Searches for Dark Matter in CMS

Norraphat SRIMANOBHAS (Chulalongkorn U., Thailand) on behalf of the CMS Collaboration

Latest Results in Dark Matter Searches, 12 - 14 May 2014 Nordic Institute for Theoretical Physics, Sweden

Compact Muon Solenoid (CMS)

	Dirac fermion, 1008.1783	3				
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3				
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	(Majora	na fermion,	1005.1286	
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	M1	00	$m_a/2M^3$	
D4	$\bar{\chi}\gamma^{2}\chi\bar{q}\gamma^{2}q$	m_q/M_*^3	M2	00	$im_{-}/2M^{3}$	
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	1/M ² *	M2	44	im /2M3	
D6	$\bar{\chi}\gamma^{\mu}\gamma^{\sigma}\chi\bar{q}\gamma_{\mu}q$	1/M ²	NI.5	44	unq/2W.	
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{3}q$	$1/M_{*}^{2}$	M4	99	$m_q/2M_s$	
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	M5	99	$1/2M_{*}^{2}$	
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{*}^{2}$	M6	99	$1/2M^{2}$	
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_{*}^{2}	M7	GG	$\alpha_{\rm c}/8M^3$	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	M8	CC	icy /8M3	
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*$	WIG		ites/ on .	
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*$	M9	GG	$\alpha_s/8M_*$	
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	M10	GĞ	$i\alpha_s/8M_*^3$)
\square	Real scalar, 1008.1783		Co	omplex scala	r, 1008.1783	
R1	$\chi^2 \bar{q} q$	$m_a/2M_*^2$	CI	vt vāc		- 114
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_a/2M_*^2$	CI	X X99		mq/ WI
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$	CZ	XXqY	1	im _q /M
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$	C3	X' O µXqY	9	1/M.
			C4	X' ∂ _µ XqY ^µ	$\gamma^{\prime}q$	$1/M_{*}^{2}$
			C5	$\chi^{T}\chi G_{\mu\nu}G$	μν	$\alpha_s/4M$
			C6	$\chi^{\dagger}\chi G_{\mu\nu}\tilde{G}$	μν	$i\alpha_{o}/4M$

X + Missing Transverse Energy

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

Event selection

- MET > 400 GeV
- One energetic jet, $p_T > 110$ GeV, $|\eta| < 2.4$, and allow an additional jet ($p_T > 30$ GeV)
- Veto event if $j_3 p_T > 30 \text{ GeV}$
- Veto event if DeltaPhi(j1,j2)>2.5
- > Veto event if they contain isolated electrons, isolated muons, or hadronic tau with $p_T > 10$ GeV (20 GeV for tau)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEX012048

Monotop (top decays hadronically)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G12022

Event selection

- For the period of the term of term of
- One jet is tagged b-jet
- Veto events with $j_4 p_T > 35$ GeV or isolated $e(\mu) p_T > 20(10)$ GeV
- ▶ M(j₁j₂j₃) < 250 GeV
- MET> 350 GeV

Monotop (top decays hadronically)

Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G12022

- Excellent agreement with data
- DM coupling set to 0.1 for q=u/d [arXiv:1106.199]
- Exclude scalar (vector) DM masses below 327 (655) GeV

# of b tags	Zero CSVm b tag	One CSVm b tag
$t\bar{t}$	$6 \pm 0 \pm 5$	$12 \pm 0 \pm 12$
W+jets	$18 \pm 9 \pm 7$	$3\pm1\pm2$
Z+jets	$103 \pm 33 \pm 9$	$11 \pm 10 \pm 1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV	$5\pm0\pm0$	$0\pm0\pm0$
QCD	6	1
sum	140 ± 36	28 ± 16
Data	143	30

Monolepton

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO13004

- Dark Matter production with a W
- W recoiling against pair-produced DM
- Vector- and axial-vector couplings considered
- Interference effects parameterized by ξ (W+)

Event selection

- ▶ Muon (Electron) P_T > 45 (100) GeV
- ▶ 0.4 < P_T/MET < 1.5
- DeltaPhi(lepton,MET) > 0.8*Pi

Monolepton

Monophoton

Event selection

EXO-12-047

- MET > 140 GeV
- > One energetic photon, p_T > 145 GeV, $|\eta|$ < 1.4442
- > Veto on jets, leptons, and pixel seeds (hit pattern in the pixel detector)
- DeltaPhi(photon,MET) > 2
- MinMET > 120 GeV, Prob(X²) (Reduce fake MET events)

Monophoton

Results

EXO-12-047

Top quark pair

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G13004

Event selection

- Select pairs of top quarks in the di-lepton channels
- Exactly two identified leptons, and at least two jets are selected.
- ▶ M(II) > 20 GeV and |M(II) 91 GeV| > 15 GeV
- MET > 320 GeV
- $HT(j_1, j_2) < 400 \text{ GeV}, HT(l_1, l_2) > 120 \text{ GeV}, DeltaPhi(l_1, l_2) < 2$

Top quark pair

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G13004

Background Source	Yield
tī	$0.87 \pm 0.18 \pm 0.27$
Single top	$0.48 \pm 0.46 \pm 0.09$
Di-boson	$0.32 \pm 0.09 \pm 0.05$
Drell-Yan	$0.19 \pm 0.14 \pm 0.03$
One Mis-ID lepton	$0.02 \pm 0.07 \pm 0.02$
Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$
Total Bkg	$1.89 \pm 0.53 \pm 0.39$
Data	1
Signal	$1.88 \pm 0.11 \pm 0.07$

M_{χ} (GeV)	Signal efficiency (%)	$\sigma_{\rm exp}^{\rm lim}$	$\sigma_{\rm obs}^{\rm lim}$
1	$1.28 \pm 0.09 \pm 0.04$	0.35	0.31
10	$1.45 \pm 0.10 \pm 0.05$	0.31	0.27
50	$1.65 \pm 0.11 \pm 0.05$	0.27	0.24
100	$1.96 \pm 0.12 \pm 0.06$	0.23	0.20
200	$2.31 \pm 0.12 \pm 0.05$	0.19	0.17
600	$3.45 \pm 0.17 \pm 0.09$	0.13	0.11
1000	$4.35 \pm 0.24 \pm 0.10$	0.10	0.09

arXiv:1404.1344v2

- DM particles have the direct couplings to the SM Higgs sector, $H \to \chi \; \chi$
- Limits on branching fraction of Higgs to "invisible" particles used for limits on DM
- Can be scalar, vector or fermionic couplings
- \blacktriangleright Limits only up to DM mass $M_{\chi} < M_{H}/2$

Event selection: VBF+H(inv)

- > Veto events with an identified electron, or muon with $p_T > 10$ GeV.
- VBF tag jet pair, p_{T,j1}, p_{T,j2} > 50 GeV,
 |η| < 4.7, ηj1, ηj2 < 0, Δηjj > 4.2, and
 Mjj > 1100 GeV
- MET > 130 GeV
- DeltaPhi(j1,j2) < 1.0</p>
- Central jet veto (event that has an additional jet with $p_T > 30$ GeV and pseudorapidity between those of the two tag jets)

arXiv:1404.1344v2

Event selection: Z(II)+H(inv)

Two well-identified, isolated leptons of the same flavor and opposite sign with P_T > 20 GeV, M(II) is within +/- I5 GeV of Z mass
Veto event if there are two or more jets with P_T > 30 GeV
Veto event containing a bottom-quark decay identified by either the presence of a soft-muon or by the COV(1) of a soft-muon or by the cover a soft-

CSV b-tagging algorithm

MET > 120 GeV

$$\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > 2.7$$
$$|E_{\rm T}^{\rm miss} - p_{\rm T}^{\ell \ell}| / p_{\rm T}^{\ell \ell} < 0.25.$$

- insta 1005

200

0.2 0.4 0.6 0.8

BDT output

Event selection: Z(bb)+H(inv)

arXiv:1404.1344v2

10°

104

10³

10²

10

10

10-2

2

MC

CMS

s = 8 TeV, L = 18.9 fb⁻¹

Z(bb) H(inv) high p,

-0.8 -0.6 -0.4 -0.2 0

ò

Events /

Variable		Selection	
	Low $p_{\rm T}$	Intermediate p_T	High $p_{\rm T}$
E ^{miss}	100-130 GeV	130-170 GeV	>170 GeV
$p_{\rm T}^{\rm j1}$	>60 GeV	>60 GeV	>60 GeV
$p_{\mathrm{T}}^{\mathrm{j2}}$	>30 GeV	>30 GeV	>30 GeV
$p_{\rm T}^{\rm ij}$	>100 GeV	>130 GeV	>130 GeV
M _{ii}	<250 GeV	<250 GeV	<250 GeV
CSV _{max}	>0.679	>0.679	>0.679
CSV _{min}	>0.244	>0.244	>0.244
N additional jets	<2	—	—
N leptons	=0	=0	=0
$\Delta \phi(\hat{Z}, H)$	>2.0 radians	>2.0 radians	>2.0 radians
$\Delta \phi(E_{\rm T}^{\rm miss}, j)$	>0.7 radians	>0.7 radians	>0.5 radians
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}_{\rm trk})$	<0.5 radians	<0.5 radians	<0.5 radians
$E_{\rm T}^{\rm miss}$ significance	>3	not used	not used

Results (Combine)

- Assuming the SM production cross section and acceptance. mH = 125 GeV
- 95% CL observed upper (expected) limit = 0.58 (0.44)
- 90% CL observed upper (expected) limit = 0.51 (0.38)

Higgs Portal to Dark Matter

Upper limits on the spin-independent DM-nucleon cross section in Higgs-portal models, derived for mH=125GeV, and B(H→inv) < 0.51 at 90% CL, as a function of the DM mass.

Conclusion

- Presented the collider based search results for Dark Matter at the CMS
- We are trying to cover additional analysis channels, signatures, or models as possibles
- Preparing for LHC Run2 at 13 TeV
 - Triggers
 - Background estimations, and uncertainties
 - Physics models

MHT Minimization

A way to identify and reduce the fake met contribution, where you minimize the unclustered energy in the event by trying to re-distribute the energy back into the visible objects.

$$\begin{split} \mathbf{E}_{x,y} &= \mathbf{E}_{x,y}^{reco} + \sum_{i=objects} (p_{x,y}^{reco})_i - (p_{x,y}^*)_i \\ \mathbf{E}_T^2 &= \mathbf{E}_x^2 + \mathbf{E}_y^2 \\ \mathbf{\chi}^2 &= \sum_{i=objects} \left(\frac{(p_T^{reco})_i - (\hat{p}_T)_i}{(\sigma_{p_T})_i} \right)^2 + \left(\frac{\mathbf{E}_x}{\sigma_{\mathbf{E}_x}} \right)^2 + \left(\frac{\mathbf{E}_y}{\sigma_{\mathbf{E}_y}} \right)^2. \end{split}$$

If the Met is intrinsic, balancing the object momenta wouldn't be easy and will result in high χ^2 .

The variables that give good discrimination are the $Prob(\chi^2)$ and the recalculated minimized Met.

Table 6: Input variables to the $Z(b\overline{b})H(inv)$ BDT.

Variable	
$p_{\rm T}^{\rm j1}, p_{\rm T}^{\rm j2}$	Transverse momentum of each Z boson daughter
M _{ij}	Dijet invariant mass
$p_{\mathrm{T}}^{\mathrm{jj}}$	Dijet transverse momentum
E ^{miss}	Missing transverse energy
Naj	Number of additional jets ($p_T > 25 \text{ GeV}$ and $ \eta < 4.5$)
CSVmax	Value of CSV for the Z boson daughter with largest CSV value
CSV _{min}	Value of CSV for the Z boson daughter with second largest CSV value
$\Delta \phi(Z,H)$	Azimuthal angle between E_T^{miss} and dijet
$\Delta \eta_{ii}$	Difference in η between Z daughters
ΔR_{ii}	Distance in η - ϕ between Z daughters
$\Delta \theta_{\text{pull}}$	Color pull angle [62]
$\Delta \phi(E_{\rm T}^{\rm miss},j)$	Azimuthal angle between E_T^{miss} and the closest jet
CSVaj	Maximum CSV of the additional jets in an event
$\Delta R(H,aj)$	Minimum distance between an additional jet and the Z boson candidate
m _T	Transverse mass of the ZH system