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Unitarity methods for scattering in 2d
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Calculating scattering amplitudes efficiently

Remarkable efficiency of unitarity-based methods [Bern, Dixon, Dunbar, Kosower, 1994]
for calculation of amplitudes in various gft's and various dimensions
(non-abelian gauge theories, Chern-Simons theories, supergravity).

Quantifying the one-loop QCD challenge

pp 2 W+njets (amplitudes with most gluons)

# of jets # 1-loop Feynman diagrams
"

Current limit with
Feynman diagrams

o

110

-
.
.

| Oi':'-' 16.648
0 256.265 Current limit with
on-shell methods

[from a L. Dixon talk]
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Calculating scattering amplitudes efficiently

Remarkable efficiency of unitarity-based methods [Bern, Dixon, Dunbar, Kosower, 1994]
for calculation of amplitudes in various gft's and various dimensions
(non-abelian gauge theories, Chern-Simons theories, supergravity).

Goal: apply to evaluation of amplitudes
of two-dimensional cases of interest.
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String worldsheet scattering

@ Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

flat space AdSsxS° with RR fluxe
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String worldsheet scattering

@ Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

4 AdS5 x §°

® Because of RR-background need a GS formulation

S embedded in
N 3

AL _ . . loop counting 27T
S = £ oV —hh®Gryn(X)0, XM, XN + fermions parameter 9 = =~
41 VA
® Work on a gauge-fixed sigma model (uniform light-cone gauge) [Arutyunov, Frolov,

Plefka, Zamaklar 2006]
stzfdanS:—/dap_EE—J
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String worldsheet scattering

® Worldsheet amplitudes (N — oo, free strings), scattering of the (2d) lagrangean excitations.
Non-trivial interactions due to highly non trivial background.

4 AdS; x S

® Because of RR-background need a GS formulation

VA

( embedded in
) 3

loop counting 2T

S S 4—ﬂ_ | (12(7 \Y% —h }l.”hG;\/N(/Y)f)(,XMf)bX'N -T- fermions parameter § — ﬁ
@ Work on a gauge-fixed sigma model (uniform light-cone gauge) [Arutyunov, Frolov,
Plefka, Zamaklar 2006]
HwS:/dJHwS:—/dap_EE—J
@ Decompactification limit % — oo and large tension expansion g — oo

=gy

» sensible definition of a perturbative worldsheet S-matrix

S+

Valentina Forini, Unitarity methods for scattering in 2d



AdS/CFT (internal) S-matrix I

S-matrix aka “spin chain S-matrix”

[Klose McLoughlin Roiban Zarembo 2007]

@ This S-matrix is the perturbative expansion of the exact AdSs/CFT4
the rhs of asymptotic Bethe egs

[Staudacher 2004]

[Beisert Staudacher 2005]
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Ty; Ty

Describe the exact asymptotic spectrum of anomalous dimensions of local
composite operators and energies of their dual string configurations.
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AdS/CFT (internal) S-matrix Il

Assuming integrability (consistency with Yang-Baxter equation) and using
global symmetries one can:

@ derive exact dispersion relation ¢ = \/ 1 + h(\)2sin? g [Beisert 2006]
@ derive two-particle S-matrix entering the Bethe equations [Staudacher 2004]
[Beisert Staudacher 2005]
[Beisert 2005]
S12 = S S12
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AdS/CFT (internal) S-matrix Il

Assuming integrability (consistency with Yang-Baxter equation) and using
global symmetries one can:

A 9D .
@ derive exact dispersion relation € = \/ 1+ 3 sin” 5 [Beisert 2006]
@ derive two-particle S-matrix entering the Bethe equations [Staudacher 2004]
[Beisert Staudacher 2005]
[Beisert 2005]

512 — SO SlZ
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AdS/CFT (internal) S-matrix |

Assuming integrability (consistency with Yang-Baxter equation) and using
global symmetries one can:

A .
@ derive exact dispersion relation € = \/ 1+ ) sin” g [Beisert 2006]
@ derive two-particle S-matrix entering the Bethe equations [Staudacher 2004]
[Beisert Staudacher 2005]
[Beisert 2005]
S12 = SY S12
up to one (/more) scalar factor(/s), fixed with additional [Janik 2005]

constraints like “crossing symmetry” and semiclassical string data.

® The scalar phase is the hardest thing to compute, crucial for the spectrum.
Particularly in some models relevant in AdS3/CFT2 where solutions to
crossing-like equations are difficult to determine.

\ Ben Hoare talk later
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® Provide 2d scattering perturbation theory with efficient tools.

@ Extract information about the overall factors of scattering matrix.
@ Provide tests of quantum integrability for certain string backgrounds.

@ Methodological: techniques never really applied in two dimensions.

Initiate the use of unitarity-based methods for perturbative S-matrix
in massive two-dimensional field theories.

Construct one-loop 2 — 2 scattering amplitude with standard unitarity

”

directly from the corresponding on-shell tree-level amplitudes.
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Unitarity cuts method

® Consequence of unitarity of the S-matrix (optical theorem).

s 2Im(T) =TT7

unitarity
ST =671

S=1+4+:1T

Inserting a complete set of states  2Im ( ) =2/ < )

- Relates a certain loop amplitude to a lower order one.
- Imaginary part of the amplitude contains the branch-cut information.

- Cutting (Cutkosky) rules ex. p oo
— > 2mid(p? — m?)

® Unitarity cuts method: revert the order, find n-loop amplitude fusing lower order ones

- Only the singular part can be reconstructed (logs or polilogs.)
- Cut-constructibility of a theory always to be verified.

(Special known case in 4d: massless susy gauge theories are 1-loop cut-constructibles).
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Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

-

described via the four-point amplitude

(BT (p3) P9 (pa) |S| P s (p1) P (p2)) = (21)26'D (p1 + po — p3 — p4) Afﬁv(m,pmm,m)

For d=2 and in the single mass case, scattering 2 — 2 is simple.
Particles either preserve or exchange their momenta

82 (py + po — p3 — ps) = J(p1. p2) ((5(1)1 — P3)0(Py — Py) + 0(Py — Py)0(Py — 173))

The Jacobian J(p1,p2) = 1/(0¢€p, /0p1 — O¢€p, /Op2) depends on dispersion relation.




Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

-

described via the four-point amplitude
(@7 (p3) D2 (pa) S| @ar (1)@ N (p2)) = (2m)26D (p1 + p2 — p3 — pa) Ay fa (P1, D2, D3, Pa)

For d=2 and in the single mass case, scattering 2 — 2 is simple.
Particles either preserve or exchange their momenta

0 (p1 +p2 — ps — pa) = J(p1, p2) (0(Py — P3)d(Py — P4) + 3(Py — P4)d(Py — Ps3))
The Jacobian J(p1,p2) = 1/(0¢€p, /0p1 — O¢€p, /Op2) depends on dispersion relation.

S-matrix element defined by

sP@

J(p1,
MN (Pl ; p2) (p1 p2) APQ

46162 MN(p17p27p17p2)

Dispersion relation for asymptotic states (equal masses =1): e? =1+ p?
Fix ordering of incoming states P1 > P2.



Scattering in d=2: unitarity cuts (1)

One-loop result from unitarity techniques: contributions from three cut-diagrams

s-channel t-channel u-channel

M P

Example: s-cut contribution. Glue tree-amplitudes.

AV T (1, P2, D3, Pa)s—cut = 1/ d’ly / d?ly imdt (17 — 1) imdt (15— 1)
MN AL B2 157 2] (2m)2 ) (2m)2 2

X .A(O) ]\Rjgj\f (p1,p2, l1, lz)A(O) gg(l% l17p37p4)




Scattering in d=2: unitarity cuts (2)

D2 .S D3
® Use 2-momentum conservation at the first vertex

- 1 [ d*ly . .
A(l)]\}}cjg\f(plap27p37p4)|s—cut = 5/ (ZW;Q Z7T5+(l12 —1) Z7T5+((11 — D1 —P2)2 - 1)

Xj(o)ﬁSN(p17p27 lly _ll +p1 _|_p2> X(O)gg(_ll +p1 —|‘an llvp37p4)

@ Use the zeroes of 6 - functions in the A loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral (like f(z) d(z) = f(0) d(x))
1

21

@ Restore loop momentum off-shell imd* (I —1) —



Scattering in d=2: unitarity cuts (2)

D2 S D3

® Use 2-momentum conservation at the first vertex

- 1 [ d*ly . .
A(l)]\}}cjg\f(plap27p37p4)|s—cut = 5/ (ZW;Q Z7T5+(l12 —1) Z7T5+((11 — D1 —P2)2 - 1)

Xj(o)ﬁSN(p17p27 lly _ll +p1 _|_p2> X(O)gg(_ll +p1 —|‘an llvp37p4)

@ Use the zeroes of 6 - functions in the A loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral (like f(z) d(z) = f(0) d(x))
412 1
@ Restore loop momentum off-shell imd ™ (I —1) — PR
2 _

Two-particle cuts in d=2 at one loop are maximal cuts.

Expect same as quadrupole cuts in d=4:  A;°F = (A7) I, PN |




4-points amplitude at one-loop

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.

A simple sum over discrete solutions of the on-shell conditions

I(p1 + p2)

T(1)PQ
A 2

MN(p17p27p37p4) —

~ T1(0) P
[A(O)]% (p1, P2, P1, 2)AD L2 (pa, p1, ps3, pa)

7 1(0)P
-+ A(O)ﬁ%\[(plap27p27p1)A(O)S}Cg <p17p27p37p4)

+ I(pl T pS)A(O)‘js\’pr(plap37p17pS)JZ((O)gjcgf(plap27p37p4)

T [(pl T p4)AV(O)‘]%4QR(p17p4aplap4)~’z(0)gﬁ(plvp27p47p3)

weighted by scalar “bubble” integrals

d?q 1
I(p) = 2 7.2 : 2 '
(27)? (¢> — 1 +i€)((¢ — p)? — 1 + i)
Inherently finite formula.

One of initial motivation of our work: ordinary Feynman diagrammatics was problematic
(divergencies did not cancel). Recently clarified in [Roiban, Sundin, Tseytlin, Wulff 14]
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Final formula for the S-matrix

Final formula for the S-matrix (choose p3 = p1, pa = p2)

~

1
g(1)PQ [S(O)RS 3(0)PQ 7
v (D1,D2) = ey p1 — €1 2) (p1,p2)S™ 13 (p1,p2)I(p1 + p2)

+8O 3 (p1,p1) SO §R (p1, p2)1(0)

+S5O 8 (01, p2) SO LR (01, p2) I (p1 — p2) |

where S(O)(plapz) — 4(62 pP1 — €1 p2)5<0) (plapz)

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

1 arsinh(e — €
Is=1(p1+p2) = — , (2P1 — €1 P2)
€2 P1 — €1 P2 41 (62 P1 — €1 P2)
1
I, =1(0) = —
¢ = 1(0) ATri
. h .

I — I(pl p2) — arsin (62 pl 61 p2)

4 (62 P1 — €1 P2)

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.
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Final formula for the S-matrix

[M] =0 bosons

Final formula for the S-matrix (choose ps = p1, p4 = p2) (M) =1 fermi
= ermions

1

5(1) PQ SORS &(0)PQ 7
n(P1,p2) = FT—— N (P1,p2)S" R (P1,p2)I(p1 + p2)
+(_1)[P][S]+[ 1[S] S(O)SP - (p1, pl)gm)gg(pl’pz)l(o)

_|_<_1)[P][R]+[Q][S]+[R][S]+[ ][Q]S(O)SQ (plaPZ)S(O)SN(pl p2)I(p1 —pz)}
where S(O)(plapz) = 4(62 pP1 — €1 p2)5<0) (plapz)

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

1 arsinh(e — €
Is=1(p1+p2) = — , (2P1 — €1 P2)
€2 P1 — €1 P2 41 (62 P1 — €1 P2)
1
I, =1(0) = —
¢ = 1(0) ATri
. h .

Iu — I(pl _p2) — arsin (62 pl 61 p2)

4 (62 P1 — €1 P2)

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.

Valentina Forini, Unitarity methods for scattering in 2d



® The t-channel cut is special.

- Using first 6(p1 — P3)d(pP2 — Pa)
makes it ill-defined and requires a prescription:
use delta-function only at the end of the calculation

- Asymmetrical wrt choice of the vertex
used to solve momenta:
leads to a consistency condition

S(O)%PR(plypl)g(o)gﬁ(plapz) — S(O)ﬂSR(pl,pz)gm)gﬁ(p%m)

® We are NOT including contributions from tadpoles (no physical cuts)

@® Ainherently finite result says nothing about UV-finiteness or renormalizability.

Might be missing rational terms following from regularization procedure.

Cut-constructibility to be always checked



Relativistic models

® Bosonic models:

¥ generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)
plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

The method works up to a finite shift in the coupling.

@ Supersymmetric generalizations (" Pohlmeyer reductions” of string theories):
% N = 1,2 supersymmetric sine-Gordon

The method reproduces the full resulit.
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Relativistic models

® Bosonic models:

¥ generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)
plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

The method works up to a finite shift in the coupling.

@ Supersymmetric generalizations (" Pohlmeyer reductions” of string theories):
% N = 1,2 supersymmetric sine-Gordon

The method reproduces the full resulit.

In two cases (complex sine-Gordon and Pohlmeyer-reduced AdS3xS? theory)
cut-constructibility is highly non trivial!

Theory only integrable at classical level. Quantum counterterms restoring
various properties of integrability (e.g. Yang-Baxter equation).

It is this “quantum integrable” result that the unitarity method gives.
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AdS/CFT S-matrix: exact and perturbative structure

In the asymptotic case, matrix structure of the exact S-matrix is uniquely fixed
by a (centrally extended) PSU(2|2)? symmetry algebra.

From symmetries and integrability follows a group factorization

( Aégég + 35355
. ) D665 + E63,0
S = e §PSUQI2) g GPSU(22) GCD _ ) e o0 Feose®
Gégdg Hdg‘fég
L&Y6E K068

d

Each factor has manifest SU(2) x SU(2) invariance \



AdS/CFT S-matrix: exact and perturbative structure

In the asymptotic case, matrix structure of the exact S-matrix is uniquely fixed
by a (centrally extended) PSU(2|2)? symmetry algebra.

From symmetries and integrability follows a group factorization
( A5§6,§l + B(sgag
D665 + E63,0)

§ = et? GPSUR22) g GPSU(2[2) ggg = Cegpe?”®  Feqped
Gdgég H&ffdg
d d Sc
Each factor has rhanifest SU(2) x SU(2) Ivariance \ L0g0p K0,,0;
v
Logarithms Matrix structure,

rational dependence
on momenta

A perturbative check should recover the tensor structure, group factorization
and exponentiation of the logarithms.



Perturbative structure of worldsheet S-matrix

Expansion of symmetry-determined and phase parts (6 absorbed in 7))

S’ — 14 Z g—nT(n—l) 0 — Z g—ne(n—l)
n=1

n=1

requires one-loop logarithms to contribute only to the diagonal terms

S=1+-TO 4 — (70 4 g1 1)
g g

Goal: compute one loop worldsheet S-matrix
“bootstrapping” it from tree level.



String worldsheet S-matrix

Superstring action

%

o = e (l“(f V—hh®GynN (X)0, X Mo, XN + fermions
T
® Green-Schwarz formulation for fermions 0q = gt E#AI“ A
quadratic part Lr =i(\/— jg”b() %P ”) 0" 0, Dy 97

1 1
Daﬁl = (da + Ii)a.l‘“;d”ABrAB> 6! + 590F012346”9"

@ Use an interpolating lightcone -gauge [Arutyunov Frolov Zamaklar 06]

XtT=(0+a)t+ap =7+ao |
/ a=1/2 light-cone gauge
AdSs A/35 a=0 temporal gauge
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Gauge fixing

[Klose McLoughlin Roiban Zarembo 06]

Bosonic lagrangean to quartic order in the fields X = (Y, Z)

L= (0X) =5 X* 4 1 22,2 — 1V @Y + ¢ (V2= 22) (X2 4 X?)

Lorentz invariance (quadratic part) broken by interactions.

Massive states with relativistic dispersion relation ¢ = /1 + p?

A / O
€ = \/ 1 + = sin? D 0“60“

2 2 \009 ©

Bosonic part invariant under SO(4) x SO(4).
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Worldsheet fields

@ Worldsheet fields (embedding coordinates in AdSsxS>)

T, &, Y™, Z™, fermions
can be represented as bispinors SO(4) ~ (SU(2) x SU(2))/Zs
Yoo = (Um)aa Ym’ Laa = (O-/L)Oééz As a,a,oc,=1,2

Bosons and fermions form bi-fundamental representation of PSU(2(2);, x PSU(2|2) g

@ Formal definition of a bi-fundamental supermultiplet @ ,;, A = (ala) A= (ala)

providing a basis for the definition of the S-matrix.

@ Two-particle S-matrix is 256 x 256

S 10 ,4(0)ps() = [Doe()Ppn @) SCE2 (p, p)

-
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Worldsheet S-matrix: explicit perturbative evaluation

Expansion of worldsheet S-matrix in coupling: defines the T-matrix

1 1 .
SZH+TT(O)+A—2T<1)+...:1—I—T g =
9 g

Y15

Tree level result: first non trivial order in the perturbative expansion.
Obtained applying LSZ reduction to quartic vertices of the lagrangean.

[Klose McLoughlin Roiban Zarembo 06]
v It exhibits group factorizaton T =1@T+T® 1

T = A 566 + B oot T7 = Cege”
T2, = D824 + E8d07 T = F eqpe?
TC53 = G (5035 . Tab — L() (Sd
Tﬂ’d e H ()(1()3 . T(_lb I\ ()5(51)
1 p1 — p2)?
where 9. A(pr,p2) = 1 [(1 —2a)(eaps — expa) + L P2
€2P1 — €1P2

v’ Coincide with the related expansion of the exact spin chain S-matrix.
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Worldsheet S-matrix at one loop via unitarity cuts: result

SSE (p1,p2) = exp (iva(p1,p2)) SGE

1 1
— €Xp ( — Q—g(€2pl —e1p2)(a — %) —+

pe —@(p1,p2)) SS +O(g )

where

and

S ) 1 pip3((€ap1 — €1p2) — (€162 — p1p2) arsinh[eap; — €1pa])
21D L - -

v' All logarithmic dependence encoded in the scalar factor (as required from integrability!)

v' All rational dependence coincides with related expansion of EXACT worldsheet S-matrix

v' All gauge dependence encoded in the scalar factor (as required from physical arguments!)
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Remarks and a wish list

@ Enough evidence that for large class of 2-d models (relativistic and not)
four-points one-loop amplitudes are cut-constructible

> Standard unitarity (2-particle cuts) reproduces all rational terms,
up to shifts in the coupling. |

® Efficient way for

> Checks of quantum integrability aspects (e.g. group factorization).

> Proposing/checking matrix structure and overall phases for models relevant
for the AAS/CFT correspondence. L. Bianchi, B. Hoare, arXiv: 1405.7947

@ Cut-constructibility “criterion”

> Integrability is crucial asset :K _ >(

> Structure of the one-loop S-matrix derived by unitarity cuts
automatically satisfies the Yang-Baxter equation 512913993 = 5923513519



Y Two loops rational terms (all logarithms reproduced in [Engelund McEwan Roiban 2013]

% Higher points: factorization should emerge S35 = (Sa—2)’

¥ Extend to other interesting integrable string backgrounds [Basso 2010]
(require a tree-level S-matrix! and massless modes treatment)

% Extend to off-shell objects, including form factors and correlation functions.

[Klose McLoughlin 2012/2013]
[Engelund McEwan Roiban 2013]



String sigma-model perturbation theory I

ABJM cusp anomaly at two loops
and the interpolating function h(A)

L. Bianchi, M.S. Bianchi, A. Bres, VF, E. Vescovi, arxiv:1407.4788




AdS4/CFTs and integrability

@ Planar AdS4/CFT3system
N =6 super Chern-Simons theory in 3d and Type IIA strings in AdS, x CP?

believed to be integrable: Bethe equations, quantum spectral curve approach.

@ Similarities with AdSs/CF T4, but two important differences:

1. The string background is not maximally supersymmetric

Construction of the superstring action is complicated: coset sigma-model does not
cover full superspace, issues with k-symmetry gauge-fixing.

2. Dispersion relation entering all-integrability based calculations

¢ — \/1+4h2(>\)sin2§

IS in terms of an unknown, here non-trivial, interpolating function of the coupling.
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Integrable couplings

@ In N =4 SYM the function is “trivial”: h(y 1) = ZYM
7A

Seen perturbatively at weak and strong coupling.

[Gross Mikhailov Roiban 2002] [Santambrogio Zanon 2002] [Sieg 2010]
[Hofman Maldacena 2006] [Klose, McLoughlin, Minahan, Zarembo 2007]

Checked exactly via comparison between integrability and localisation results
for the ""Brehmstrahulung function™ of N=4 SYM.

[Correa, Henn, Sever, Maldacena 2012]

® In ABJM non-trivial dependence on the t'Hooft coupling

2 2 27 4 6

() =M= ==X+ 0 (X) A< 1
log 2

h(\) :\/g— (;i +OWVANTT A>1

[Gaiotto Giombi Yin 08] [Grignani Harmark Orselli] [Nihsioka Takayanagi 08]
[Minahan, Ohlsson Sax, Sieg 09] [Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg,

Tartaglino Mazzucchellu 10]
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A conjecture for the ABJM integrable coupling

Finite coupling dependence unknown from first principles.
Not yet integrability-derived ABJM " Brehmstrahlung function™

[Lewkowycz Maldacena 2013] [Bianchi, Griguolo, Leoni, Penati, Seminara 2014]

@ A conjecture exist

A\ = sinh gwh()\) 35 (1 1 1; 1, §; — sinh? 27Th()\)> [Gromov Sizov 2014]
T

27227772

extrapolated by “similarities” between two all-order calculations:

> one based on integrability: “slope-function” as exact solution of the ABJM spectral curve

[Cavaglia’, Fioravanti, Gromov Tateo 2014]
> one based on localization: expectation1/6 BPS Wilson loop

[Marino, Putrov, 10] [Drukker, Marino, Putrov, 10]

4 6
B = A— T3 O 893

N\ — A\’ ) 1

3 + T 1960 + O(\7) A K
B 1 1 log 2 _onvaN

h()\)\/2<)\ 24> = —I—O(e ) A1
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Cusp anomaly in AdSs/CFT4

® Weak coupling:

> anomalous dimension of twist operators in large spin limit ~ Aywist ~ f(A) InS, S>1

> governs renormalization of light-like cusped Wilson loops  (Weusp) ~ e~ f(N¢In 2

® Strong coupling: corresponding string configurations are related

Rll

L

AdS ;
_/"/bounda ry

Belassical ~ f(A) In5, 5> 1 <Wcusp> — ZString - /[dXde]e_S[X’e]

[Gubser, Klebanov, Polyakov,02] [Kruczenski,02] [Kruczenski, Tirziu, Roiban, Tseytlin 07]

® Integrability gives an all-order equation for cusp anomaly f(\), BES equation
matching all known perturbative results. [Beisert Eden Staduacher 2006]



ABJM cusp anomaly

O Despite nontrivial differences of the cusp physics in ABJM
[MS Bianchi, Griguolo, Penati, Seminara 2013,14] [Marmiroli 2013] [Lewkowitz Maldacena 2013]

BES equation is only slightly modified, therefore the prediction

1 Gromov Vieira 2008]
faBim(A) = = fav=a(Aym) [
2 X ()
from which, knowing already the N=4 SYM case, [Basso Korchemsky Kotanski 2007]
[Roiban Tseytlin 2007]
3log 2 K 1
A) = 2h(A) — — A>1
fapa(M) (M) 27 812 h(\) +
® Adirect string sigma-model evaluation of the LHS
5 log 2
Fapmi(A) = V21 — 22282 L o)~
/ 2T N
[ABJM] [several papers]

will give also an extimation of the rhs.

h(\) = \/g _ 082 L o)

2T
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Superstrings on AdSsxCP3

@ Solution of Type IlIA sugra preserving 24 out of 32 supersymmetries. [Nilsson Pope, 84]

® Supercoset approach a la [Metsaev Tseytlin 98] . Sigma-model action based on

OS5p(64)

[Arutyunov Frolov 08]
U(S) X SO(L 3) [Stefanski 08]

has 24 fermionic dof: interpreted as partial kappa-symmetry gauge-fixing of
full action. Remaining kappa-symmetry generically removes 8 fermions.

For strings only moving in AdS4 kappa-symmetry is enhanced:
only 12 (out of 16) physical fermions! Coset model misses 4 physical fermions.

® For these configurations (and higher order perturbation theory) start from complete

AdSsxCP3 action and make alternative kappa-symmetry gauge fixing.

[Gomis Sorokin Wulff 08] [Grassi Sorokin Wulff 09] [Uvarov 09]



AdSsxCP3 action in AdS light-cone gauge

@ Obtained in [Uvarov, 09,10] from double dimensional reduction from D=11

membrane action based on supercoset OSp(8/4)/(SO(1,3)x S7)
[de Wit, Peeters, Plefka, Sevrin 98]

@ K-symmetry gauge-fixing: light-cone gauge, with light-cone in the boundary of AdS4

In AdSsxS°® two ways to fix light-cone gauge corresponding to two inequivalent
geodesics:

1. one wrapping a big circle in S°

> widely used in AAS/CFT (BMN, pp-waves, world-sheet S-matrix)
> quite complicated (non-polynomial) form.

2. one running entirely inside AdSs

> dramatically simplifies fermionic part of the action |
[Metsaev Tseytlin 00]

[Metsaev Thorn Tseytlin 00]
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AdSixCP3 light-cone gauge action

® Convenient to use Poincaré patch

2 +ogo— 1.7..1
dw* + dx d:z:z + dxtdx ot — 42 4 0

2 _
dSAdS4 T W

Take the natural light-cone coordinates on R'"*

e To fix bosonic diffeos choose a “modified” conformal gauge ~% = diag(—w2, w_Q)

combined with standard light-cone gauge rT=pt T, pT = const

e To fix k-symmetry, choose TI'"O = (T°+T2)0 =0

> Divide the 32-dimensional spinors associated to odd generators of OSp(8/4) in:

O fermions (superPoincare)
n fermions (superconformal)

> Kill that half of the fermions related to generators with negative
charge wrt J*~ from Lorentz group acting on Minkowski boundary

Valentina Forini, ABJM cusp anomaly at two loops



AdS4xCP3 light-cone gauge action

@ AdS lc gauge-fixed action: at most quartic in the remaining16 fermions

(HCL?éa) (94754) (nanﬁa) (7747774) a — 17273
3+3 1+1 3+3 1+1
:——/deUL w = ¥

L= fy”{ 1 (8 xT0,x” +8x10 X )—i—&;gpajga—kgMN@izM@ij

+ e [Ty o Ot 052" hoy + e ¥ BOuT 9| }

— 2eWeT4¢ (w¢8j$+ -+ 6_29000i$13j$+ + a@$+asz€M)

Cwi=1i(0i0,0 — 0,0,0" + 0;040" — 040,0" + O™ — 1O + Oimai)* — NaO;i")

A

@ 8 [ 77a77 ‘ 5abc75 7A76776774 + 5abc77a77b770774 + 277477 (ﬁaﬁa - 9454)}
@ Only SU(3) symmetry is manifest (will be inherited by fluctuations on the cusp)

® No studies at quantum level so far. One of our aims is to check its quantum
consistency (finiteness) and shows that is in fact simple to handle.



Anomalous radius shift

@ Original ABJM dictionary proposal (R is the CP3 radius) [ABJM 2008]

2
T = il = 2V 2\

2o’

| =

is modified to (in planar limit)

2
T = K = 2412 )\—i
2ma’ 24

(due to an orbifold singularity of the original, M-

[Bergman Hirano 2009]

eory, background)

1
2V2\ —
12v/2 A

plays a role at 2-loop order in perturbation theory

@ String perturbative expansion - in inverse string (effective) tension - is not affected.
Shift: assumed, new input which plays a role when expressing the result in terms of \.
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Perturbative evaluation of path integral around the cusp

@ Classical solution

T _
w=e?=,]— rt =1 r = ——
o 20

2

describe a surface bounded by a null cusp, as at the AdSs boundary 0 = 2z = 22"z~ .

@ To extract cusp anomaly, compute partition function around it.
<Wcusp> — Zstring = /D[:Cv w, 2,1, 9] G_SE

Expand around the solution X = Xq + X

and evaluate the path integral perturbatively.

string = e~ 2/ VV V . (infinite) 2d volume, ~ log S

As solution is “"homogeneous’, i.e. fluctuation lagrangean has constant
coefficients, one can factor out V.
ap . a2 T
g g’ 2



Very smooth calculation.

8 bosonic modes 8 fermionic modes
1 real scalar X! with mass % 2 massless modes,
1 real scalar @ with mass 1, 6 massive excitations with mass 2

>-
3 complex massless z7,a = 1.2, 3.

Their determinant is easily evaluated

1 d*p 1 1
—InZ; == In(m?2+1)+1n[p?+ = In(p?) — 2In(p?) — 61n | p? + =
n Z 2/(27)2{n(p+)+n<p +2>+6n(p) n(p“) 61r1p+4

51ln 2
= — dtd
167 i
N——
1%
5log 2
One-loop finiteness, expected result: a1 = — o

[McLoughlin, Roiban, Tseytlin 08] [Alday Arutyunov Bykov 08]
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Two loops

Expand the action up to quartic order in fluctuations
and compute all connected vacuum Feynman diagrams.

Liz) = —8p(d:x')* — 2p(x')* + LYJ‘ (d J‘) + 4* (Chw d0) + 49[(B)® — (ds‘r')zl
+Ap(042°0 2 — 0:2°0,Z0) + 2 abc 012N — 2650y Zamyne + 401271 — 484 2°Nans
i { [Qisacbzci)bd,(?“ - i:wb.:'cr";b(}“ - L,mad,G" + -45,7700" — 2ic%en (9 ( D zgl. + 2400, — %5406)] + C.C.}
—4ip(8,0,17* — 9,0 + 0400 — 0,0,7%) + Bin PO, 7! — dinaiPr! + 4i0,009, 7! — 20,007
+4ingd,x! — 2ingntr! + 40,2770 + 40,2°n,0,

Ly = 320%(9:x")? + 8p%(x')? — 32072 (8.x") + 20* + By (Aip) + 8% (Ap)?
+0%(40) + 8%(Du0)? + 82 (042" DuZa + 0:2°0,7a) + 1 202" 502" + 2 DiZatOu%
—22%,0,2°6, ;a — 2o 2B 20Ty + 200522250, 2" + 2°0,2,2°0, 2 — 22240,2°0,20 — 2,270,202,
—4iByz, (2] + 7%z ns) 4ic®P Oz, 2] — 2icanB 22T s + 41040 + nan*) (0P — G zp2P)
H8 | (ad®)? + eabeP TP + B namnens + 2047 (Maff® — 040%)] + i {+22°Za 10,0 — 22776,
— 2% 2,2°0.0, + f]“za,:"()b— BiE 002 70, g + 4iE 4302, 0 + 16 nadO“— 8 T)QO"
—7r;ad 02|2|2 + 00222 + 21,0 OC:L:“ — Na°Z.2° + 82,,7),,:“""%(} Oy, — 4ipn,co®z 0 + c.c.
(d 04* — Onel* + 140.0* — 0,0.7*) + 82_ad,fnbn°d T 11_0(1,9‘77517“7'1

—t‘rb “NazdNeOs " + 1z:°"cna~mc:r - 18wan“dr + 24pna°r! — 240,60, 2"

A 120,02 — 240m70 0,2t + 120n ! — 4e%P0, 2,20 — Ac,q0.2% 20"

+16i08, Z,1P0% + 16100, 297,04 1[0,:;*0,,~ % — 040,22 — 0a040,25% + u0'0, 528 )

( CPP? parametrized by relative of Fubini-Study metric in terms of
complex variables z“ and z, , transforming inthe 3 and 3 of SU(3)).
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Two loops

@ At this order, possible topologies of connected vacuum diagrams
are sunset, double bubble, double tadpole.

(O
(OO

where vertices carry up to two derivatives.

@ Finiteness is not obvious, each diagram is separately divergent.
Some simplicity occurring by bosonic propagators being diagonal.

@ Massless fermions (main difference wrt to AdSsxS® case) behave as effectively decoupled
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@ Standard reduction allows to rewrite every integral as linear combination of
the two scalar integrals

2 2 2 "d°pd*qd’r 5P (p+q+r)
I[ml,mg,m3] —'/ (27‘_)4 (p2_+_m’13) (q2_._m§)(r2—|—m§)
2 " d’p - i
[[m*] = / 2r)7 02 ¥ m?2 UV divergent

® Summing up diagrams, all divergences cancel, finite contributions
always reduce to the three-propagator integral

K oo
2 2 Z
which is responsible for the appearance of the Catalan constant K.

® Two-loop result:

y
nZ= 2 1A - (G| =R (L) = e
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@ The two loop ABJM cusp anomaly at strong coupling

) = VIR - 22 (4 ) o ()

27 Ar2 24



@ The two loop ABJM cusp anomaly at strong coupling () = \ — 2—14 )

o (3) = VEL- 22K o)

=+ O
2m A2 /2

The N=4 SYM result has different factors (effect of ratio of AdS4 and CP? radii,
# of transverse bosons, # of massive fermions) in front of same structures.

® Using integrability prediction

3log 2 K 1
Fapa(A) = 2h() — 220

o 8w2 h(\)

we get for the interpolating function at strong coupling

h(X) = \/g— log2 1 + O(VA)?

coinciding with strong coupling expansion of [Gromov Sizov 2014] conjecture

L 1 - i o 10g2 —27V 2
AA) = \/2 (A 24) om Y (e )




Concluding remarks & outlook

v Two-loop calculation of ABJM cusp anomaly at strong coupling.
V' First non-trivial perturbative check of h()\) at strong coupling.
v Quantum consistency (UV-finiteness) of this AdSsxCP? action.

V' Indirect evidence of quantum integrability of Type IIA string in AdS4xCP3

¥ Calculate f()) in backgrounds relevant for the AdSs/CF T2 correspondence.

Y Three loop calculation: should involve products of K In2 and (3
Transcendentality properties studied, but yet unknown integrals. {;j @,

Interesting for seeing divergence cancellation mechanism.

% Finite coupling “stringy” test of () could be via lattice, & la [McEwan, Roiban, 13]:
partition function of the discretized AdS light-cone gauge action in the background

of the null cusp solution.
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Brehmstrahlung function of N=4 SYM

' L
Casp(#) = =BAN)E® (W) ~ ¢ Tour @108 5y
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0.00

0 5 10 15 20 25 30
A

Figure 2: Plot of the Bremsstrahlung function B in the planar limit (solid blue curve). At
weak coupling, the lower and upper dashed green curves denote the two- and three-loop
approximation, respectively. It is interesting to note that the radius of convergence of the
weak coupling expansion is given by the first zero of I; in (4), which is at A ~ —14.7. As one
can see 1n the plot, the perturbative formulas become unreliable in that region. At the same
time, we see that the first two orders of the strong coupling result (red dotted curve) give a

qualitatively good approximation starting from that region.



Brehmstrahlung function of N=4 SYM

|

B = 53 A0y log(We)
, 1 \ \ | r
<” ©> - TL}V_I(——I .\, )(’ 8N /\ - g%’z\[ *\
1 VAL (VX |
B = 4 \/— 2(\/_) + ()('l/:'\”rz)
4t (\/X)

where L is the modified Laguerre polynomial and Wy is the _
[Erickson Semenoff Zarembo 00]

1/2 BPS circular Wilson loop. [Drukker Gross 00]

The last line gives the planar expression. [Pestun 07]



Semiclassical quantization for “non homogenous solutions”

® Standard quantization of a soliton

> Background field method

¢ ¢cl

ﬂ‘@z

£ > »Cﬂuct

> Effective action ,
det fermions

v/ det bosons

'=—InZ = —1n

> 1-loop energy

I’
El:ﬁ;—;” TE/dT—>OO

@ Stationary solution —» 1-dimensional determinants

det{ 02 — 02 + M?*(o T/ — 02+ w4+ M (o )}



Semiclassical quantization EXACTLY

Fluctuation operators obey eigenvalue equations that can be cast in a known form

5 6 9 5 ) Lameé equation
{ =0y + 2k s w + K A7)+ O }57?(“’) =ABi(z)| with periodic b.c.

Spectrum non-trivial, but solution is known exactly

Ao = 0% + 1+ k2

Gelfand Yaglom theorem: to compute determinant,
solve an associated initial value problem, then the forbiflden
determinant is simply given in terms of the solution M=00+1 0
Ao=0+E L
H( n ) [Hermite 1872]
T+ o
_ FZ(a)x
T
1 T2 w2
sn(a, k?) = 1+—2(1+ 5 2)
REA T ARE(ES) det O3 = 4sinh? 2K Z(a)




Exact one-loop partition function

T det®
Iy =—— dw In 5 et Oy =
41 Jr det” Op det O, det’(—0?)

detOp = sinh*[2 K(k?) Z(a)] sn(a, k%) =

, 4k -
detO, = sinh” [K((l n k)2) Z(a)} Sn<&7 4k

(14 k)?

ik
w2

detOy = cosh? {K(

from which the one-loop energy B, = Iy T = / dr — 0o
kT’ -

Not easy to deal with, but the expanded integrand is rich of information



The phase

Bilinear of local charges

Z gl ng(n)

n=>0
0" = X ;(1‘1,1‘2) \f";( z )—,\E;(g _zt)+xf";(:lg
— x"Nz3,2]) + X (1’2 11)"‘\ (zg,27) — X" (25,

with Zhukovsky variables encoding dispersion relation

L 1
- me 27 A P
T = . 1+4/1+ = sin? —
\/Xsmg T 2

Beyond one loop each contribution is rational.

,.(1)(,,‘ ) = L ,/171—1/\/:1?2_1 \/ L+ 1//7
AT 2“ 2 — o 27r ¥+ /Ts

Ly VUYL VR
VI1 — /T2 VI1+ /T

=}

Crossing equation
i0(zj, zr) +i0(1/x;, xr) = 2log h(z;, z)
T, (1 - ==)(=j — ;)

J
) (1— . )(x] — ;)

h(z;, xp) =




Unitarity-cut result and the Yang-Baxter equation

[Bianchi Hoare, 2014]
Compact formula for the one-loop contribution (explicitating bubble integrals)

Generalization to different masses.

0 1 1
71 — 7 (7)) @) 7(0) _ 700) @70y 1 Z7(0) 5 7(0)
27'('( © = )+ 2 © i 167 (m2 )
logarithmic terms _rational rational real
imaginary
/Y.
Hzarcsinh(ep ep) e=+/p2+m?2, e’ = \/p'2 + m'?

mm/’

Useful to be used in the Yang-Baxter equation, a cubic matrix equation
necessarily satisfied by integrable theories.

S12913923 = 523513512 ,




Unitarity-cut result and the Yang-Baxter equation

512913923 = 523913512 ,

O [ng), ng)] + [ng), Té%)] + [ng), ng)] =0 Classical Yang-Baxter

0 1 0 1 0 1 0 1 0 1 0 1
o [T\, T+ T, T + 119, T8 — [T, 8] — 18, T — (T8, T8 =
0 0 0 0 0 0
TS T TS — T T T



Unitarity-cut result and the Yang-Baxter equation

512913923 = 523913512 ,

O [ng), ng)] + [ng), Té%)] + [ng), ng)] =0 Classical Yang-Baxter

0 1 0 1 0 1 0 1 0 1 0 1
o [T\, T+ T, T + 119, T8 — [T, 8] — 18, T — (T8, T8 =
0 0 0 0 0 0
TS T TS — T T T

0 = L 00 @70 _ 70 er0) L Lrogro L (L 5o g0 Lo gz,
27 2 167 " m? < m'? =

rational

_ _ rational real
imaginary

logarithmic terms




Unitarity-cut result and the Yang-Baxter equation

512913923 = 523913512 ,

O [ng), ng)] + [ng), Té%)] + [Tgog), ng)] =0 Classical Yang-Baxter

0 1 0 1 0 1 0 1 0 1 0 1
o [T\, T+ T, T + 119, T8 — [T, 8] — 18, T — (T8, T8 =
0 0 0 0 0 0
TS T TS — T T T

0 = Y00 @10 1010y 4 Lrogro L L (L rogro L pogzo,
27 2 167 " m? < m'? =
logarithmic terms _ ratiqnal rational real
imaginary

Yang-Baxter is automatically satisfied by the unitarity-constructed one-loop S-matrix.



Unitarity-cut result and the Yang-Baxter equation

512913923 = 523913512 ,

O [ng), ng)] + [ng), Té%)] + [Tgog), ng)] =0 Classical Yang-Baxter

0 1 0 1 0 1 0 1 0 1 0 1
o [T, T+ [T, TS + 8, 1551 — (T8, 18] — (15, TR — 18, Ti1 = 0

0 1 1 ~ 1 ~
71 — 7 (70) @ 70) _ p(0) i 7(0) _ 7) ) 7(0) 70) ) 7(0)
27r< ® = )+ 167(m2 @ + m'2 @ )
%# W
logarithmic terms rational real

Yang-Baxter is automatically satisfied by the unitarity-constructed one-loop S-matrix.



