Interpreting dark matter searches from the LHC

www.ippp.dur.ac.uk

Christopher M^cCabe

with Oliver Buchmueller, Matthew Dolan and Sarah Alam Malik

JHEP 1401 025 (arXiv:1308.6799) and work in progress

Latest results in dark matter searches, Stockholm – 12th May 2014

Searches for (WIMP) dark matter

Indirect detection

Collider production

• Direct detection

Christopher M^cCabe IPPP - Durham University

Interpreting searches

- We don't know the correct theory of particle dark matter
- Search results should be presented within a general framework that allows a large number of theories to be constrained
- Interpret results from
 - 1. Direct detection searches
 - 2. LHC monojet searches

Direct detection searches

- Limits are quoted in terms of σ_n : the 'WIMP-nucleon cross section'
 - Is this limit applicable to all theories...? No...

Direct detection searches: assumptions

- Many assumptions made: Spin-independent / spin-dependent /...
- Also assumes a 'contact interaction'

- Contact interaction if $m_{Z'} \gg Q = \sqrt{2m_n E_{\rm R}} \approx 50 \; {\rm MeV}$
- Lots of theories satisfy this constraint
 - A useful way to parameterize the results

Dark matter searches at LHC

- Monojet search: look for a hard jet and missing energy
- Make use of effective field theory (EFT) to place a limit on the 'contact interaction scale' Λ .

Effective field theory (EFT)

- Parameter of interest is Λ
- Λ related to parameters in the full theory: $\Lambda \equiv \frac{m_{Z'}}{\sqrt{g_q g_{\chi}}}$

This is not a new idea

- Fermi could describe β -decay without knowing the W^{\pm} mass or the gauge couplings:

$$\mathcal{L} = \frac{G_{\rm F}}{\sqrt{2}} \left[\bar{\psi} \gamma^{\mu} (1 - \gamma^5) \psi \right] \left[\bar{\psi} \gamma_{\mu} (1 - \gamma^5) \psi \right] \text{ where } G_{\rm F} \propto \frac{g_{\rm weak}^2}{M_W^2}$$

- It is a very useful idea we don't need to know all details of the full theory
- Can (in principle) constrain many different theories:

Name	Operator	Coefficient	
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3	
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3	
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3	
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3	
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$	
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i \alpha_s / 4 M_*^3$	
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$	
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	

Name	Operator	Coefficient
C1	$\chi^\dagger\chiar q q$	m_q/M_*^2
C2	$\chi^\dagger \chi \bar{q} \gamma^5 q$	im_q/M_*^2
C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_{*}^{2}$
C4	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu \gamma^5 q$	$1/M_{*}^{2}$
C5	$\chi^{\dagger}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^2$
C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$
R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$lpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i \alpha_s / 8 M_*^2$

Goodman et al:1008.1783

When is EFT valid?

• Back of the envelope estimate:

When is EFT valid?

• Better estimate: Compare a 'simplified model' with EFT result

- Assumptions:
 - 1. s-channel axial-vector mediator
 - 2. Equal coupling to all quarks
 - 3. No coupling to leptons or SM gauge bosons
- For those who like Lagrangians:

$$\mathcal{L} \supset g_{\chi} Z_{\mu}^{'} ar{\chi} \gamma^{\mu} \gamma^{5} \chi + g_{q} Z_{\mu}^{'} ar{q} \gamma^{\mu} \gamma^{5} q \quad \mathbf{vs} \quad \mathcal{L} \supset rac{1}{\Lambda^{2}} ar{\chi} \gamma^{\mu} \gamma^{5} \chi \, ar{\chi} \gamma_{\mu} \gamma^{5} \chi$$

When is EFT valid?

- Region I: EFT limit is good $m_{\rm med}\gtrsim 3~{
 m TeV}$
- Region II: EFT limit is too weak
- Region III: EFT limit is too strong $m_{\rm med} \lesssim 500~{\rm GeV}$

Region I: when EFT applies

- Mediator mass is large: $m_{
 m med}\gtrsim 3~{
 m TeV}$
- What about the couplings?

$$\sqrt{g_q g_\chi} = \frac{m_{\rm med}}{\Lambda}$$
 ...they must be large

• Compare with known couplings: $g_{\text{strong}} \approx 1.2$ $g_{\text{weak}} \approx 0.6$ $g_{\text{hypercharge}} \approx 0.4$

- Couplings of this size typical in strongly interacting theories
 - EFT limit applies to a small class of theories

Region II: EFT limit conservative

- The mediator s-channel production is resonantly enhanced
- Enhancement when $m_{\rm med}^2 \approx 4m_{\rm DM}^2 + E_{T,{\rm miss}}^2$

• Peak height scales as $\Gamma^{-1/4}$

Christopher M^cCabe IPPP - Durham University

Region III: EFT limit too strong

• Mediator mass is small:

 $m_{\rm med} \lesssim 500 \,\,{\rm GeV}$

 Events with a light mediator are much softer

- Limit on g stronger, so limit on $\Lambda \sim rac{m_{
m med}}{g^2}$ is weaker

Other problems

- Comparison with direct detection
 - Naïve application of EFT limit gives the impression that colliders give a stronger limit when $m_{\rm DM} \lesssim 1~{
 m TeV}$

Other problems

- Comparison with direct detection
 - Important to remember the dependence on $m_{
 m med}$
- Scattering cross section $\sigma_n \propto \Lambda^{-4}$

• As $m_{
m med}$ decreases, direct detection limit is stronger

Beyond EFT: simplified models

• Another way to present the results:

• Shows that searches are complementary

Beyond EFT: simplified models

• Difficulty: representing results in 4D parameter space

Best way to present the results not optimized - in progress!

Summary

- Important to interpret dark matter searches in the right framework
- Direct detection experiments constrain the 'WIMP-nucleon cross section'
 - Very useful: constrains a large number of theories
- LHC monojet searches have been interpreted in an EFT framework
 - Limited use: constrains few theories and comparison with direct detection limits is too naïve
- Need to go beyond EFT 'simplified models' capture more physics but at the expense of extra parameters