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The observed content of the Universe

37.2±0.5 pJ/m3 
ordinary matter

1 to 5 pJ/m3 neutrinos
202±5 pJ/m3 
cold dark matter

524±5 pJ/m3 
dark energy

0.04175±0.00004 pJ/m3 photons

Planck (2013)

matter p≪ρ
radiation p=ρ/3
vacuum p=-ρ

Cold Dark 
Matter

1 pJ = 10-12 J
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.

Galaxies spin faster or are hotter than 
gravity of visible mass can support 
(rotation curves, velocity dispersion)

Evidence for cold dark matter

Vera Rubin

Andromeda Galaxy (M31)

Gravity of visible mass is not 
enough to keep the gas in orbit.
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.

Galaxy clusters are mostly invisible mass 
(motion of galaxies, gas density and 
temperature, gravitational lensing)

Evidence for cold dark matter

Fritz Zwicky
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.

An invisible mass makes the 
Cosmic Microwave Background 
fluctuations grow into the galaxy-
galaxy correlation function.

Evidence for cold dark matter
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.

An invisible mass makes the 
Cosmic Microwave Background 
fluctuations grow into the galaxy-
galaxy correlation function.

Evidence for cold dark matter

Planck

Kravtsov, Klypin
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Evidence for cold dark matter

Vogelsberger et al 2014Illustris Collaboration 2014

-Hydrodynamical simulation
-Volume: (106.5 Mpc)3

-Resolution: 710 pc (DM)/48 pc (gas)
-Solves `missing satellite’ and `too big-
to-fail’ problems. Produces observed 
galaxy shapes and metallicity.

AGN-feedback 
explosion

Dark 
matter

Gas
(baryons)

 

Figure 5: Non-linear matter power spectrum. The dimensionless total matter power

spectrum, ∆2(k),  of the Illustris simulation (top panel, black line) differs significantly,

due to baryonic effects,  from that  of  the dark matter-only  counterpart  Illustris-Dark

(light blue). Analytic fitting models39,40 (green and pink) do not provide an adequate

description  of  the  hydrodynamic  results.  The  lower  panel  shows  their  relative

difference, highlighting that baryonic effects exceed 1% already on scales smaller than

k ~ 1 h Mpc-1. The theoretical shot noise level (shown as thin dashed lines) has been

subtracted in the measurements.

25

Effect of baryons on 
dark matter spectrum

sh
ot
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se

Illustris Simulation
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Figure 4. Observed HI rotation curve of the nearby dwarf spiral galaxy M33 (adapted
from [74]), superimposed on an optical image (NED image from STScI Digitized Sky Survey,
http://nedwww.ipac.caltech.edu. The NASA/IPAC Extragalactic Database (NED) is operated by
the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration). The dashed curve shows the estimated contribution to the
rotation curve from the luminous stellar disc [74]. There is also a smaller contribution from gas
(not shown).

7.1. Changing the law of gravity?

It has turned out to be very difficult to modify gravity on the various length scales where
the dark matter problem resides, but phenomenological attempts have been made to at least
explain flat galaxy rotation curves by introducing violations of Newton’s laws (and of general
relativity) [75]. Until a satisfactory alternative theory to general relativity has been found it is
difficult to further comment on this option. Besides the remarkable success of the ‘standard’
theory in accounting for perihelion motion, redshifts, gravitational lensing and binary pulsar
dynamics, the overall consistency of the standard cosmology it provides the basis for, also on
the largest scales, is remarkable. An example is the concordance of the mass estimates of galaxy
clusters based on galaxy velocity dispersions, gravitational lensing, microwave background
distorsions and x-ray emission from hot intracluster gas. At present, there does not seem to
exist a plausible alternative theory that can match this impressive list of successes.

In principle, there are modifications to Newtonian gravity if there exists a non-zero
cosmological constant, since the energy equation for a test particle of mass m at a distance R

from a homogeneous sphere of mass M gets an additional term proportional to !,

E = 1
2
mṘ2 − GNMm

R
− !

6
mR2, (35)

(see [6]) showing the attractive nature of the extra force for ! < 0. However, this additional
term is some four orders of magnitude too small to have measurable effects in galactic systems,
given the current observational estimates of !. In addition, the observationally favoured value
of ! is positive and thus causes repulsion instead of attraction.
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What is cold dark matter?
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Cold dark matter or modified gravity?

• MOND (F=ma2/a0 for a<universal a0) is only non-relativistic and 
so cannot be tested on cosmological scales

• TeVeS, MOND’s generalization, contains new fields that could be 
interpreted as cold dark matter interacting only gravitationally. It 
does not reproduce the pattern of CMB peaks.

• There are other ideas, like conformal gravity, but are less studied

Monday, May 12, 14



The Bullet Cluster

Gravitational potential 
from weak lensing

X-ray emitting hot gas 
(Chandra)

Galaxies in optical 
(Hubble Space 
Telescope)

Cold dark matter, not modified gravity
Symmetry argument: gas is at 
center, but potential has two wells.
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Cold dark matter is non-baryonic

Primordial 
plasma

Cold dark matter
few nanoseconds

Atomic nuclei
few seconds — few minutes

Protons and neutrons
few milliseconds
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Cold dark matter is non-baryonic

WMAP 7-year Cosmological Interpretation 13

Fig. 7.— The WMAP 7-year temperature power spectrum (Larson et al. 2010), along with the temperature power spectra from the
ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009) experiments. We show the ACBAR and QUaD data only at l ≥ 690, where
the errors in the WMAP power spectrum are dominated by noise. We do not use the power spectrum at l > 2000 because of a potential
contribution from the SZ effect and point sources. The solid line shows the best-fitting 6-parameter flat ΛCDM model to the WMAP data
alone (see the 3rd column of Table 1 for the maximum likelihood parameters).

systematic error is minimized by calibrating su-
pernova luminosities directly using the geometric
maser distance measurements. This is a significant
improvement over the prior that we adopted for
the 5-year analysis, H0 = 72 ± 8 km s−1 Mpc−1,
which is from the Hubble Key Project final results
(Freedman et al. 2001).

• Gaussian priors on the distance ratios, rs/DV (z =
0.2) = 0.1905 ± 0.0061 and rs/DV (z = 0.35) =
0.1097 ± 0.0036, measured from the Two-Degree
Field Galaxy Redshift Survey (2dFGRS) and the
Sloan Digital Sky Survey Data Release 7 (SDSS
DR7) (Percival et al. 2009). The inverse covariance
matrix is given by equation (5) of Percival et al.
(2009). These priors are improvements from those
we adopted for the 5-year analysis, rs/DV (z =
0.2) = 0.1980 ± 0.0058 and rs/DV (z = 0.35) =
0.1094± 0.0033 (Percival et al. 2007).

The above measurements can be translated into a
measurement of rs/DV (z) at a single, “pivot” red-
shift: rs/DV (z = 0.275) = 0.1390 ± 0.0037 (Per-
cival et al. 2009). Kazin et al. (2010) used the
two-point correlation function of SDSS-DR7 LRGs
to measure rs/DV (z) at z = 0.278. They found
rs/DV (z = 0.278) = 0.1394 ± 0.0049, which is an
excellent agreement with the above measurement
by Percival et al. (2009) at a similar redshift. The
excellent agreement between these two independent
studies, which are based on very different methods,

indicates that the systematic error in the derived
values of rs/DV (z) may be much smaller than the
statistical error.

Here, rs is the comoving sound horizon size at the
baryon drag epoch zd,

rs(zd) =
c√
3

∫ 1/(1+zd)

0

da

a2H(a)
√

1 + (3Ωb/4Ωγ)a
. (15)

For zd, we use the fitting formula proposed by
Eisenstein & Hu (1998). The effective distance
measure, DV (z) (Eisenstein et al. 2005), is given
by

DV (z) ≡
[

(1 + z)2D2
A(z)

cz

H(z)

]1/3

, (16)

where DA(z) is the proper (not comoving) angular
diameter distance:

DA(z) =
c

H0

fk

[

H0

√

|Ωk|
∫ z
0

dz′

H(z′)

]

(1 + z)
√

|Ωk|
, (17)

where fk[x] = sin x, x, and sinhx for Ωk < 0
(k = 1; positively curved), Ωk = 0 (k = 0; flat),
and Ωk > 0 (k = −1; negatively curved), respec-
tively. The Hubble expansion rate, which has con-
tributions from baryons, cold dark matter, pho-
tons, massless and massive neutrinos, curvature,
and dark energy, is given by equation (27) in Sec-
tion 3.3.
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FIG. 4: Measured power spectra for the full LRG and main galaxy samples. Errors are uncorrelated and full window functions are shown
in Figure 5. The solid curves correspond to the linear theory ΛCDM fits to WMAP3 alone from Table 5 of [7], normalized to galaxy bias
b = 1.9 (top) and b = 1.1 (bottom) relative to the z = 0 matter power. The dashed curves include the nonlinear correction of [29] for
A = 1.4, with Qnl = 30 for the LRGs and Qnl = 4.6 for the main galaxies; see equation (4). The onset of nonlinear corrections is clearly
visible for k ∼

> 0.09h/Mpc (vertical line).

Our Fourier convention is such that the dimensionless
power ∆2 of [77] is given by ∆2(k) = 4π(k/2π)3P (k).

Before using these measurements to constrain cosmo-
logical models, one faces important issues regarding their
interpretation, related to evolution, nonlinearities and
systematics.

B. Clustering evolution

The standard theoretical expectation is for matter
clustering to grow over time and for bias (the rela-
tive clustering of galaxies and matter) to decrease over
time [78–80] for a given class of galaxies. Bias is also
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Evidence for cold dark matter particles?
135 GeV γ-ray line

Weniger 2012

Figure 1. Left panel: The black lines show the target regions that are used in the present analysis in
case of the SOURCE event class (the ULTRACLEAN regions are very similar). From top to bottom,
they are respectively optimized for the cored isothermal, the NFW (with α = 1), the Einasto and the
contracted (with α = 1.15, 1.3) DM profiles. The colors indicate the signal-to-background ratio with
arbitrary but common normalization; in Reg2 to Reg5 they are respectively downscaled by factors
(1.6, 3.0, 4.3, 18.8) for better visibility.
Right panel: From top to bottom, the panels show the 20–300 GeV gamma-ray (+ residual CR)
spectra as observed in Reg1 to Reg5 with statistical error bars. The SOURCE and ULTRACLEAN
events are shown in black and magenta, respectively. Dotted lines show power-laws with the indicated
slopes; dashed lines show the EGBG + residual CRs. The vertical gray line indicates E = 129.0 GeV.
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FIG. 5: Positron fraction measured by the Fermi LAT and by
other experiments [10, 14, 35]. The Fermi statistical uncer-
tainty is shown with error bars and the total (statistical plus
systematic uncertainty) is shown as a shaded band.

the electron spectrum is (2.07±.13 × 10−2 GeV−1 m−2

s−1 sr−1)( E

20GeV )−3.19±0.07. The uncertainties are deter-
mined by including the total (statistical plus systematic)
uncertainty of each energy bin. The fitted indices are con-
sistent with the index we reported previously for the total
electron plus positron spectrum (3.08±0.05) [19, 20].

Conclusion. We measured the CR positron and elec-
tron spectra separately between 20 and 200 GeV, using
a novel separation technique which exploits the charge-
dependent displacement of the Earth’s shadow due to the
geomagnetic field. While the positron fraction has been
measured previously up to 100 GeV [15] and the absolute
flux has been measured previously up to 50 GeV [9, 36],
this is the first time that the absolute CR positron spec-
trum has been measured above 50 GeV and that the
fraction has been determined above 100 GeV. We find
that the positron fraction increases with energy between
20 and 200 GeV, consistent with results reported by
PAMELA [14]. Future measurements with greater sen-
sitivity and energy reach, such as those by AMS-02, are
necessary to distinguish between the many possible ex-
planations of this increase.

The Fermi LAT Collaboration acknowledges support
from a number of agencies and institutes for both de-
velopment and the operation of the LAT as well as sci-
entific data analysis. These include NASA and DOE
in the United States, CEA/Irfu and IN2P3/CNRS in
France, ASI and INFN in Italy, MEXT, KEK, and JAXA
in Japan, and the K. A. Wallenberg Foundation, the
Swedish Research Council and the National Space Board
in Sweden. Additional support from INAF in Italy and
CNES in France for science analysis during the opera-
tions phase is also gratefully acknowledged.

∗ Electronic address: markus.ackermann@desy.de
† Electronic address: funk@slac.stanford.edu
‡ Electronic address: warit@slac.stanford.edu
§ Electronic address: carmelo.sgro@pi.infn.it
¶ Electronic address: justinv@stanford.edu

[1] J. A. De Shong, R. H. Hildebrand, and P. Meyer, Phys.
Rev. Lett. 12, 3 (1964).

[2] J. L. Fanselow, R. C. Hartman, R. H. Hildebrad, and
P. Meyer, Astrophys. J. 158, 771 (1969).

[3] J. K. Daugherty, R. C. Hartman, and P. J. Schmidt,
Astrophys. J. 198, 493 (1975).

[4] R. J. Protheroe, Astrophys. J. 254, 391 (1982).
[5] D. Müller and K. K. Tang, in International Cosmic Ray

Conference (1990), vol. 3 of International Cosmic Ray
Conference, pp. 249–+.

[6] S. W. Barwick, J. J. Beatty, C. R. Bower, C. Chaput,
S. Coutu, G. de Nolfo, D. Ficenec, J. Knapp, D. M. Low-
der, S. McKee, et al., Phys. Rev. Lett. 75, 390 (1995).

[7] S. W. Barwick, J. J. Beatty, A. Bhattacharyya, C. R.
Bower, C. J. Chaput, S. Coutu, G. A. de Nolfo, J. Knapp,
D. M. Lowder, S. McKee, et al., The Astrophysical Jour-
nal Letters 482, L191 (1997).

[8] S. W. Barwick, J. J. Beatty, C. R. Bower, C. J. Chaput,
S. Coutu, G. A. de Nolfo, M. A. DuVernois, D. Ellithorpe,
D. Ficenec, J. Knapp, et al., The Astrophysical Journal
498, 779 (1998).

[9] M. A. DuVernois, S. W. Barwick, J. J. Beatty, A. Bhat-
tacharyya, C. R. Bower, C. J. Chaput, S. Coutu, G. A. de
Nolfo, D. M. Lowder, S. McKee, et al., The Astrophysical
Journal 559, 296 (2001).

[10] J. J. Beatty, A. Bhattacharyya, C. Bower, S. Coutu,
M. A. DuVernois, S. McKee, S. A. Minnick, D. Müller,
J. Musser, S. Nutter, et al., Phys. Rev. Lett. 93, 241102
(2004).

[11] G. Barbiellini, G. Basini, R. Bellotti, M. Bocci-
olini, M. Boezio, F. Massimo Brancaccio, U. Bravar,
F. Cafagna, M. Candusso, P. Carlson, et al., Astronomy
and Astrophysics 309, L15 (1996).

[12] M. Boezio, P. Carlson, T. Francke, N. Weber, M. Suffert,
M. Hof, W. Menn, M. Simon, S. A. Stephens, R. Bellotti,
et al., The Astrophysical Journal 532, 653 (2000).

[13] M. Aguilar, J. Alcaraz, J. Allaby, B. Alpat, G. Ambrosi,
H. Anderhub, L. Ao, A. Arefiev, P. Azzarello, E. Babucci,
et al., Physics Reports 366, 331 (2002), ISSN 0370-1573.

[14] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bel-
lotti, M. Boezio, E. A. Bogomolov, L. Bonechi, M. Bongi,
V. Bonvicini, S. Bottai, et al., Nature 458, 607 (2009).

[15] O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bel-
lotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bon-
vicini, S. Borisov, S. Bottai, et al., Phys. Rev. Lett. 106,
201101 (2011).

[16] I. V. Moskalenko and A. W. Strong, The Astrophysical
Journal 493, 694 (1998).

[17] Y.-Z. Fan, B. Zhang, and J. Chang, International Journal
of Modern Physics D 19, 2011 (2010), 1008.4646.

[18] T. A. Porter, R. P. Johnson, and P. W. Graham, ArXiv
e-prints (2011), 1104.2836.

[19] A. A. Abdo, M. Ackermann, M. Ajello, W. B. At-
wood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini,
D. Bastieri, M. Battelino, et al., Physical Review Letters
102, 181101 (2009), 0905.0025.

Positron excess

Adriani et al 2009; Ackerman et
al 2011;  Aguilar et al 2013

2-6 keV

 Time (day)

R
es

id
u

al
s 

(c
p

d
/k

g/
k

eV
)

DAMA/LIBRA ≈ 250 kg   (0.87 ton×yr)

Bernabei et al 
1997-2012

8.2σ detection

Annual modulation

Aalseth et al 2011

Drukier, Freese, Spergel 1986

GeV γ-rays
7

0.5-1 GeV residual

 

-20-1001020 00
 

-20

-10

0

10

20

00

0

5

10

15

20

0

5

10

15

20

10
-6 counts/cm

2/s/sr

1-2 GeV residual

 

-20-1001020 00
 

-20

-10

0

10

20

00 

0

2

4

6

8

10

0

2

4

6

8

10

10
-6 counts/cm

2/s/sr

2-5 GeV residual

-20-1001020 00
 

-20

-10

0

10

20

00

0

1

2

3

4

5

0

1

2

3

4

5

10
-6 counts/cm

2/s/sr

5-20 GeV residual

-20-1001020 00
 

-20

-10

0

10

20

00 

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

10
-6 counts/cm

2/s/sr

FIG. 6: Intensity maps (in galactic coordinates) after subtracting the best-fit Galactic di↵use model, Fermi bubbles, and
isotropic templates. At energies between ⇠0.5-5 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly
visible around the Galactic Center.

analysis of Ref. [8], the cut on CTBCORE significantly
hardens the spectrum at energies below 1 GeV, render-
ing it more consistent with that extracted at higher lati-
tudes (see Appendix A). Shown for comparison (as a solid
line) is the spectrum predicted from a 35.25 GeV dark
matter particle annihilating to bb̄ with a cross section of
�v = 1.7 ⇥ 10�26 cm3/s ⇥ [(0.3GeV/cm3)/⇢

local

]2. The
spectrum of this component is in good agreement with
that predicted by this dark matter model, yielding a fit
of �2 = 26.4 over the 25 error bars between 0.3 and 100
GeV. We also note that the spectral shape of the dark
matter template is quite robust to variations in �, except
at energies below ⇠ 600 MeV, where the spectral shape

can vary non-negligibly with the choice of inner slope (see
Appendix C).

In Fig. 6, we plot the maps of the gamma-ray sky in
four energy ranges after subtracting the best-fit di↵use
model, Fermi Bubbles, and isotropic templates. In the
0.5-1 GeV, 1-2 GeV, and 2-5 GeV maps, the dark-matter-
like emission is clearly visible in the region surrounding
the Galactic Center. Much less central emission is vis-
ible at 5-20 GeV, where the dark matter component is
significantly less bright.

3.5 keV X-ray line

Bulbul et al 2014Hooper et al 
2009-14
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FIG. 6: Intensity maps (in galactic coordinates) after subtracting the best-fit Galactic di↵use model, Fermi bubbles, and
isotropic templates. At energies between ⇠0.5-5 GeV (i.e. in the first three frames), the dark-matter-like emission is clearly
visible around the Galactic Center.

analysis of Ref. [8], the cut on CTBCORE significantly
hardens the spectrum at energies below 1 GeV, render-
ing it more consistent with that extracted at higher lati-
tudes (see Appendix A). Shown for comparison (as a solid
line) is the spectrum predicted from a 35.25 GeV dark
matter particle annihilating to bb̄ with a cross section of
�v = 1.7 ⇥ 10�26 cm3/s ⇥ [(0.3GeV/cm3)/⇢

local

]2. The
spectrum of this component is in good agreement with
that predicted by this dark matter model, yielding a fit
of �2 = 26.4 over the 25 error bars between 0.3 and 100
GeV. We also note that the spectral shape of the dark
matter template is quite robust to variations in �, except
at energies below ⇠ 600 MeV, where the spectral shape

can vary non-negligibly with the choice of inner slope (see
Appendix C).

In Fig. 6, we plot the maps of the gamma-ray sky in
four energy ranges after subtracting the best-fit di↵use
model, Fermi Bubbles, and isotropic templates. In the
0.5-1 GeV, 1-2 GeV, and 2-5 GeV maps, the dark-matter-
like emission is clearly visible in the region surrounding
the Galactic Center. Much less central emission is vis-
ible at 5-20 GeV, where the dark matter component is
significantly less bright.
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FIG. 4: The spatial templates (in galactic coordinates) for the Galactic di↵use model (upper left), the Fermi bubbles (upper
right), and dark matter annihilation products (lower), as used in our Inner Galaxy analysis. The scale is logarithmic (base
10), normalized to the brightest point in each map. The di↵use model template is shown as evaluated at 2 GeV, and the dark
matter template corresponds to a generalized NFW profile with an inner slope of � = 1.3.

These cuts on CTBCORE have a substantial impact
on Fermi ’s PSF, especially at low energies. In Fig. 3,
we show the PSF for front-converting, Ultraclean events,
at three representative energies, for di↵erent cuts on
CTBCORE (all events, Q2, and Q1). Such a cut can
be used to mitigate the leakage of astrophysical emission
from the Galactic Plane and point sources into our re-
gions of interest. This leakage is most problematic at
low energies, where the PSF is quite broad and where
the CTBCORE cut has the greatest impact. These new
event classes and their characterization will be further
detailed in an upcoming paper, which will be accompa-
nied by a data release of all-sky maps for each class, and
the instrument response function files necessary for use
with the Fermi Science Tools [40].
Throughout the remainder of this study, we will em-

ploy the Q2 event class, corresponding to the top 50%
(by CTBCORE) of Fermi ’s front-converting, Ultraclean
photons, except at energies above 10 GeV, where we do
not apply any additional cuts to CTBCORE.

IV. THE INNER GALAXY

In this section, we follow the procedure previously pur-
sued in Ref. [8] (see also Refs. [41, 42]) to study the
gamma-ray emission from the Inner Galaxy. We use the
term “Inner Galaxy” to denote the region of the sky that
lies within several tens of degrees around the Galactic
Center, excepting the Galactic Plane itself (|b| < 1�),

which we mask in this portion of our analysis.

Throughout our analysis, we make use of the Pass 7
(V15) reprocessed data taken between August 4, 2008
and December 5, 2013, using only front-converting, Ul-
traclean class events which pass the Q2 CTBCORE cut
as described in Sec. III. We also apply standard cuts to
ensure data quality (zenith angle < 100�, instrumental
rocking angle < 52�, DATA QUAL = 1, LAT CONFIG=1).
Using this data set, we have generated a map of the
gamma-ray sky, smoothed to 2 degrees full-width-half-
maximum. We apply the point source subtraction
method described in Ref. [42], using the 1FGL catalogue
and masking out the 200 brightest sources. We then per-
formed a pixel-based maximum likelihood analysis on the
map, fitting the data in each energy bin to a sum of spa-
tial templates. These templates consist of: 1) the Fermi

Collaboration p6v11 Galactic di↵use model (which we
refer to as the Pass 6 Di↵use Model),1 2) an isotropic
map, intended to account for the extragalactic gamma-
ray background and residual cosmic-ray contamination,
and 3) a uniform-brightness spatial template coincident
with the features known as the Fermi Bubbles, as de-
scribed in Ref. [42]. In addition to these three back-

1 Unlike more recently released Galactic di↵use models, the p6v11
di↵use model does not include a component corresponding to
the Fermi Bubbles. By using this model, we are free to fit the
Fermi Bubbles component independently. See Appendix D for a
discussion of the impact of varying the di↵use model.
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FIG. 4: The spatial templates (in galactic coordinates) for the Galactic di↵use model (upper left), the Fermi bubbles (upper
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These cuts on CTBCORE have a substantial impact
on Fermi ’s PSF, especially at low energies. In Fig. 3,
we show the PSF for front-converting, Ultraclean events,
at three representative energies, for di↵erent cuts on
CTBCORE (all events, Q2, and Q1). Such a cut can
be used to mitigate the leakage of astrophysical emission
from the Galactic Plane and point sources into our re-
gions of interest. This leakage is most problematic at
low energies, where the PSF is quite broad and where
the CTBCORE cut has the greatest impact. These new
event classes and their characterization will be further
detailed in an upcoming paper, which will be accompa-
nied by a data release of all-sky maps for each class, and
the instrument response function files necessary for use
with the Fermi Science Tools [40].
Throughout the remainder of this study, we will em-

ploy the Q2 event class, corresponding to the top 50%
(by CTBCORE) of Fermi ’s front-converting, Ultraclean
photons, except at energies above 10 GeV, where we do
not apply any additional cuts to CTBCORE.

IV. THE INNER GALAXY

In this section, we follow the procedure previously pur-
sued in Ref. [8] (see also Refs. [41, 42]) to study the
gamma-ray emission from the Inner Galaxy. We use the
term “Inner Galaxy” to denote the region of the sky that
lies within several tens of degrees around the Galactic
Center, excepting the Galactic Plane itself (|b| < 1�),

which we mask in this portion of our analysis.

Throughout our analysis, we make use of the Pass 7
(V15) reprocessed data taken between August 4, 2008
and December 5, 2013, using only front-converting, Ul-
traclean class events which pass the Q2 CTBCORE cut
as described in Sec. III. We also apply standard cuts to
ensure data quality (zenith angle < 100�, instrumental
rocking angle < 52�, DATA QUAL = 1, LAT CONFIG=1).
Using this data set, we have generated a map of the
gamma-ray sky, smoothed to 2 degrees full-width-half-
maximum. We apply the point source subtraction
method described in Ref. [42], using the 1FGL catalogue
and masking out the 200 brightest sources. We then per-
formed a pixel-based maximum likelihood analysis on the
map, fitting the data in each energy bin to a sum of spa-
tial templates. These templates consist of: 1) the Fermi

Collaboration p6v11 Galactic di↵use model (which we
refer to as the Pass 6 Di↵use Model),1 2) an isotropic
map, intended to account for the extragalactic gamma-
ray background and residual cosmic-ray contamination,
and 3) a uniform-brightness spatial template coincident
with the features known as the Fermi Bubbles, as de-
scribed in Ref. [42]. In addition to these three back-

1 Unlike more recently released Galactic di↵use models, the p6v11
di↵use model does not include a component corresponding to
the Fermi Bubbles. By using this model, we are free to fit the
Fermi Bubbles component independently. See Appendix D for a
discussion of the impact of varying the di↵use model.
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C en t er) . S how n for comp arison ( solid lin e) is t he sp ec t rum p red ic t ed from a 3 5.2 5 G eV d ark ma t t er p ar t icle an n ihila t in g to bb̄
w i t h a cross sec t ion of �v = 1 .7 ⇥ 1 0 �26 cm3/ s ⇥ [ ( 0 .3 G eV /cm3 ) /⇢

local

]2 .

g r o un d t e m p l a t e s ,w e i n c l ud e a n a d d i t i o n a l d a r k m a t t e r
t e m p l a t e ,m o t i v a t e d b y t h e h y p o t h e s i s t h a t t h e p r e v i -
o us l y r e p o r t e d g a m m a - r a y e x c e s s o r i g i n a t e s f r o m a n n i h i -
l a t i n g d a r k m a t t e r . I n p a r t i c ul a r ,o ur d a r k m a t t e r t e m -
p l a t e i s t a k e n t o b e p r o p o r t i o n a l t o t h e l i n e - o f - s i g h t i n t e -
g r a l o f t h e d a r k m a t t e r d e n s i t y s q ua r e d ,J (  ) ,f o r a g e n -
e r a l i z e d N F W d e n s i t y p r o fi l e ( s e e E q s . 2 –3 ) . T h e s p a t i a l
m o r p h o l o g y o f t h e G a l a c t i c d i↵ us e m o d e l ( a s e v a l ua t e d
a t 2 G e V ) ,Fermi B ub b l e s ,a n d d a r k m a t t e r t e m p l a t e s
a r e e a c h s h o w n i n F i g . 4 .

A s f o un d i n p r e v i o us s t ud i e s [8 ,9 ] ,t h e i n c l us i o n o f t h e
d a r k m a t t e r t e m p l a t e d r a m a t i c a l l y i m p r o v e s t h e q ua l i t y
o f t h e fi t t o t h e Fermi d a t a . F o r t h e b e s t - fi t s p e c t r um a n d
h a l o p r o fi l e ,w e fi n d t h a t t h e i n c l us i o n o f t h e d a r k m a t t e r
t e m p l a t e i m p r o v e s t h e f o r m a l fi t b y ��2 ' 1 6 7 2 ,c o r -
r e s p o n d i n g t o a s t a t i s t i c a l p r e f e r e n c e g r e a t e r t h a n 4 0�.
W h e n c o n s i d e r i n g t h i s e n o r m o us s t a t i s t i c a l s i g n i fi c a n c e ,
o n e s h o ul d k e e p i n m i n d t h a t i n a d d i t i o n t o s t a t i s t i c a l e r -
r o r s t h e r e i s a d e g r e e o f un a v o i d a b l e a n d un a c c o un t e d - f o r
s y s t e m a t i c e r r o r ,i n t h a t n e i t h e r m o d e l ( w i t h o r w i t h o ut
a d a r k m a t t e r c o m p o n e n t ) i s a “ g o o d fi t ” i n t h e s e n s e
o f d e s c r i b i n g t h e s k y t o t h e l e v e l o f P o i s s o n n o i s e . T h a t
b e i n g s a i d ,t h e d a t a d o v e r y s t r o n g l y p r e f e r t h e p r e s e n c e
o f a g a m m a - r a y c o m p o n e n t w i t h a m o r p h o l o g y s i m i l a r
t o t h a t p r e d i c t e d f r o m a n n i h i l a t i n g d a r k m a t t e r ( s e e A p -
p e n d i c e s B a n d D f o r f ur t h e r d e t a i l s ) .2

2 Previous studies [8, 9] have taken the approach of fitting for the
spectrum of the Fermi Bubbles as a function of latitude, and then
subtracting an estimated underlying spectrum for the Bubbles
(based on high-latitude data) in order to extract the few-GeV

A s i n R e f . [8 ] ,w e v a r y t h e v a l ue o f t h e i n n e r s l o p e o f
t h e g e n e r a l i z e d N F W p r o fi l e ,� ,a n d c o m p a r e t h e c h a n g e
i n t h e l o g - l i k e l i h o o d ,� l n L ,b e t w e e n t h e r e s ul t i n g fi t s i n
o r d e r t o d e t e r m i n e t h e p r e f e r r e d r a n g e f o r t h e v a l ue o f
� .3 T h e r e s ul t s o f t h i s e x e r c i s e ( a s p e r f o r m e d o v e r 0 . 5 -
1 0 G e V ) a r e s h o w n i n t h e l e f t f r a m e o f F i g . 5 . W h i l e
p r e v i o us fi t s ( w h i c h d i d n o t e m p l o y a n y a d d i t i o n a l c ut s
o n C T B C O R E ) p r e f e r r e d a n i n n e r s l o p e o f � ' 1 .2 [8 ] ,
w e fi n d t h a t a s l i g h t l y s t e e p e r v a l ue o f � ' 1 .2 6 p r o v i d e s
t h e b e s t fi t t o t h e d a t a . A l s o ,i n c o n t r a s t t o R e f . [8 ] ,
w e fi n d n o s i g n i fi c a n t d i↵e r e n c e i n t h e s l o p e p r e f e r r e d
b y t h e fi t o v e r t h e e n t i r e s k y ,a n d b y a fi t o n l y o v e r t h e
s o ut h e r n s k y ( b < 0 ) . T h i s c a n b e s e e n d i r e c t l y f r o m
t h e l e f t f r a m e o f F i g . 5 ,w h e r e t h e f ul l - s k y a n d s o ut h e r n -
s k y fi t s f o r t h e s a m e l e v e l o f m a s k i n g a r e f o un d t o f a v o r
q ui t e s i m i l a r v a l ue s o f � ( t h e s o ut h e r n s k y d i s t r i b ut i o n
i s b r o a d e r t h a n t h a t f o r t h e f ul l s k y s i m p l y d ue t o t h e
d i↵e r e n c e i n t h e n um b e r o f p h o t o n s ) .

I n t h e r i g h t f r a m e o f F i g . 5 ,w e s h o w t h e s p e c t r um o f
t h e e m i s s i o n c o r r e l a t e d w i t h t h e d a r k m a t t e r t e m p l a t e ,
f o r t h e b e s t - fi t v a l ue o f � =1 .2 6 . W h i l e n o s i g n i fi c a n t
e m i s s i o n i s a b s o r b e d b y t h i s t e m p l a t e a t e n e r g i e s a b o v e
⇠1 0 G e V ,a b r i g h t a n d r o b us t c o m p o n e n t i s p r e s e n t a t
l o w e r e n e r g i e s ,p e a k i n g n e a r ⇠1 - 3 G e V . R e l a t i v e t o t h e

excess. However, this approach discards information on the true
morphology of the signal, as well as requiring an assumption for
the Bubbles spectrum. It was shown in Ref. [8] (and also in this
work, see Appendices B and D) that the excess is not confined
to the Bubbles and the fit strongly prefers to correlate it with a
dark matter template if one is available.

3 Throughout, we denote the quantity �2 lnL by �2.

Fit diffuse + Fermi-bubble + dark matter5
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FIG. 4: The spatial templates (in galactic coordinates) for the Galactic di↵use model (upper left), the Fermi bubbles (upper
right), and dark matter annihilation products (lower), as used in our Inner Galaxy analysis. The scale is logarithmic (base
10), normalized to the brightest point in each map. The di↵use model template is shown as evaluated at 2 GeV, and the dark
matter template corresponds to a generalized NFW profile with an inner slope of � = 1.3.

These cuts on CTBCORE have a substantial impact
on Fermi ’s PSF, especially at low energies. In Fig. 3,
we show the PSF for front-converting, Ultraclean events,
at three representative energies, for di↵erent cuts on
CTBCORE (all events, Q2, and Q1). Such a cut can
be used to mitigate the leakage of astrophysical emission
from the Galactic Plane and point sources into our re-
gions of interest. This leakage is most problematic at
low energies, where the PSF is quite broad and where
the CTBCORE cut has the greatest impact. These new
event classes and their characterization will be further
detailed in an upcoming paper, which will be accompa-
nied by a data release of all-sky maps for each class, and
the instrument response function files necessary for use
with the Fermi Science Tools [40].
Throughout the remainder of this study, we will em-

ploy the Q2 event class, corresponding to the top 50%
(by CTBCORE) of Fermi ’s front-converting, Ultraclean
photons, except at energies above 10 GeV, where we do
not apply any additional cuts to CTBCORE.

IV. THE INNER GALAXY

In this section, we follow the procedure previously pur-
sued in Ref. [8] (see also Refs. [41, 42]) to study the
gamma-ray emission from the Inner Galaxy. We use the
term “Inner Galaxy” to denote the region of the sky that
lies within several tens of degrees around the Galactic
Center, excepting the Galactic Plane itself (|b| < 1�),

which we mask in this portion of our analysis.

Throughout our analysis, we make use of the Pass 7
(V15) reprocessed data taken between August 4, 2008
and December 5, 2013, using only front-converting, Ul-
traclean class events which pass the Q2 CTBCORE cut
as described in Sec. III. We also apply standard cuts to
ensure data quality (zenith angle < 100�, instrumental
rocking angle < 52�, DATA QUAL = 1, LAT CONFIG=1).
Using this data set, we have generated a map of the
gamma-ray sky, smoothed to 2 degrees full-width-half-
maximum. We apply the point source subtraction
method described in Ref. [42], using the 1FGL catalogue
and masking out the 200 brightest sources. We then per-
formed a pixel-based maximum likelihood analysis on the
map, fitting the data in each energy bin to a sum of spa-
tial templates. These templates consist of: 1) the Fermi

Collaboration p6v11 Galactic di↵use model (which we
refer to as the Pass 6 Di↵use Model),1 2) an isotropic
map, intended to account for the extragalactic gamma-
ray background and residual cosmic-ray contamination,
and 3) a uniform-brightness spatial template coincident
with the features known as the Fermi Bubbles, as de-
scribed in Ref. [42]. In addition to these three back-

1 Unlike more recently released Galactic di↵use models, the p6v11
di↵use model does not include a component corresponding to
the Fermi Bubbles. By using this model, we are free to fit the
Fermi Bubbles component independently. See Appendix D for a
discussion of the impact of varying the di↵use model.
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right), and dark matter annihilation products (lower), as used in our Inner Galaxy analysis. The scale is logarithmic (base
10), normalized to the brightest point in each map. The di↵use model template is shown as evaluated at 2 GeV, and the dark
matter template corresponds to a generalized NFW profile with an inner slope of � = 1.3.

These cuts on CTBCORE have a substantial impact
on Fermi ’s PSF, especially at low energies. In Fig. 3,
we show the PSF for front-converting, Ultraclean events,
at three representative energies, for di↵erent cuts on
CTBCORE (all events, Q2, and Q1). Such a cut can
be used to mitigate the leakage of astrophysical emission
from the Galactic Plane and point sources into our re-
gions of interest. This leakage is most problematic at
low energies, where the PSF is quite broad and where
the CTBCORE cut has the greatest impact. These new
event classes and their characterization will be further
detailed in an upcoming paper, which will be accompa-
nied by a data release of all-sky maps for each class, and
the instrument response function files necessary for use
with the Fermi Science Tools [40].
Throughout the remainder of this study, we will em-

ploy the Q2 event class, corresponding to the top 50%
(by CTBCORE) of Fermi ’s front-converting, Ultraclean
photons, except at energies above 10 GeV, where we do
not apply any additional cuts to CTBCORE.

IV. THE INNER GALAXY

In this section, we follow the procedure previously pur-
sued in Ref. [8] (see also Refs. [41, 42]) to study the
gamma-ray emission from the Inner Galaxy. We use the
term “Inner Galaxy” to denote the region of the sky that
lies within several tens of degrees around the Galactic
Center, excepting the Galactic Plane itself (|b| < 1�),

which we mask in this portion of our analysis.

Throughout our analysis, we make use of the Pass 7
(V15) reprocessed data taken between August 4, 2008
and December 5, 2013, using only front-converting, Ul-
traclean class events which pass the Q2 CTBCORE cut
as described in Sec. III. We also apply standard cuts to
ensure data quality (zenith angle < 100�, instrumental
rocking angle < 52�, DATA QUAL = 1, LAT CONFIG=1).
Using this data set, we have generated a map of the
gamma-ray sky, smoothed to 2 degrees full-width-half-
maximum. We apply the point source subtraction
method described in Ref. [42], using the 1FGL catalogue
and masking out the 200 brightest sources. We then per-
formed a pixel-based maximum likelihood analysis on the
map, fitting the data in each energy bin to a sum of spa-
tial templates. These templates consist of: 1) the Fermi

Collaboration p6v11 Galactic di↵use model (which we
refer to as the Pass 6 Di↵use Model),1 2) an isotropic
map, intended to account for the extragalactic gamma-
ray background and residual cosmic-ray contamination,
and 3) a uniform-brightness spatial template coincident
with the features known as the Fermi Bubbles, as de-
scribed in Ref. [42]. In addition to these three back-

1 Unlike more recently released Galactic di↵use models, the p6v11
di↵use model does not include a component corresponding to
the Fermi Bubbles. By using this model, we are free to fit the
Fermi Bubbles component independently. See Appendix D for a
discussion of the impact of varying the di↵use model.
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10), normalized to the brightest point in each map. The di↵use model template is shown as evaluated at 2 GeV, and the dark
matter template corresponds to a generalized NFW profile with an inner slope of � = 1.3.

These cuts on CTBCORE have a substantial impact
on Fermi ’s PSF, especially at low energies. In Fig. 3,
we show the PSF for front-converting, Ultraclean events,
at three representative energies, for di↵erent cuts on
CTBCORE (all events, Q2, and Q1). Such a cut can
be used to mitigate the leakage of astrophysical emission
from the Galactic Plane and point sources into our re-
gions of interest. This leakage is most problematic at
low energies, where the PSF is quite broad and where
the CTBCORE cut has the greatest impact. These new
event classes and their characterization will be further
detailed in an upcoming paper, which will be accompa-
nied by a data release of all-sky maps for each class, and
the instrument response function files necessary for use
with the Fermi Science Tools [40].

Throughout the remainder of this study, we will em-
ploy the Q2 event class, corresponding to the top 50%
(by CTBCORE) of Fermi ’s front-converting, Ultraclean
photons, except at energies above 10 GeV, where we do
not apply any additional cuts to CTBCORE.

IV. THE INNER GALAXY

In this section, we follow the procedure previously pur-
sued in Ref. [8] (see also Refs. [41, 42]) to study the
gamma-ray emission from the Inner Galaxy. We use the
term “Inner Galaxy” to denote the region of the sky that
lies within several tens of degrees around the Galactic
Center, excepting the Galactic Plane itself (|b| < 1�),

which we mask in this portion of our analysis.

Throughout our analysis, we make use of the Pass 7
(V15) reprocessed data taken between August 4, 2008
and December 5, 2013, using only front-converting, Ul-
traclean class events which pass the Q2 CTBCORE cut
as described in Sec. III. We also apply standard cuts to
ensure data quality (zenith angle < 100�, instrumental
rocking angle < 52�, DATA QUAL = 1, LAT CONFIG=1).
Using this data set, we have generated a map of the
gamma-ray sky, smoothed to 2 degrees full-width-half-
maximum. We apply the point source subtraction
method described in Ref. [42], using the 1FGL catalogue
and masking out the 200 brightest sources. We then per-
formed a pixel-based maximum likelihood analysis on the
map, fitting the data in each energy bin to a sum of spa-
tial templates. These templates consist of: 1) the Fermi

Collaboration p6v11 Galactic di↵use model (which we
refer to as the Pass 6 Di↵use Model),1 2) an isotropic
map, intended to account for the extragalactic gamma-
ray background and residual cosmic-ray contamination,
and 3) a uniform-brightness spatial template coincident
with the features known as the Fermi Bubbles, as de-
scribed in Ref. [42]. In addition to these three back-

1 Unlike more recently released Galactic di↵use models, the p6v11
di↵use model does not include a component corresponding to
the Fermi Bubbles. By using this model, we are free to fit the
Fermi Bubbles component independently. See Appendix D for a
discussion of the impact of varying the di↵use model.
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3

Dataset Exposure χ2/d.o.f. Line position Flux ∆χ2

[ksec] [keV] 10−6 cts/sec/cm2

M31 ON-CENTER 978.9 97.8/74 3.53± 0.025 4.9+1.6
−1.3 13.0

M31 OFF-CENTER 1472.8 107.8/75 3.53± 0.03 < 1.8 (2σ) . . .
PERSEUS CLUSTER (MOS) 528.5 72.7/68 3.50+0.044

−0.036 7.0+2.6
−2.6 9.1

PERSEUS CLUSTER (PN) 215.5 62.6/62 3.46± 0.04 9.2+3.1
−3.1 8.0

PERSEUS (MOS) 1507.4 191.5/142 3.518+0.019
−0.022 8.6+2.2

−2.3 (Perseus) 25.9
+ M31 ON-CENTER 4.6+1.4

−1.4 (M31) (3 dof)
BLANK-SKY 15700.2 33.1/33 3.53± 0.03 < 0.7 (2σ) . . .

TABLE I: Basic properties of combined observations used in this paper. Second column denotes the sum of exposures of individual observa-
tions. The last column shows change in∆χ2 when 2 extra d.o.f. (position and flux of the line) are added. The energies for Perseus are quoted
in the rest frame of the object.
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FIG. 1: Left: Folded count rate (top) and residuals (bottom) for the MOS spectrum of the central region of M31. Statistical Y-errorbars on the
top plot are smaller than the point size. The line around 3.5 keV is not added, hence the group of positive residuals. Right: zoom onto the line
region.

with such a large exposure requires special analysis (as de-
scribed in [16]). This analysis did not reveal any line-like
residuals in the range 3.45−3.58 keVwith the 2σ upper bound
on the flux being 7×10−7 cts/cm2/sec. The closest detected
line-like feature (∆χ2 = 4.5) is at 3.67+0.10

−0.05 keV, consistent
with the instrumental Ca Kα line.3

Combined fit of M31 + Perseus. Finally, we have performed
a simultaneous fit of the on-center M31 and Perseus datasets
(MOS), keeping common position of the line (in the rest-
frame) and allowing the line normalizations to be different.
The line improves the fit by ∆χ2 = 25.9 (Table I), which
constitutes a 4.4σ significant detection for 3 d.o.f.

Results and discussion. We identified a spectral feature at
E = 3.518+0.019

−0.022 keV in the combined dataset of M31 and
Perseus that has a statistical significance 4.4σ and does not
coincide with any known line. Next we compare its properties
with the expected behavior of a DM decay line.

3 Previously this line has only been observed in the PN camera [9].

The observed brightness of a decaying DM line should be pro-
portional to the dark matter column density SDM =

∫

ρDMd% –
integral along the line of sight of the DM density distribution:

FDM ≈ 2.0× 10−6 cts

cm2 · sec

(

Ωfov

500 arcmin2

)

× (1)
(

SDM

500 M⊙/pc2

)

1029 s

τDM

(

keV

mDM

)

.

M31 and Perseus brightness profiles. Using the line flux
of the center of M31 and the upper limit from the off-center
observations we constrain the spatial profile of the line. The
DM distribution in M31 has been extensively studied (see an
overview in [13]). We take NFW profiles for M31 with con-
centrations c = 11.7 (solid line, [22]) and c = 19 (dash-dotted
line). For each concentration we adjust the normalization so
that it passes through first data point (Fig. 2). The c = 19
profile was chosen to intersect the upper limit, illustrating that
the obtained line fluxes of M31 are fully consistent with the
density profile of M31 (see e.g. [22, 24, 25] for a c = 19− 22
model of M31).
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An unidentified 3.5 keV X-ray line has been reported in stacked 
images of 73 galaxy clusters and in the Andromeda galaxy

M31 (Andromeda)

stacked clusters
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Sterile neutrino dark matter

While not in contradiction with supernova 1987A bounds [121], the decays of these neutrinos
could produce a flux of energetic active neutrinos, detectable by future neutrino observations
in the event of a galactic supernova [263]. Moreover, the relevant range of sterile neutrino
masses and mixing angles can be probed in future laboratory experiments [266–270].

7 X-ray Detection of Relic Sterile Neutrinos

The main decay mode of sterile neutrinos in the keV mass range is νs → 3ν. This decay mode
is “invisible” due to the low energy of the daughter neutrinos. In addition to this leading
mode of decay that occurs through a tree-level diagram, there are also one-loop diagrams
(Fig. 12) that allow for a photon in the final state. Therefore, the sterile neutrinos can decay
into the lighter neutrinos and an the X-ray photons: νs → γνa [271]. The radiative decay
width is equal to [271,272]
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and the corresponding lifetime is many orders of magnitude longer than the age of the
universe. However, since sterile neutrinos are produced in the early universe by neutrino
oscillations and, possibly, by other mechanisms as well, every dark matter halo should contain
some fraction of these particles. Given a large number of particles in these astrophysical
systems, even a small decay width can make them observable via the photons produced in
the radiative decay. This offers, arguably, the best opportunity to detect these particles.
Since ν(m)

2 → γν(m)
1 is a two-body decay, the resulting photons have energy

Eγ = ms/2,

which corresponds to a line broadened only by the velocity dispersion of the dark matter
particles in a given halo. This line, with photon energy of a few keV, can be observed using
an X-ray telescope [24].
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Fig. 12. Radiative decay of sterile neutrinos, ν
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2 → γν
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1 . The X-rays produced by these decays

can be detected by the X-ray telescopes, such as Chandra, Suzaku, XMM-Newton, and the future
Constellation-X.

A broad range of astrophysical systems can provide suitable targets for such observations. A
concise discussion and comparison of such observational targets can be found in Ref. [102].
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Figure 4: The central region of Fig. 3, M1 = 0.3 . . .100.0 keV, compared with regions excluded
by various X-ray constraints [22, 25, 30, 31], coming from XMM-Newton observations of the Large
Magellanic Cloud (LMC), the Milky Way (MW), and the Andromeda galaxy (M31). SPI marks the
constraints from 5 years of observations of the Milky Way galactic center by the SPI spectrometer on
board the Integral observatory.

dark matter simulations, which have not been carried out with actual non-equilibrium spec-

tra so far. Nevertheless, adopting a simple recipe for estimating the non-equilibrium effects

(cf. Eq. (5.1)), the results of refs. [34, 35] can be re-interpreted as the constraints M1 >∼ 11.6

keV and M1 >∼ 8 keV, respectively (95% CL), at vanishing asymmetry [12]. Very recently

limits stronger by a factor 2–3 have been reported [36]. We return to how the constraints

change in the case of a non-zero lepton asymmetry in Sec. 5. We note, however, that the

most conservative bound, the so-called Tremaine-Gunn bound [52, 53], is much weaker and

reads M1 >∼ 0.3 keV [54], which we have chosen as the lower end of the horizontal axes in

Figs. 4, 6.

In Fig. 5 we show examples of the spectra, for a relatively small mass M1 = 3 keV (like

in Fig. 1), at which point the significant changes caused by the asymmetry can be clearly

identified. The general pattern to be observed in Fig. 5 is that for a small asymmetry, the

distribution function is boosted only at very small momenta. Quantities like the average

momentum 〈q〉s then decrease, as can be seen in Fig. 6. For large asymmetry, the resonance

affects all q; the total abundance is strongly enhanced with respect to the case without a

resonance, but the shape of the distribution function is less distorted than at small asymmetry,

so that the average momentum 〈q〉s returns back towards the value in the non-resonant case.

Therefore, for any given mass, we can observe a minimal value of 〈q〉s in Fig. 6, 〈q〉s >∼ 0.3〈q〉a.
This minimal value is remarkably independent of M1, but the value of asymmetry at which
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Figure 1. Left panel: The black lines show the target regions that are used in the present analysis in
case of the SOURCE event class (the ULTRACLEAN regions are very similar). From top to bottom,
they are respectively optimized for the cored isothermal, the NFW (with α = 1), the Einasto and the
contracted (with α = 1.15, 1.3) DM profiles. The colors indicate the signal-to-background ratio with
arbitrary but common normalization; in Reg2 to Reg5 they are respectively downscaled by factors
(1.6, 3.0, 4.3, 18.8) for better visibility.
Right panel: From top to bottom, the panels show the 20–300 GeV gamma-ray (+ residual CR)
spectra as observed in Reg1 to Reg5 with statistical error bars. The SOURCE and ULTRACLEAN
events are shown in black and magenta, respectively. Dotted lines show power-laws with the indicated
slopes; dashed lines show the EGBG + residual CRs. The vertical gray line indicates E = 129.0 GeV.

– 4 –

Figure 1. Left panel: The black lines show the target regions that are used in the present analysis in
case of the SOURCE event class (the ULTRACLEAN regions are very similar). From top to bottom,
they are respectively optimized for the cored isothermal, the NFW (with α = 1), the Einasto and the
contracted (with α = 1.15, 1.3) DM profiles. The colors indicate the signal-to-background ratio with
arbitrary but common normalization; in Reg2 to Reg5 they are respectively downscaled by factors
(1.6, 3.0, 4.3, 18.8) for better visibility.
Right panel: From top to bottom, the panels show the 20–300 GeV gamma-ray (+ residual CR)
spectra as observed in Reg1 to Reg5 with statistical error bars. The SOURCE and ULTRACLEAN
events are shown in black and magenta, respectively. Dotted lines show power-laws with the indicated
slopes; dashed lines show the EGBG + residual CRs. The vertical gray line indicates E = 129.0 GeV.
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3.2σ effect based on 50 photons

m = 129.8± 2.4+7
�13 GeV

h�vi�� = (1.27± 0.32+0.18
�0.28) ⇥ 10�27 cm3s�1Figure 2. Left: a Fermi “photograph” of our Galaxy in gamma-rays with the energy 120 GeV <

E� < 140 GeV. Fermi data is shown with blue dots. Fermi bubbles are also shown for illustration.
Right: distribution of relative signal intensity of 130 GeV photons in the Galaxy. The green circles
denote the signal regions that provide the excess with highest statistical significance; grey circles
denote other regions showed in table 1; green dot mark the assumed centre of the Galaxy.

of photons in energy range 20–300 GeV is larger than 80.
We plot in the right panel of figure 2 the resulting distribution of relative signal in-

tensity as presented by the colour code. The pink background is due to regions with too
low photon flux to obtain statistically meaningful results. As seen in the figure, the signal
with highest significance originates from the centre of Galaxy. This region is centered at
(l, b) = (�1�,�0.7�), called “Central” region in the following, and has a radius 3�, drawn
with a white circle in figure 2. The total number of high-energy photons and the number of
120 GeV < E� < 140 GeV photons coming from this signal region is presented in table 1.
However, there exist other regions, spatially well separated from the centre, that also exhibit
large 130 GeV gamma-ray excess over the background. The most significant of them, with
the same radius, is located at (l, b) = (�10�, 0�), called “West” region in the following, and is
also shown in the figure. Some other possible signal regions are all listed in table 1. Presently
statistically significant fits are obtained only for the first two regions, but with more Fermi
statistics the other regions may become relevant too.

One can see in figure 2 that the regions with excesses and the regions with deficit of
the signal are not in balance – the excess dominates. The deficit almost never exceeds 2�
level and is in good agreement with the expectations from statistical fluctuations of the
background. At the same time, there exist regions in which the observed excess is too big to
be explained with statistical fluctuations.

It is clear from figure 2 that the excess of photons with energy around 130 GeV does not
originate from Fermi bubbles. Firstly, there is no spatial correlation between the signal excess
and the Fermi bubbles. Secondly, whatever is the physical mechanism creating the 130 GeV
excess, this mechanism must be at work in several regions of the Galaxy. If the origin of the
excess is astrophysical, it should be possible to observe those astrophysical objects/processes
in the identified regions with other methods. Any such a mechanism must also explain why
the observed excess is a peak, that might be di�cult in the case of standard astrophysical

– 7 –

Tempel, Hektor, Raidal 2012
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FIG. 2: Example of profile likelihood curves for four di↵erent DM annihilation/decay scenarios. Each curve refers to a particular
model of the background. The envelope of the various curves approximates the global profile likelihood marginalized over the
astrophysical uncertainties accounted for in our fitting procedure. The curve corresponding to the model setting the global
minimum, ymin, is highlighted in red. The y scale is arbitrarily re-shifted so that the minimum value is zero. The green curve
corresponds to the model setting the 3 � upper limit (i.e. the model which is both part of the envelope profile likelihood and
intersects the horizontal line located at +9). The upper limit is then e↵ectively given by the x coordinate of the intersection
point. The blue curve is similar, but for the 5 � case (and intersects the horizontal line located at +25). For these 3 models the
corresponding values of zh, �e,2, and d2HI are given in the caption. Panel description: 10 GeV DM particle decaying (DEC)
into bb̄ and NFW profile (upper left), 91 GeV DM particle annihilating (AN) into bb̄ and NFW profile (upper right), 5 GeV
DM particle decaying into ⌧

+
⌧

� and NFW profile (lower left) and 750 GeV DM particle annihilating into ⌧

+
⌧

� and NFW
profile (lower right).

width �✓DM0 . We have verified that this approximation works extremely well for a subset of cases for which we also
explicitly computed the profile likelihood, tabulating it on a grid of ✓DM values. We will thus use this approximation
throughout the rest of the analysis.
In this way we end up with a set of k profiles of likelihood Lk(✓DM ), one for each combination of the non-linear

parameters. The envelope of these curves then approximates the final profile likelihood curve, L(✓DM ), where all the
parameters, linear and non-linear have been included in the profile10 . Examples of such final profile likelihood curves
for specific DM models can be seen in Figure 2, and will be discussed more in detail in Sec. VIIC.
Limits are calculated from the profile likelihood function by finding the ✓DM,lim values for which

L(✓DM,lim)/L(✓DM,max) is exp(�9/2) and exp(�25/2), for 3 and 5 � C.L. limits, respectively. This approxima-
tion is exact for Gaussian likelihood functions in one parameter and, due to invariance of the likelihood function
under reparameterization, it is most often also applicable to the non-Gaussian case [57]. For the case of handling
nuisance parameters, this is not true a priori, but has been shown to give satisfactory properties for a variety of
nuisance parameter configurations (e.g. in [55, 58, 59]). In particular see also the recent search for the Higgs boson
at the Large Hadron Collider, where O(100) nuisance parameters need to be taken into account [60]. We therefore

10
We will sometime use in the following the term marginalizing although, typically, the term applies only within the framework of Bayesian

analyses. In our frequentist approach it is called profiling.

Ackerman et al (Fermi-LAT) 2012

Fermi Collab. upper bounds

HESS-2 may tell
Courtesy C. Weniger 2014

The evidence for a 135 GeV 
γ-ray line may be disappearing
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Excess in cosmic ray positrons
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FIG. 5: Positron fraction measured by the Fermi LAT and by
other experiments [10, 14, 35]. The Fermi statistical uncer-
tainty is shown with error bars and the total (statistical plus
systematic uncertainty) is shown as a shaded band.

the electron spectrum is (2.07±.13 × 10−2 GeV−1 m−2

s−1 sr−1)( E

20GeV )−3.19±0.07. The uncertainties are deter-
mined by including the total (statistical plus systematic)
uncertainty of each energy bin. The fitted indices are con-
sistent with the index we reported previously for the total
electron plus positron spectrum (3.08±0.05) [19, 20].

Conclusion. We measured the CR positron and elec-
tron spectra separately between 20 and 200 GeV, using
a novel separation technique which exploits the charge-
dependent displacement of the Earth’s shadow due to the
geomagnetic field. While the positron fraction has been
measured previously up to 100 GeV [15] and the absolute
flux has been measured previously up to 50 GeV [9, 36],
this is the first time that the absolute CR positron spec-
trum has been measured above 50 GeV and that the
fraction has been determined above 100 GeV. We find
that the positron fraction increases with energy between
20 and 200 GeV, consistent with results reported by
PAMELA [14]. Future measurements with greater sen-
sitivity and energy reach, such as those by AMS-02, are
necessary to distinguish between the many possible ex-
planations of this increase.
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Ackernmann et al [Fermi-LAT] 2011

10 GeV the positron fraction decreases with increasing
energy as expected from the secondary production of
cosmic rays by collision with the interstellar medium.
The positron fraction is steadily increasing from 10 to
!250 GeV. This is not consistent with only the secondary
production of positrons [17]. The behavior above 250 GeV
will become more transparent with more statistics which
will also allow improved treatment of the systematics.

Table I (see also [13]) also presents the contribution of
individual sources to the systematic error for different bins
which are added in quadrature to arrive at the total system-
atic uncertainty. As seen, the total systematic error at the
highest energies is dominated by the uncertainty in the
magnitude of the charge confusion.

Most importantly, several independent analyses were
performed on the same data sample by different study
groups. Results of these analyses are consistent with those
presented in Fig. 5 and in Table I (see also [13]).

The observation of the positron fraction increase with
energy has been reported by earlier experiments: TS93
[18], Wizard/CAPRICE [19], HEAT [20], AMS-01 [21],
PAMELA [22], and Fermi-LAT [23]. The most recent
results are presented in Fig. 5 for comparison. The accu-
racy of AMS-02 and high statistics available enable the
reported AMS-02 positron fraction spectrum to be clearly
distinct from earlier work. The AMS-02 spectrum has the
unique resolution, statistics, and energy range to provide
accurate information on new phenomena.
The accuracy of the data (Table I and [13]) enables us to

investigate the properties of the positron fraction with
different models. We present here the results of comparing
our data with a minimal model, as an example. In this
model the eþ and e# fluxes,!eþ and!e# , respectively, are
parametrized as the sum of individual diffuse power law
spectra and the contribution of a single common source
of e$:

!eþ ¼ CeþE
#!eþ þ CsE

#!se#E=Es ; (1)

!e# ¼ Ce#E
#!e# þ CsE

#!se#E=Es (2)

(with E in GeV), where the coefficients Ceþ and Ce#

correspond to relative weights of diffuse spectra for posi-
trons and electrons, respectively, and Cs to the weight of
the source spectrum; !eþ , !e# , and !s are the correspond-
ing spectral indices; and Es is a characteristic cutoff energy
for the source spectrum. With this parametrization the
positron fraction depends on five parameters. A fit to the
data in the energy range 1–350 GeV based on the number
of events in each bin yields a "2=d:f: ¼ 28:5=57 and the
following: !e# # !eþ ¼ #0:63$ 0:03, i.e., the diffuse
positron spectrum is softer, that is, less energetic with
increasing energy, than the diffuse electron spectrum;
!e# # !s ¼ 0:66$ 0:05, i.e., the source spectrum is
harder than the diffuse electron spectrum; Ceþ=Ce# ¼
0:091$ 0:001, i.e., the weight of the diffuse positron flux
amounts to !10% of that of the diffuse electron flux;
Cs=Ce# ¼ 0:0078$ 0:0012, i.e., the weight of the com-
mon source constitutes only !1% of that of the diffuse
electron flux; and 1=Es ¼ 0:0013$ 0:0007 GeV#1, corre-
sponding to a cutoff energy of 760þ1000

#280 GeV. The fit is
shown in Fig. 6 as a solid curve. The agreement between
the data and the model shows that the positron fraction
spectrum is consistent with e$ fluxes each of which is the
sum of its diffuse spectrum and a single common power
law source. No fine structures are observed in the data. The
excellent agreement of this model with the data indicates
that the model is insensitive to solar modulation effects
[24] during this period. Indeed, fitting over the energy
ranges from 0.8–350 GeV to 6.0–350 GeV does not change
the results nor the fit quality. Furthermore, fitting the data
with the same model extended to include different solar
modulation effects on positrons and electrons yields simi-
lar results. This study also shows that the slope of the
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The comparatively small error bars for AMS are the quadratic
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and [13]), and the horizontal positions are the centers of
each bin.
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Figure 7. The positron fraction corresponding to the same models used to draw Fig.
6 is compared with several experimental data sets. The line styles are coherent with those
in that figure. Solar modulation is are accounted as done in

• Astrophysical sources (including pulsars and supernova remnants) can account
for the observed spectral features, as well as for the positron ratio measurements
(sec. 3.1): no additional exotic source is thus required to fit the data, although
the normalization of the fluxes from such astrophysical objects remains a matter
of discussion, as emphasized above.

• Generically, dark matter annihilation produces antiprotons and protons in addition
to e±. If the bulk of the observed excess high-energy e± originates from dark matter
annihilation, the antiproton-to-proton ratio measured by PAMELA (Adriani et al.
2009 [53]) sets very stringent constraints on the dominant dark matter annihilation
modes (Cirelli et al. 2009 [17]). In particular, for ordinary particle dark matter
models, such as neutralino dark matter (Jungman 1996 [49] or the lightest Kaluza-
Klein particle of Universal Extra-Dimensions (Hooper & Profumo 2007 [50]), the
antiproton bound rules out most of the parameter space where one could explain
the anomalous high-energy CRE data.

• Assuming particle dark matter is weakly interacting, and that it was produced
in the early Universe via an ordinary freeze-out process involving the same anni-
hilation processes that dark matter would undergo in today’s cold universe, the
annihilation rate in the Galaxy would be roughly two orders of magnitude too small
to explain the anomalous e± with dark matter annihilation; while this mismatch
makes the dark matter origin somewhat less appealing, relaxing one or more of the
assumptions on dark matter production and/or on the pair annihilation processes
in the early Universe versus today can explain the larger needed annihilation rate;

Grasso et al [Fermi-LAT] 2009

3

cosmic rays in the Galaxy is

nCR(E) = NCRRSN τesc(E). (7)

The equilibrium spectrum of secondary e− + e− pro-
duced by cosmic ray interactions in the Galaxy is de-
termined by a balance between injection, losses and
escape from the Galaxy. For the diffusion coefficient
D(E) ≈ 1028E0.6

GeV cm2s−1 the loss time is shorter than
the escape time at all energies above ∼ 10 GeV, namely
at all energies of interest for us. In this case the equilib-
rium spectrum of the diffuse secondary pairs can easily
be written as

n±(E) =
KNnHc

b(E)

∫ Emax

E

dE′′

∫

dE′nCR(E′)
dσ±(E′, E′′)

dE′
,

(8)
where nH is the gas density averaged over the volume
of the Galaxy (including disc and halo) and a coefficient
KN ∼ 1.2 − 1.8 is introduced to account for the inter-
action of nuclei other than hydrogen. Following [14] we
use KN = 1.8. Clearly, the choice of a different diffu-
sion coefficient in the Galaxy may lead to the need for a
more detailed solution, taking into account the interplay
between escape and losses. Moreover if a non-leaky box
model is used, a slightly different slope of the equilibrium
spectra is obtained, though the positron fraction remains
unaffected.

Similarly, for the secondary pairs produced inside the
sources, one has:

ns
±(E) = KNRSN

1

b(E)

∫ Emax

E

dE′Ns
±(E′), (9)

where Ns
±(E)dE = 4πp2 [f±,0 + (1/2)Q2τSN ] u2τSNdp is

the distribution function of pairs at the sources in energy
space instead of momentum space (we integrated Eq. (4)
over the downstream volume, exactly as for CRs).

Finally, for the spectrum of primary electrons in the
sources we adopt the standard procedure of assuming
that Ne(E) = KepNCR(E), where Kep ≈ 7 × 10−3. The
equilibrium spectrum of primary electrons is then:

ne(E) = KepRSN

1

b(E)

∫ Emax

E

dE′NCR(E′). (10)

Before illustrating the results of our calculations we dis-
cuss briefly the choice of diffusion coefficient in the accel-
erator, which is not the same as in the Galaxy, because of
the generation (and damping) of turbulence in the shock
region, either due to the same accelerated particles [11]
or due to fluid instabilities. Here we carry out the cal-
culations for a Bohm-like diffusion coefficient, which we
write as:

DB(E) = KB
1

3
rL(E)c = 3.3×1022KBB−1

µ EGeV cm2s−1.

(11)
Here Bµ is the local ordered magnetic field in units of
µG and the coefficient KB % (B/δB)2 allows to consider

FIG. 1: Positron fraction as a function of energy. The data
points are the results of the PAMELA measurement.

faster diffusion (KB > 1), which is common when mag-
netic field amplification is not as efficient.

These are all the ingredients needed for the calcula-
tion of the positron and electron fluxes at Earth. The
positron fraction, defined as the ratio of the total flux
of positrons to the total flux of e− + e+, is plotted in
Fig. 1. The data points are the results of the PAMELA
measurement. The error bar on energy is of the order
of half the distance between two consecutive data points.
The solid line refers to the case of maximum energy of
the accelerated particles (and therefore also of the sec-
ondary particles after reacceleration) Emax = 100 TeV,
while the dash-dotted and dotted lines refer respectively
to Emax = 10 TeV and Emax = 3 TeV. The dashed curve
represents the standard contribution to the positron frac-
tion from secondary diffuse pairs. We adopt a reference
age τSN ≈ 104 years for a SNR. The three curves refer
to {KB, ngas,1, Bµ, u8} = {20, 1.3, 1, 0.5} for Emax = 100
TeV, {20, 2, 1, 0.5} for Emax = 10 TeV, and {20, 3, 1, 0.5}
for Emax = 3 TeV (ngas,1 is the gas density close to the
SNR in units of 1cm−3 and u8 = u1/108cm/s). One can
see that these values are appropriate for old supernova
remnants, which however are also expected to be the ones
that contribute the most to the cosmic ray flux below
the knee. Unfortunately during such phase the maxi-
mum energy of accelerated particles decreases in time in
a way which is very uncertain: slowly in the case of no
damping and rather fast if effective magnetic field am-
plification and damping are present. This is the reason
why in Fig. 1 we considered the three values of Emax.
A solid evaluation of this effect can only be achieved by
carrying out a fully time dependent calculation (Caprioli
and Blasi, in preparation). A prediction of this scenario
is that the positron fraction grows and eventually levels
out at ∼ 40− 50%. The fluxes of electrons and positrons
are plotted in Fig. 2 for the case Emax = 100 TeV. We
assumed that the closest source of cosmic rays is located

Blasi 2009
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FIG. 3. Upper limits (95% CL) on the DM annihilation cross
section, as derived from the AMS positron fraction, for various
final states (this work), WMAP7 (for !+!−) [43] and Fermi
LAT dwarf spheroidals (for µ+µ− and τ+τ−) [42]. The dot-
ted portions of the curves are potentially affected by solar
modulation. We also indicate 〈σv〉therm ≡ 3× 10−26 cm3s−1.
The AMS limits are shown for reasonable reference values of
the local DM density and energy loss rate, and can vary by a
factor of a few, as indicated by the hatched band (for clarity,
this band is only shown around the e+e− constraint).

away by other particles (neutrinos, in particular) and be-
cause they feature broader and less distinctive spectral
shapes. These new limits on DM annihilating to µ+µ−

and τ+τ− final states are still, however, highly competi-
tive with or much stronger than those derived from other
observations, such as from the cosmic microwave back-
ground [43] and from gamma-ray observations of dwarf
galaxies [42]. Note that for the case of e+e−γ final states
even stronger limits can be derived for mχ ! 50GeV by
a spectral analysis of gamma rays [70]. We do not show
results for the b̄b channel, for which we nominally find
even weaker limits due to the broader spectrum. In fact,
due to degeneracies with the background modeling, lim-
its for annihilation channels which produce such a broad
spectrum of positrons can suffer from significant system-
atic uncertainties. For this reason, we consider our limits
on the e+e− channel to be the most robust.
Uncertainties in the e± energy loss rate and local DM

density weaken, to some extent, our ability to robustly
constrain the annihilation cross sections under consid-
eration in Fig. 3. We reflect this uncertainty by show-
ing a band around the e+e− constraint, corresponding
to the range Urad + UB = (1.2 − 2.6) eV cm−3, and
ρ"χ = (0.25− 0.7)GeV cm−3 [59, 71]. Uncertainty bands
of the same width apply to each of the other final states
shown in the figure, but are not explicitly shown for clar-
ity. Other diffusion parameter choices impact our lim-
its only by up to ∼10%, except for the case of low DM
masses, for which uncertainties in the modeling of solar
modulation may be important [51, 72]. We reflect this in
Fig. 3 by depicting the limits derived in this less certain

mass range, where the peak of the signal e+ flux falls
below 5GeV, with dotted (rather than solid) lines.

For comparison, we have also considered a collection
of physical background models in which we calculated
the expected primary and secondary lepton fluxes using
GALPROP, and then added the contribution from all
galactic pulsars. While this leads to an almost identical
description of the background at high energies as in the
phenomenological model, small differences are manifest
at lower energies due to solar modulation and a spec-
tral break [53, 73, 74] in the CR injection spectrum at a
few GeV (both neglected in the AMS parameterization).
We cross-check our fit to the AMS positron fraction with
lepton measurements by Fermi [61]. Using these physical
background models in our fits, instead of the phenomeno-
logical AMS parameterization, the limits do not change
significantly. The arguably most extreme case would be
the appearance of dips in the background due to the su-
perposition of several pulsar contributions, which might
conspire with a hidden DM signal at almost exactly the
same energy. We find that in such situations, the real lim-
its on the annihilation rate could be weaker (or stronger)
by up to roughly a factor of 3 for any individual value of
mχ. We refer to the accompanying material in the Ap-
pendix for more details and further discussion of possible
systematics that might affect our analysis.

Lastly, we note that the upper limits on 〈σv〉(mχ) re-
ported in Fig. 3 can easily be translated into upper limits
on the decay width of a DM particle of mass 2mχ via
Γ % 〈σv〉ρ"χ /mχ. We checked explicitly that this sim-
ple transformation is correct to better than 10% for the
L =4 kpc propagation scenario and e+e− and µ+µ− final
states over the full considered energy range.

Conclusions. In this Letter, we have considered a
possible dark matter contribution to the recent AMS cos-
mic ray positron fraction data. The high quality of this
data has allowed us for the first time to successfully per-
form a spectral analysis, similar to that used previously
in the context of gamma ray searches for DM. While we
have found no indication of a DM signal, we have derived
upper bounds on annihilation and decay rates into lep-
tonic final states that improve upon the most stringent
current limits by up to two orders of magnitude. For
light DM in particular, our limits for e+e− and µ+µ− fi-
nal states are significantly below the cross section naively
predicted for a simple thermal relic. When taken together
with constraints on DM annihilations to hadronic final
states from gamma rays [42] and antiprotons [22], this
new information significantly limits the range of models
which may contain a viable candidate for dark matter
with mχ ∼ O(10)GeV.

The AMS mission is planned to continue for 20 years.
With the total data set, we expect to be able to
strengthen the presented limits by at least a factor of
three in the energy range of 6–200GeV, and by more in
the likely case that systematics and the effective accep-
tance of the instrument improve.

cosmic density (s-wave)

Excess in cosmic ray positrons

The safe way: use the AMS spectrum purely as upper limit 
on positrons from WIMP dark matter.
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FIG. 4: Time evolution of the rate in several energy regions.
The last bin spans eight days. A dotted line denotes the
best-fit modulation found. A solid line indicates nominal pre-
dictions (see text). These lines overlap for the bottom panels.

the muon flux at SUL varies seasonally by ±2%, and
radon levels by a factor ∼4 [24]. Muon-coincident events
constitute a few percent of the low-energy spectrum [1],
limiting a muon-induced modulated amplitude to <<1%
[6]. Rejection of veto-coincident events does not alter the
observed modulation. Radon displacement via pressur-
ized LN boil-off gas is continuously maintained at 2 l/min
within an aluminum shell encasing the lead shielding [25].
A radon-induced modulation would be expected to affect
a much broader spectral region than observed [26].
The CDMS collaboration has recently claimed [7] to

exclude a light-WIMP interpretation of CoGeNT and
DAMA/LIBRA observations. In view of the compatibil-
ity of a mχ∼7 GeV/c2, σSI ∼ 10−4pb WIMP with both
CoGeNT (Fig. 1) and CDMS [16], a search for an annual
modulation in CDMS data seems in order. Observations
from XENON10 [18] and XENON100 [8] have been used
to generate a similar rejection of light-WIMP scenarios.
The assumptions in [8, 18] are examined in [17], where
no presently compelling case for this exclusion is found.
In conclusion, presently available CoGeNT data favor

the presence of an annual modulation in the low-energy
spectral rate, for events taking place in the bulk of the
detector only. While its origin is presently unknown,

the spectral and temporal information are prima facie
congruent when the WIMP hypothesis is examined: in
particular, the WIMP mass region most favored by the
spectral analysis (Fig. 2) generates predictions for the
modulated amplitude in good agreement with observa-
tions, modulo the dependence of this assertion on the
choice of astrophysical parameters [21–23].
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M1 M2

e/�-events 8.00± 0.05 8.00± 0.05

↵-events 11.5+2.6
�2.3 11.2+2.5

�2.3

neutron events 7.5+6.3
�5.5 9.7+6.1

�5.1

Pb recoils 15.0+5.2
�5.1 18.7+4.9

�4.7

signal events 29.4+8.6
�7.7 24.2+8.1

�7.2

m� [GeV] 25.3 11.6

�WN [pb] 1.6 · 10�6 3.7 · 10�5

Table 4. Results of the maximum likelihood fit. Shown are
the expected total contributions from the backgrounds consid-
ered as well as from a possible WIMP signal, for the parameter
values of the two likelihood maxima. The small statistical er-
ror given for the e/�-background reflects the large number of
observed events in the e/�-band. The other errors correspond
to a 1� confidence interval as determined by MINOS (see Sec-
tion 5.1). The corresponding WIMP mass and interaction cross
section are listed for each of the two likelihood maxima.

one event per module according to the choice of the ac-
ceptance region, with a negligible statistical uncertainty
due to the large number of events in the e/�-band. The
lead recoil and the ↵-background are similar to our simple
estimates given in Section 4. Both these backgrounds are
slightly larger than the contribution from neutron scatter-
ings. In the context of the latter, the fit assigns roughly
half of the coincident events to neutrons from a radioac-
tive source and to muon-induced neutrons, respectively.
This translates into about 10% of the single neutron back-
ground being muon-induced.

In both likelihood maxima the largest contribution is
assigned to a possible WIMP signal. The main di↵erence
between the two likelihood maxima concerns the best-fit
WIMP mass and the corresponding cross section, with
m� = 25.3GeV in case of M1 and m� = 11.6GeV for the
case M2. The possibility of two di↵erent solutions for the
WIMP mass can be understood as a consequence of the
di↵erent nuclei present in our target material. The given
shape of the observed energy spectrum can be explained
by two sets of WIMP parameters: in the case of M1, the
WIMPs are heavy enough to detectably scatter o↵ tung-
sten nuclei (cp. Fig. 1), about 69 % of the recoils are on
tungsten, ⇠ 25 % on calcium and ⇠ 7 % on oxygen, while
in M2, oxygen (52 %) and calcium recoils (48 %) constitute
the observed signal and lead to a similar spectral distri-
bution in terms of the recoil energy. The two possibilities
can, in principle, be discriminated by the light yield dis-
tribution of the signal events. However, at the low recoil
energies in question, there is considerable overlap between
the oxygen, calcium, and tungsten bands, so that we can
currently not completely resolve the ambiguity. This may,
however, change in a future run of the experiment.

Fig. 11 illustrates the fit result, showing an energy
spectrum of all accepted events together with the expected
contributions of backgrounds and WIMP signal. The solid
lines correspond to the likelihood maximum M1, while
the dashed lines belong to M2. The complicated shape
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Fig. 11. (Color online) Energy spectrum of the accepted
events from all detector modules, together with the expected
contributions from the considered backgrounds and a WIMP
signal, as inferred from the likelihood fit. The solid and dashed
lines correspond to the fit results M1 and M2, respectively.

of the expectations is the result of taking into account
the energy-dependent detector acceptances. In particular,
the di↵erent energy thresholds of the individual detector
modules lead to a steep increase of the expectations when
an additional module sets in.

We note that neither the expected ↵- or lead recoil
backgrounds nor a possible neutron background resemble
a WIMP signal in terms of the shape of their energy spec-
trum. Even if our analysis severely underestimated one
of these backgrounds, this could therefore hardly be the
explanation of the observed event excess.

On the other hand, the leakage of e/�-events rises
steeply towards low energies and one may be tempted to
consider a strongly underestimated e/�-background as the
source of the observation. However, in addition to the en-
ergy spectrum, also the distribution in the light yield pa-
rameter needs to be taken into account. Fig. 12 shows the
corresponding light yield spectrum of the accepted events,
together with the expectations from all considered sources.
Again, the shape of the expectations is the result of the
individual detector acceptances being considered. As ex-
pected, the contributions from the e/�- and also from the
↵-background quickly decrease towards lower light yields
and thus di↵er significantly from the expected distribution
of a WIMP signal.

In order to check the quality of the likelihood fit, we
calculate a p-value according to the procedure summarized
in Section 5.1. We divide the energy-light yield plane into
bins of 1 keV and 0.02, respectively, and include the accep-
tance region of each module as well as the alpha- and Pb
recoil reference regions in the calculation. The two likeli-
hood maxima are found to give very similar results, with
p-values of about 0.36 and 0.35, respectively. This not very
small value for p indicates an acceptable description by our
background-and-signal model.

Unexplained

......and unmodulated

3

FIG. 2. Ionization yield versus recoil energy in all detectors
included in this analysis for events passing all signal criteria
except (top) and including (bottom) the phonon timing crite-
rion. The curved black lines indicate the signal region (-1.8�
and +1.2� from the mean nuclear recoil yield) between 7 and
100 keV recoil energies, while the gray band shows the range
of charge thresholds. Electron recoils in the detector bulk
have yield near unity. The data are colored to indicate recoil
energy ranges (dark to light) of 7–20, 20–30, and 30–100 keV
to aid the interpretation of Fig. 3.

the exposure of this analysis is equivalent to 23.4 kg-days
over a recoil energy range of 7–100 keV for a WIMP of
mass 10 GeV/c2.

Neutrons from cosmogenic or radioactive processes
can produce nuclear recoils that are indistinguishable
from those from an incident WIMP. Simulations of the
rates and energy distributions of these processes using
GEANT4 [22] lead us to expect < 0.13 false candidate
events (90% confidence level) in the Si detectors from
neutrons in this exposure.
A greater source of background is the misidentifica-

tion of surface electron recoils, which may su↵er from re-
duced ionization yield and thus contribute events to the
WIMP-candidate region; these events are termed “leak-
age events”. Prior to looking at the WIMP-candidate
region (unblinding), the expected leakage was estimated
using the rate of single scatter events with yields con-
sistent with nuclear recoils from a previously unblinded
dataset [23] and the rejection performance of the timing
cut measured on low-yield multiple-scatter events from
133Ba calibration data. Two detectors used in this anal-
ysis were located at the end of detector stacks, so scatters
on their outer faces could not be tagged as multiple scat-
ters. The rate of surface events on the outer faces of these
two detectors were estimated using their single-scatter
rates from a previously unblinded dataset presented in
[23] and the multiples-singles ratio on the interior de-
tectors. The final pre-unblinding estimate for misidenti-
fied surface electron-recoil event leakage into the signal
band in the eight Si detectors was 0.47+0.28

�0.17(stat.) events.
This initial leakage estimate informed the decision to un-
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FIG. 3. Normalized ionization yield (standard deviations
from the nuclear recoil band centroid) versus normalized
phonon timing parameter (normalized such that the median
of the surface event calibration sample is at -1 and the cut
position is at 0) for events in all detectors from the WIMP-
search data set passing all other selection criteria. The black
box indicates the WIMP candidate selection region. The data
are colored to indicate recoil energy ranges (dark to light) of
7–20, 20–30, and 30–100 keV. The thin red curves on the bot-
tom and right axes are the histograms of the data, while the
thicker green curves are the histograms of nuclear recoils from
252Cf calibration data.

blind. After unblinding, we developed a Bayesian es-
timate of the rate of misidentified surface events based
upon the performance of the phonon timing cut mea-
sured using events near the WIMP-search signal region
[23]. Multiple-scatter events below the electron-recoil
ionization-yield region from both 133Ba calibration and
the WIMP-search data were used as inputs to this model.
Because the WIMP-search sample is sparser compared
to the calibration data, the combined estimates are more
heavily weighted towards the calibration data leakage es-
timates. Additionally the leakage estimate is corrected
for the fact that the passage fraction of singles and mul-
tiples di↵ers by a factor of 1.7+0.8

�0.6, as measured on low-
yield events outside of the nuclear recoil band. The sys-
tematic uncertainty on the leakage estimate comes from
the uncertainty on this scale factor, the choice of prior in
the Bayesian analysis, and the method used to reweigh
the energy distribution of surface events from calibration
data to reflect the distribution in WIMP search data.
The final model predicts an updated surface-event leak-
age estimate of 0.41+0.20

�0.08(stat.)
+0.28
�0.24(syst.) misidentified

surface electron-recoil events in the eight Si detectors.
Classical confidence intervals provided similar estimates
[24].

After all WIMP-selection criteria were defined, the sig-
nal regions of the Si detectors were unblinded. Three
WIMP-candidate events were observed, with recoil en-
ergies of 8.2, 9.5, and 12.3 keV, on March 14, July 1,
and September 6 of 2008, respectively. Two events were
observed in Detector 3 of Tower 4, and the third was ob-
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FIG. 1. (color online) The rate of CDMS II nuclear-recoil
band events is shown for the 5.0–11.9 keVnr interval (dark
blue), after subtracting the best-fit unmodulated rate, �d,
for each detector. The horizontal bars represent the time
bin extents, the vertical bars show ±1� statistical uncertain-
ties (note that one CDMS II time bin is of extremely short
duration). The CoGeNT rates (assuming a nuclear-recoil en-
ergy scale) and maximum-likelihood modulation model in this
energy range (light orange) are shown for comparison. The
CDMS exposure starts in late 2007, while the CoGeNT expo-
sure starts in late 2009.

rates in this energy range with amplitudes greater than
0.06 [keV

nr

kg day]�1 are excluded at the 99% C.L.
For comparison, a similar analysis was carried out us-

ing the publicly available CoGeNT data [19]. Our analy-
sis of CoGeNT data is consistent with previously pub-
lished analyses [6, 7, 14]. Figure 3 shows the modu-
lated spectrum of both CDMS II and CoGeNT, assum-
ing the phase (106 days) which best fits the CoGeNT
data over the full CoGeNT energy range. Compatibil-
ity between the annual modulation signal of CoGeNT
and the absence of a significant signal in CDMS is de-
termined by a likelihood-ratio test, which involves cal-
culating � ⌘ L

0

/L
1

, where L
0

is the combined max-
imum likelihood of the CoGeNT and CDMS data as-
suming both arise from the same simultaneous best-fit
values of M and �, while L

1

is the product of the maxi-
mum likelihoods when the best-fit values are determined
for each dataset individually. The probability distribu-
tion function of �2 ln� was mapped using simulation,
and agreed with the �2 distribution with two degrees
of freedom, as expected in the asymptotic limit of large
statistics and away from physical boundaries. The simu-
lation found only 82 of the 5⇥103 trials had a likelihood
ratio more extreme than was observed for the two ex-
periments, confirming the asymptotic limit computation
which indicated 98.3% C.L. incompatibility between the
annual-modulation signals of CoGeNT and CDMS for the
5.0–11.9 keV

nr

interval.
We extend this analysis by applying the same method

to CDMS II single-scatter and multiple-scatter events
without applying the ionization-based nuclear-recoil cut.
These samples are both dominated by electron recoils.
Figure 4 shows the confidence intervals for the allowed

  0
.17

5

0.3
5 [

keV
nr k

g d
ay

]−
1

π/2 (~Apr.1)

3π/2 (~Oct.1)

π
(~Jul.1)

0
(Jan.1)

FIG. 2. (color online) Allowed regions for annual modulation
of CoGeNT (light orange) and the CDMS II nuclear-recoil
sample (dark blue), for the 5.0–11.9 keVnr interval. In this
and the following polar plot, a phase of 0 corresponds to Jan-
uary 1st, the phase of a modulation signal predicted by generic
halo models (152.5 days) is highlighted by a dashed line, and
68% (thickest), 95%, and 99% (thinnest) C.L. contours are
shown.
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FIG. 3. (color online) Amplitude of modulation vs. energy,
showing maximum-likelihood fits for both CoGeNT (light or-
ange circles, 68% confidence interval shown with vertical line)
and CDMS nuclear-recoil singles (dark blue rectangles, 68%
confidence interval given by rectangle height). The phase that
best fits CoGeNT over all energies (106 days) was chosen for
this representation. The upper horizontal scale shows the
electron-recoil-equivalent energy scale for CoGeNT events.
The 5–11.9 keVnr energy range over which this analysis over-
laps with the low-energy channel of CoGeNT has been divided
into 3 (CDMS) and 6 (CoGeNT) equal-sized bins.
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XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP
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FIG. 3. Small gray dots are all veto-anticoincident single-
scatter events within the ionization-partition fiducial volume
that pass the data-quality selection criteria. Large encircled
shapes are the 11 candidate events. Overlapping shaded re-
gions (from light to dark) are the 95% confidence contours ex-
pected for 5, 7, 10 and 15 GeV/c2 WIMPs, after application
of all selection criteria. The three highest-energy events occur
on detector T5Z3, which has a shorted ionization guard. The
band of events above the expected signal contours corresponds
to bulk electron recoils, including the 1.3 keV activation line
at a total phonon energy of ⇠3 keV. High-radius events near
the detector sidewalls form the wide band of events with near-
zero ionization energy. For illustrative purposes, an approxi-
mate nuclear-recoil energy scale is provided.

a WIMP-nucleon scattering interpretation of the excess
reported by CoGeNT, which also uses a germanium tar-
get. Similar tension exists with WIMP interpretations
of several other experiments, including CDMS II (Si),
assuming spin-independent interactions and a standard
halo model. New regions of WIMP-nucleon scattering
for WIMP masses below 6 GeV/c2 are excluded.

The SuperCDMS collaboration gratefully acknowl-
edges the contributions of numerous engineers and tech-
nicians. In addition, we gratefully acknowledge assis-
tance from the sta↵ of the Soudan Underground Lab-
oratory and the Minnesota Department of Natural Re-
sources. The iZIP detectors were fabricated in the Stan-
ford Nanofabrication Facility, which is a member of the
National Nanofabrication Infrastructure Network. This
work is supported in part by the National Science Foun-
dation, by the United States Department of Energy, by
NSERC Canada, and by MultiDark (Spanish MINECO).
Fermilab is operated by the Fermi Research Alliance,
LLC under Contract No. De-AC02-07CH11359. SLAC is
operated under Contract No. DE-AC02-76SF00515 with
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FIG. 4. The 90% confidence upper limit (solid black) based on
all observed events is shown with 95% C.L. systematic uncer-
tainty band (gray). The pre-unblinding expected sensitivity
in the absence of a signal is shown as 68% (dark green) and
95% (light green) C.L. bands. The disagreement between the
limit and sensitivity at high WIMP mass is due to the events
in T5Z3. Closed contours shown are CDMS II Si [3] (dotted
blue, 90% C.L.), CoGeNT [4] (yellow, 90% C.L.), CRESST-II
[5] (dashed pink, 95% C.L.), and DAMA/LIBRA [34] (dash-
dotted tan, 90% C.L.). 90% C.L. exclusion limits shown are
CDMS II Ge [22] (dotted dark red), CDMS II Ge low-threshold
[17] (dashed-dotted red), CDMSlite [20] (solid dark red), LUX
[35] (solid green), XENON10 S2-only [19, 36] (dashed dark
green), and EDELWEISS low-threshold [18] (dashed orange).
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Astrophysics-independent approach

Still depends on 
particle model

Halo modifications 
alone cannot save 
the SI signal regions 
from the bounds

Spin-independent interactions ��A = A2��pµ2
�A/µ2

�p

CDMS-Si event rate 
is similar to annually 
modulated rates
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Notice that the CDMS-Si 
events lie “below” the 
CoGeNT/DAMA 
modulation amplitudes

Isospin-violating dark matter 

Dark matter coupled 
differently to protons 
and neutrons may 
have a (tiny) chance
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Astrophysics-independent approach
Anomalous magnetic moment dark matter

Still depends on 
particle model

Halo modifications 
alone cannot save the 
MDM signal regions 
from the Xe bounds

CDMS-Si event rate 
is similar to annually 
modulated rates

Del Nobile, Gelmini, Gondolo, Huh 2013-14
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Conclusions

• The astrophysical evidence for cold dark matter is 
overwhelming. From dwarf galaxies to spirals and ellipticals, to 
clusters of galaxies and the overall geometry of the universe.

• The evidence for particle dark matter is yet unsatisfactory. 
Indirect signals in X-rays, γ-rays, and positrons are arguable. 
Signals and bounds in direct detection are in apparent 
contradiction. 

• More work is necessary to figure out the nature of cold dark 
matter.
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