Future Cosmic Ray Experiments

Kerstin Perez

Columbia University

Latest Results in DM Searches Stockholm, Sweden May 14, 2014

Introduction The Experiments: AMS and GAPS Antiprotons: Past limits and future prospects Antideuterons: A "smoking gun" signature of dark matter? Antihelium: Looking into the future The Path Forward

p, D, He Signatures of Dark Matter

p, D, He Signatures of Dark Matter

• Interactions of cosmic rays on the interstellar medium ($p_{CR} + H_{ISM}/He_{ISM}, \overline{p}_{CR} + H_{ISM}/He_{ISM}$) create "secondary" anti-p, D, He

• Secondaries produced with typically higher total energy

Coalescence and Hadronization Models

Coalescence:

 \bar{n} and $\bar{p},$ merge when relative momentum $< p_0$

To determine p₀:

- 1. Assume uncorrelated, isotropic distribution of \bar{n} and \bar{p}
- 2. MC method that accounts for correlations due to production channel or center-of-mass energy
- 3. MC method with additional Δr requirement

Then tune this to experimental data: $e^+e^- \rightarrow \overline{d}$ data from LEP

All depends on choice of hadronization model!

i.e. Pythia vs Herwig

K. Perez – Columbia U.

Choice of coalescence and hadronization model affects đ sensitivity by factors of ~3-4

Propagation in Galactic Environment:

- Constrained by B/C data = secondary / primary
- But still largest source of uncertainty on d flux!
- Will be better constrained in the future by AMS-02 measurements
- Less sensitive to halo model, but affected by boost factor, *f*, from halo sub-structure

Propagation in Galactic Environment:

- diffusion
- convection
- annihilation
- size of halo
- size of disk

- Constrained by B/C data = secondary / primary
- But still largest source of uncertainty on d flux!
- Will be better constrained in the future by AMS-02 measurements
- Less sensitive to halo model, but affected by boost factor, *f*, from halo sub-structure

Propagation in Solar Environment:

- Cosmic rays drift and lose energy in the solar magnetic field
- Particularly important for *low-energy* cosmic rays
- Solar magnetic field changes on timescales of ~11 year

Introduction The Experiments: AMS and GAPS ← Antiprotons: Past limits and future prospects Antideuterons: A "smoking gun" signature of dark matter? Antihelium: Looking into the future The Path Forward

The Experiments

The Experiments: AMS and GAPS

- AMS has been in operation on the ISS since May 2011
- Consists of TRD, TOF, tracker, permanent magnet, RICH, ECAL
- Uses primarily TRD and tracker for anti-p and anti-D detection

- GAPS proposed for initial Antarctic balloon flight late 2018
- Consists of TOF and Si(Li) targets/detectors
- Uses exotic atom capture and decay to detect anti-p and anti-D

GAPS Detection Concept

- Time-of-flight system measures velocity
- Loses energy in layers of semiconducting Silicon targets/detectors
- Stops, forming exotic excited atom
- Atom de-excites, emitting x-rays
- Remaining nucleus annihilates, emitting pions and protons

T. Aramaki et al., http://arxiv.org/abs/1303.3871

GAPS Detection Concept

- Time-of-flight system measures velocity
- Loses energy in layers of semiconducting <u>Silicon targets/detectors</u>
- Stops, forming exotic excited atom
- Atom de-excites, emitting x-rays
- Remaining nucleus annihilates, emitting pions and protons

T. Aramaki et al., http://arxiv.org/abs/1303.3871

GAPS and Antiprotons

Combination of time-of-flight + depth-sensing, X-ray, and π detection can yield antiproton rejection >10⁵

GAPS Detector Design

Plastic scintillator TOF

- high-speed trigger and veto
- 160–180 cm long, 0.5 cm thick
- read out both ends
- ~500 ps timing resolution

- X-ray identification, dE/dx, stopping depth, and shower particle multiplicity
- 2.5 mm thick, 4" (or 2") diameter
- 3 keV resolution for X-rays

Introduction The Experiments: AMS and GAPS Antiprotons: Past limits and future prospects ← Antideuterons: A "smoking gun" signature of dark matter? Antihelium: Looking into the future The Path Forward

Antiprotons

Antiproton constraints

• Antiprotons thus far used to bound particle dark matter properties - PAMELA, BESS

• Thermal cross section excluded for $m_{DM} < 90$ (50) GeV for annihilation to light (heavy) quarks

Very sensitive, *particulary at low energy/mass*, to variations of galactic and solar transport models
For MIN case, exclusion decreased to m_{DM} < 4 GeV for light quarks, unconstrained for heavy quarks

• Variation of galactic propagation can vary bounds from few GeV up to 150 GeV

 Also poorest statistics for low energy bins

GAPS and antiprotons

- Bounds on light dark matter especially sensitive to low energy spectrum, where solar modulation most relevant
- GAPS will record ~1500 antiprotons per 35-day flight, with E < 0.25 GeV/n
- Can discover/constrain DM models in new parameter space
- Also probe cosmic-ray propagation and solar modulation

GAPS and antiprotons

GAPS able to detect realistic DM models that are missed by antiproton searches at higher energies

**Also LZP, primordial black holes, etc...

AMS and antiprotons

Introduction The Experiments: AMS and GAPS Antiprotons: Past limits and future prospects Antideuterons: A "smoking gun" signature of dark matter? ← Antihelium: Looking into the future The Path Forward

Antideuterons

GAPS, AMS, and Antideuterons

Sensitive to Viable Light and Heavy DM

• Sensitive to low-mass DM models, as invoked to explain CDMS-II Si, COGENT, Fermi observations

• Sensitive to heavy DM models, as invoked to explain PAMELA, AMS observations of positron excess

Rare Event Search

- Analogy to direct search experiments:
 - handful of signal events
 - instrument background dominated
 - long integration times
 - multiple technologies

Neutralino fluxes from Cui, Mason, and Randall, J. High Energy Phys. 11, 017 (2010).

Small expected signal flux and multiple uncertainties highlight need for many experiments, complementary sensitivities

Introduction The Experiments: AMS and GAPS Antiprotons: Past limits and future prospects Antideuterons: A "smoking gun" signature of dark matter? Antihelium: Looking into the future < The Path Forward

Antihelium

Coalescence and Hadronization Models

Coalescense:

 \bar{n} and \bar{p} , merge when relative momentum $< p_0$

To determine p₀:

- 1. Assume uncorrelated, isotropic distribution of \bar{n} and \bar{p}
- MC method that accounts for correlations due to production channel or center-of-mass energy
- 3. MC method with additional Δr requirement

Then tune this to experimental data: $e^+e^- \rightarrow \overline{d}$ data from LEP

All depends on choice of hadronization model!

essential for anti-He predictions

Scales as p₀^{3(A-1)}, so large uncertainty for anti-He

Need Future Experiments for He


```
Introduction

The Experiments: AMS and GAPS

Antiprotons: Past limits and future prospects

Antideuterons: A "smoking gun" signature of dark matter?

Antihelium: Looking into the future

The Path Forward <del><</del>
```

The Path Forward

pGAPS: a Prototype GAPS Flight

Homemade Si(Li) Detector Performance

GAPS can use a cheap-and-dirty Si(Li) fabrication technique because of looser performance requirements

Conclusions

- Antiprotons have been a valuable tool in constraining DM models. In the next decade, AMS and GAPS can extend this reach to higher/lower DM masses
- Antideuterons are a very attractive, ultra-low background search channel, which has currently been *unexplored*
- Antihelium could provide motivation for next-generation experiments

Backup

GAPS and antiprotons

Background sources of \overline{p} , \overline{D} , \overline{He}

- Interactions of cosmic rays on the interstellar medium create "secondary" anti-p, D, He
- Differences in spectral shape allow discrimination

$$p_{CR} + H_{ISM}$$

$$p_{CR} + He_{ISM}$$

$$\overline{p}_{CR} + H_{ISM}$$

$$\overline{p}_{CR} + H_{ISM}$$

$$\overline{p}_{CR} + He_{ISM}$$

$$\overline{p}_{CR} + He_{ISM}$$

information on anit-He production only from p-nucleus or heavy-ion collisions \rightarrow very different kinematics than DM annihilation at rest \rightarrow large uncertainties on coalescence momentum

Antideuteron Model Sensitivity

* Donato, F, Fornengo, N. and Maurin, D., "Antideuteron fluxes from dark matter annihilation in diffusion models," Phys. Rev. D 78, 043506, 2008.

* Baer, H. and Profumo, S., "Low energy antideuterons: shedding light on dark matter," JCAP 12, 008, 2005.

Sensitivity to Heavy Dark Matter

* Bräuninger, C.B. and Cirelli, M., "Anti-deuterons from heavy Dark Matter," Phys. Lett. B 678, 20-31, 2009.

Coalescence Model

Coalescence is the process by which \bar{n} and \bar{p} form a \bar{d}

$$\int d^{3} \vec{\Delta} C(\vec{\Delta}) \equiv V_{coal} = \frac{4\pi p_{0}^{3}}{3} \quad \boldsymbol{\leftarrow}$$

p₀ defined by the volume of phasespace in which n
 and p
 will merge

To determine p₀:

- 1. Assume uncorrelated, isotropic distribution of \bar{n} and \bar{p} , merge when relative momentum < p_0
- 2. MC method that accounts for correlations due to production channel or center-of-mass energy
- 3. MC method with additional Δr requirement

Then tune this to experimental data: $e^+e^- \rightarrow \overline{d}$ data from LEP

p₀ [GeV]

Hadronization Model

Propagation in Galactic Environment:

The pGAPS Flight

pGAPS Cooling Results

Cooling performance confirms thermal model

allows optimal Si(Li) operation • Oscillating heat pipe (OHP) system also validated with thermal simulation

10.5

pGAPS Detector Results

Homemade Si(Li) Detectors

GAPS will need ~1300 Si detectors!

K. Perez – Columbia U.

"p-type" doped wafer

- free positive hole
- fixed negative ion

"p-type" doped wafer

- free positive hole
- fixed negative ion

Li "n-type" layer

- free electron
- mobile positive ion

The pGAPS Flight

