UNIVERSITÄT Bern

**AEC** ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSIC



#### XENON

Marc Schumann AEC, Universität Bern

Latest Results in Dark Matter Searches, Stockholm, May 12, 2014

marc.schumann@lhep.unibe.ch
www.lhep.unibe.ch/darkmatter

# Dark Matter: (indirect) Evidence



Particle Dark Matter Candidates:

- WIMP → "WIMP miracle"
- Axion
- SuperWIMPs
- sterile neutrinos
- WIMPless dark matter
  - Gravitino



#### **Direct WIMP Search**



#### **Direct WIMP Search**

Summary: Tiny Rates R < 0.01 evt/kg/day E<sub>R</sub> < 100 keV

#### How to build a WIMP detector?

- large total mass, high A ✓
- low energy threshold
- ultra low background
- good background discrimination

Xenon + high mass number, high Z
+ no long-lived Xe isotopes
o fair background discrimination
+ "easy cryogenics"
+ scalability to larger detectors
- only modest E resolution





#### **Dual Phase TPC**

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

#### TPC = time projection chamber



#### **Dual Phase TPC**







Figures from XENON100

Marc Schumann (AEC Bern) - XENON

## Laboratori Nazionali del Gran Sasso 🔽



#### XENON100

#### XENON1T









#### XENON100





Last science run: PRL 109, 181301 (2012)

7636 kg x d raw exposure 2324 kg x d acpt. corrected (100 GeV/c<sup>2</sup>)

- 2 events observed
- → compatible with background expectation of  $(1.0\pm0.2)$  evt
- → best WIMP limit over large mass range (at time of publication)

Marc Schumann (AEC Bern) - XENON

### **The current WIMP Landscape**



# **Spin-dependent Sensitivity**



same 225d of data analyzed in terms of spin-dependent axial-vector interactions of WIMPs with <sup>129</sup>Xe and <sup>131</sup>Xe





Phys. Rev. Lett. 111, 021301 (2013)

Marc Schumann (AEC Bern) – XENON

# **XENON100: ER Backgrounds**



XENON100: 80% of background is from ERs

## **Nuclear Recoil Energy Scale**

- WIMPs interact with Xe nucleus
  - → nuclear recoil (*nr*) scintillation ( $\beta$  and  $\gamma$ 's produce electronic recoils)
- absolute measurement of *nr* scintillation yield is difficult
  - → measure relative to <sup>57</sup>Co (122keV)
- relative scintillation efficiency Leff:

 $\mathcal{L}_{\text{eff}}(E_{\text{nr}}) = \frac{\text{LY}(E_{\text{nr}})}{\text{LY}(E_{\text{ee}} = 122 \text{ keV})}$ 

measurement principle:







## **XENON100:** Low *E* response



#### PRD 88, 012006 (2013)



18

## **XENON100: Low E response**



Marc Schumann (AEC Bern) – XENON





### **Modulation in XENON100?**



Matter Project

## LXe Response to electronic recoils



16.25°

0 V/cm

1000

500

Scintillation Signal [PE]

150

Counts 100



#### PRD 87, 115015 (2013)



## **Modulation in XENON100?**



Matter Project

#### **Solar Axions and Dark Matter ALPS**



Marc Schumann (AEC Bern) – XENON

Dark Matter Project

#### **Solar Axions and Dark Matter ALPS**



Marc Schumann (AEC Bern) – XENON

Dark Matter Project

## **The XENON Future**





# XENON1T in Hall B @ LNGS





# XENON1T in Hall B @ LNGS





#### XENON1T





#### dual-phase LXe TPC

- total mass ~3 t
- active mass ~2.2 t
- fiducial mass: ~1 t

#### TPC made from OFHC and PTFE

#### 248 photomultipliers

- Hamamatsu R11410-21
- low background
- high QE (36% @ 178nm)
- extensive testing in cryogenic environments *JINST 8, P04026 (2013)*



Low-background stainless steel cryostats

# **XENON1T Background**





Matter Project

# **XENONNT in Hall B @ LNGS**





## **The XENON Future**



