar neutrinos
 - Atmospheric neutrinos
- Electronic recoil discrimination
 - Finite discrimination → if sufficient ER events, they will leak into NR
- Coherent Neutrino Scattering
 - Nuclear recoil!

Neutrino Backgrounds

Expected recoil spectra in Xe

Ultimate limits

Ultimate limits

Reach of Future Detectors

Conclusions

- Due to scalability, many nobel liquid proposals to explore WIMP parameter space
- Next months will bring clarity into which projects will be selected in the G2-downselect in the US
- The ultimate backgrounds will be coming from neutrinos
- I hope we will not *only* discover coherent neutrino scattering...

