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Calculating scattering amplitudes efficiently  

Remarkable efficiency of unitarity-based methods 
for calculation of amplitudes in various qft’s and various dimensions 
(non-abelian gauge theories, Chern-Simons theories, supergravity). 

[from a L. Dixon talk]

[Bern, Dixon, Dunbar, Kosower, 1994]
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Calculating scattering amplitudes efficiently  

Remarkable efficiency of unitarity-based methods 
for calculation of amplitudes in various qft’s and various dimensions 
(non-abelian gauge theories, Chern-Simons theories, supergravity). 

[Bern, Dixon, Dunbar, Kosower, 1994]
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Goal: apply to evaluation of amplitudes 
of two-dimensional cases of interest.

     



String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

flat space AdS5xS5 with RR fluxes
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String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

Work on a gauge-fixed sigma model (uniform light-cone gauge)

Hws =

Z
d�Hws = �

Z
d� p� ⌘ E � J

embedded in
AdS5 ⇥ S5

Because of RR-background need a GS formulation

[Arutyunov, Frolov, 
Plefka, Zamaklar 2006]

ĝ =
2⇡p
�

loop counting
parameter
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String worldsheet scattering

Non-trivial interactions due to highly non trivial background.
Worldsheet amplitudes  (              , free strings), scattering of the (2d) lagrangean excitations.N ! 1

Work on a gauge-fixed sigma model (uniform light-cone gauge)

Hws =

Z
d�Hws = �

Z
d� p� ⌘ E � J

embedded in
AdS5 ⇥ S5

Because of RR-background need a GS formulation

Decompactification limit                    and large tension expansion  J+p
�
! 1

[Arutyunov, Frolov, 
Plefka, Zamaklar 2006]

sensible definition of a perturbative worldsheet S-matrix

ĝ =
2⇡p
�

loop counting
parameter

ĝ ! 1
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This S-matrix is the perturbative expansion of the exact AdS5/CFT4 
S-matrix aka “spin chain S-matrix” :     the rhs of asymptotic Bethe eqs

AdS/CFT (internal) S-matrix I

Describe the exact asymptotic spectrum of anomalous dimensions of local 
composite operators and energies of their dual string configurations.

 

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]

[Klose McLoughlin Roiban Zarembo 2007]
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  derive exact dispersion relation

Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]
S12 = S0 S12

[Beisert 2006]✏ =

r
1 + h(�)2 sin2

p

2
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Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

S12 = S0 S12

✏ =

r
1 +

�

⇡2
sin2

p

2
  derive exact dispersion relation

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]

[Beisert 2006]
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Assuming integrability (consistency with Yang-Baxter equation) and using 
global symmetries one can:

  derive two-particle S-matrix entering the Bethe equations

AdS/CFT (internal) S-matrix II

S12 = S0 S12

   up to one (/more) scalar factor(/s), fixed with additional 
   constraints  like “crossing symmetry” and semiclassical string data.

The scalar phase is the hardest thing to compute, crucial for the spectrum.
Particularly in some models relevant in AdS3/CFT2  where solutions to 
crossing-like equations are difficult to determine.

✏ =

r
1 +

�

⇡2
sin2

p

2
  derive exact dispersion relation

[Beisert Staudacher 2005]
[Staudacher 2004]

[Beisert 2005]

[Beisert 2006]

[Janik 2005]

Valentina Forini, Unitarity methods for scattering in 2d

Ben Hoare talk later



Motivation

Methodological: techniques never really applied in two dimensions.

 Provide tests of quantum integrability for certain string backgrounds.  

  Extract information about the overall factors of scattering matrix.
  

Initiate the use of unitarity-based methods for perturbative S-matrix 
in massive two-dimensional field theories.

Construct one-loop 2 → 2 scattering amplitude with standard unitarity

directly from the corresponding on-shell tree-level amplitudes.

Provide 2d scattering perturbation theory with efficient tools.
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Consequence of unitarity of the S-matrix (optical theorem).

Unitarity cuts method 

S† = S�1
2 Im(T ) = T T †S = 1 + i T

unitarity

Inserting a complete set of states

- Cutting (Cutkosky) rules  ex.

- Relates a certain loop amplitude to a lower order one.
- Imaginary part of the amplitude contains the branch-cut information.

p
2⇡i �(p2 �m2)

Unitarity cuts method: revert the order, find n-loop amplitude fusing lower order ones

- Only the singular part can be reconstructed (logs or polilogs.)

- Cut-constructibility of a theory always to be verified.

(Special known case in 4d: massless susy gauge theories are 1-loop cut-constructibles).
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Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

described via the four-point amplitude

h�P (p3)�
Q(p4) |S|�M (p1)�N (p2)i = (2⇡)2�(d)(p1 + p2 � p3 � p4)APQ

MN (p1, p2, p3, p4)

For d=2 and in the single mass case,  scattering 2 → 2 is simple.

The Jacobian                                                                   depends on dispersion relation. 

Particles either preserve or exchange their momenta

J(p1, p2) = 1/(@✏p1/@p1 � @✏p2/@p2)



Two-dimensional scattering

Two-body scattering process of a theory invariant under space and time translations

described via the four-point amplitude

h�P (p3)�
Q(p4) |S|�M (p1)�N (p2)i = (2⇡)2�(d)(p1 + p2 � p3 � p4)APQ

MN (p1, p2, p3, p4)

For d=2 and in the single mass case,  scattering 2 → 2 is simple.

The Jacobian                                                                   depends on dispersion relation. 

Particles either preserve or exchange their momenta

J(p1, p2) = 1/(@✏p1/@p1 � @✏p2/@p2)

p1 > p2

S-matrix element defined by 

Dispersion relation for asymptotic states (equal masses =1):                      ✏2i = 1 + p2i

SPQ
MN (p1, p2) ⌘

J(p1, p2)

4✏1✏2
APQ

MN (p1, p2, p1, p2)

Fix ordering of incoming states               .



One-loop result from unitarity techniques: contributions from three cut-diagrams

Example: s-cut contribution. Glue tree-amplitudes.
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Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude

eA(1)

PQ
MN(p1, p2, p3, p4) =

I(p
1

+ p
2

)

2

h
eA(0)RS

MN(p1, p2, p1, p2) eA(0)

PQ
SR (p2, p1, p3, p4)

+ eA(0)RS
MN(p1, p2, p2, p1) eA(0)

PQ
SR (p1, p2, p3, p4)

i

+ I(p
1

� p
3

) eA(0)SP
MR(p1, p3, p1, p3) eA(0)

RQ
SN(p1, p2, p3, p4)

+ I(p
1

� p
4

) eA(0)

SQ
MR(p1, p4, p1, p4) eA(0)RP

SN(p1, p2, p4, p3) (2.11)

where we have introduced the bubble integral

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)
(2.12)

The structure of (2.11) shows the di↵erence between the s-channel, for which there are
two solutions of the �-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.
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s-channel t-channel u-channel

Scattering in d=2: unitarity cuts (1)

A(1)PQ
MN (p1, p2, p3, p4)|s�cut =

1

2

Z
d2l1
(2⇡)2

Z
d2l2
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+(l22 � 1)

⇥A(0)RS
MN (p1, p2, l1, l2)A(0)PQ

SR (l2, l1, p3, p4)



Use 2-momentum conservation at the first vertex 

Scattering in d=2: unitarity cuts (2)
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i⇡�+(l21 � 1) �! 1

l21 � 1
Restore loop momentum off-shell 

Use the zeroes of    - functions in the         � eA(0)

f(x) �(x) = f(0) �(x)           (like                                     )

eA(1)PQ
MN (p1, p2, p3, p4)|s�cut =

1

2

Z
d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 � p1 � p2)

2 � 1)

⇥ eA(0)RS
MN (p1, p2, l1,�l1 + p1 + p2) eA(0)PQ

SR (�l1 + p1 + p2, l1, p3, p4)

: loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral



Use 2-momentum conservation at the first vertex 

Scattering in d=2: unitarity cuts (2)
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i⇡�+(l21 � 1) �! 1

l21 � 1
Restore loop momentum off-shell 

Use the zeroes of    - functions in the         � eA(0)

f(x) �(x) = f(0) �(x)           (like                                     )

Two-particle cuts in d=2 at one loop are maximal cuts.

(c) Develop the unitarity approach with massive particles. Di�culties with respect to the

massless case are related to point (b) above and to the fact that massive tadpoles cannot

be set to zero. Also, even in presence of supersymmetry, it has been less developed.

(d) some Feynman diagram calculations (R. Roiban, private communication) give a UV

divergent answer, and it is not clear why unitarity should give a di↵erent answer. And

if it does, how is one going to decide whether it is the right answer, given that Feynman

diagrams gave an answer that made no sense.

9 Quadrupole cuts/maximal cuts

To completely freeze the momentum, in 4d you do quadruple cuts. And then you find similar

coe�cients, just the product of tree-level things.

In 4d you can find the coe�cients of the box function by quadrupole cuts, and the coe�-

cients are just the product of tree-level, so you can write down a closed formula for any 4-point

function in 4d. The coe�cient coming with the boxes are the product of four tree-level. There

you can say that

A1�loop

4 =
X

(Atree

4 )4 I
box

(3)

where the sum is over possible boxes. Similar flavor! If you normally just do standard unitarity,

you start with 4-dimensional momentum integral, you have two delta functions which leaves

you 2 dimensions. But here, if you count you have 4 delta so that you completely localize

and there is no integral to be performed. In some sense we are saying, in the language of

generalized unitarity, that in 2d something similar happens.

We are bypassing all issues having to do with regularization. It gives the right answer for

supersymmetric and integrable theories. Certainly not for integrable theories. In general It is

very rare that people bother about calculating S-matrices by computations in 2 dimensions.

It does seem remarkable that nobody did this. However: The integrable field

theory story is actually rather subtle, because you can’t just.. If you do standard

perturbation theory, that it doesn’t actually give you the correct S-matrix. You

need to include some additional counter terms that can be understood in terms of

gauged WZW model, so doing some path integral formulation. This story is less

surprising that people spotted. But then string theory was only done recently,

than the only other theory we consider is N=2 supersymmetric Sine-Gordon (the

S-matrix was written down in 1991 using integrability), Witten and Shenkar had

a paper a bit earlier but not so many.

Notice that you couldn’t use this formalism for o↵-shell stu↵. This is heavily relying on ...

this is where Thomas and Tristan are trying to go with the form factor story. And also what

Roiban in 4 dimensions for correlations functions.

At one loop unitarity works for N=4 SYM,

6

Expect same as quadrupole cuts in d=4: 

eA(1)PQ
MN (p1, p2, p3, p4)|s�cut =

1

2

Z
d2l1
(2⇡)2

i⇡�+(l1
2 � 1) i⇡�+((l1 � p1 � p2)

2 � 1)

⇥ eA(0)RS
MN (p1, p2, l1,�l1 + p1 + p2) eA(0)PQ

SR (�l1 + p1 + p2, l1, p3, p4)

: loop momenta are completely frozen.

Can pull tree-level amplitudes out of the integral



A simple sum over discrete solutions of the on-shell conditions

weighted by scalar “bubble” integrals

4-points amplitude at one-loop 

eA(1)PQ
MN (p1, p2, p3, p4) =

I(p1 + p2)

2

h
eA(0)RS

MN (p1, p2, p1, p2) eA(0)PQ
SR (p2, p1, p3, p4)

+ eA(0)RS
MN (p1, p2, p2, p1) eA(0)PQ

SR (p1, p2, p3, p4)
i

+ I(p1 � p3) eA(0)SP
MR(p1, p3, p1, p3) eA(0)RQ

SN (p1, p2, p3, p4)

+ I(p1 � p4) eA(0)SQ
MR(p1, p4, p1, p4)

eA(0)RP
SN (p1, p2, p4, p3)

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)

Inherently finite formula.

Tree-level amplitudes can be pulled out of the integral, evaluated at those zeroes.
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One of initial motivation of our work: ordinary Feynman diagrammatics was problematic 
(divergencies did not cancel). Recently clarified in  [Roiban, Sundin, Tseytlin, Wulff 14] 



Final formula for the S-matrix (choose                               )

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

Final formula for the S-matrix

p3 = p1, p4 = p2

S(1)PQ
MN (p1, p2) =

1

4(✏2 p1 � ✏1 p2)

h
S̃(0)RS

MN (p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN (p1, p2)I(0)

+S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN (p1, p2)I(p1 � p2)

i
,

S̃(0)(p1, p2) = 4(✏2 p1 � ✏1 p2)S
(0)(p1, p2)where

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.

Is ⌘ I(p1 + p2) =
1

✏2 p1 � ✏1 p2
� arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)

It ⌘ I(0) =
1

4⇡i

Iu ⌘ I(p1 � p2) =
arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)
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Final formula for the S-matrix (choose                               )

Sum of products of two tree-level amplitudes weighted by scalar bubble integrals

Final formula for the S-matrix

p3 = p1, p4 = p2

S̃(0)(p1, p2) = 4(✏2 p1 � ✏1 p2)S
(0)(p1, p2)where

S(1)PQ
MN (p1, p2) =

1

4(✏2 p1 � ✏1 p2)

h
S̃(0)RS

MN (p1, p2)S̃
(0)PQ

RS (p1, p2)I(p1 + p2)

+(�1)[P ][S]+[R][S] S̃(0)SP
MR(p1, p1)S̃

(0)RQ
SN (p1, p2)I(0)

+(�1)[P ][R]+[Q][S]+[R][S]+[P ][Q]S̃(0)SQ
MR(p1, p2)S̃

(0)PR
SN (p1, p2)I(p1 � p2)

i

[M ] = 0

[M ] = 1

bosons
fermions

Possible absence of rational terms: formula cannot be completely general !
Needs to be tested on various examples.

Is ⌘ I(p1 + p2) =
1

✏2 p1 � ✏1 p2
� arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)

It ⌘ I(0) =
1

4⇡i

Iu ⌘ I(p1 � p2) =
arsinh(✏2 p1 � ✏1 p2)

4⇡i (✏2 p1 � ✏1 p2)

Valentina Forini, Unitarity methods for scattering in 2d



Remarks

The t-channel cut is special.

- Using first  
  makes it ill-defined and requires a prescription: 
  use delta-function only at the end of the calculation

S̃(0)SP
MR(p1, p1) S̃

(0)RQ
SN (p1, p2) = S̃(0)PS

MR(p1, p2) S̃
(0)QR

SN (p2, p2)

- Asymmetrical wrt choice of the vertex 
  used to solve momenta:
  leads to a consistency condition 

We are NOT including contributions from tadpoles (no physical cuts)

A inherently  finite result says nothing about UV-finiteness or renormalizability.

Might be missing rational terms following from regularization procedure. 

At the next order we finds the following relation

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]� [T(0)

13 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
13 ] =

T(0)
23 T

(0)
13 T

(0)
12 � T(0)

12 T
(0)
13 T

(0)
23 . (2.32)

One can check that, assuming that the tree-level S-matrix satisfies the classical Yang-Baxter equation

(2.31), the rational s-channel contribution to the cut-constructible one-loop S-matrix precisely cancels the

terms cubic in the tree-level S-matrix on the right-hand side of eq. (2.32). Therefore, for the one-loop cut-

constructible S-matrix to respect integrability the remaining terms should satisfy (2.32) with the right-hand

side set to zero. In general, this condition is not easy to solve, but two solutions are clear. The first is the

tree-level S-matrix (which amounts to a shift in the coupling) itself, and the second is any contribution that

can be absorbed into the overall phase factors.

It will turn out that of the three theories we are interested in, two satisfy this property. For the

AdS3 ⇥ S

3 ⇥ S

3 ⇥ S

1 theory, the one-loop cut-constructible S-matrix as defined by (2.29) has a rational

piece coming from the t-channel that does not satisfy (2.32) with zero on the right-hand side. However,

there is a meaning to these terms – they are cancelled by corrections to the external legs, which we will now

discuss.

2.3 External leg corrections

In the construction outlined thus far we have not included any discussion of corrections to the external legs.

As shall become apparent, for the AdS3 ⇥ S

3 ⇥ S

3 ⇥ S

1 background, these will be important even at one

loop. These contributions will give a rational contribution to the S-matrix and can follow from two types

of Feynman diagrams:

p p

l1

l2
p p

l

Figure 2: Diagrams contributing to external leg corrections at one-loop.

We will be interested in external leg corrections at one-loop that are caught by unitarity. In order to

approach this problem let us first review how external leg corrections are usually dealt with in a standard

Feynman diagram calculation. We consider the one-loop self energy of a generic scalar propagator and denote

the one particle irreducible contribution to the one-loop self-energy as �ih

�1⌃(1)(p). After re-summing one

gets

=
i

p2 �m

2 � h

�1⌃(1)(p)
+ . . . . (2.33)

Expanding ⌃(1)(p) around the on-shell condition, ⌃(1)(p) = ⌃(1)
0 (p) + ⌃(1)

1 (p)(p2 � m

2) + O((p2 � m

2)2),

one obtains a spatial momentum dependent shift in the pole and a non vanishing residue Z(p) such that

=
iZ(p)

p2 �m

2 � h

�1⌃0(p)
+ . . . . (2.34)
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p
1

p
2

p
4

p
3

l
1

l
2

R

S

M

N P

Q

A(0) A(0)

p
2

p
4

p
1

p
3

l
1

l
2

R

S

N Q

PM

A(0)

A(0)

p
2

p
3

p
1

p
4

l
1

l
2

R

S

N P

QM

A(0)

A(0)

Figure 1: Diagrams representing s-, t- and u-channel cuts contributing to the four-point
one-loop amplitude.

cut-constructible piece of the amplitude

eA(1)

PQ
MN(p1, p2, p3, p4) =

I(p
1

+ p
2

)

2

h
eA(0)RS

MN(p1, p2, p1, p2) eA(0)

PQ
SR (p2, p1, p3, p4)

+ eA(0)RS
MN(p1, p2, p2, p1) eA(0)

PQ
SR (p1, p2, p3, p4)

i

+ I(p
1

� p
3

) eA(0)SP
MR(p1, p3, p1, p3) eA(0)

RQ
SN(p1, p2, p3, p4)

+ I(p
1

� p
4

) eA(0)

SQ
MR(p1, p4, p1, p4) eA(0)RP

SN(p1, p2, p4, p3) (2.11)

where we have introduced the bubble integral

I(p) =

Z
d2q

(2⇡)2
1

(q2 � 1 + i✏)((q � p)2 � 1 + i✏)
(2.12)

The structure of (2.11) shows the di↵erence between the s-channel, for which there are
two solutions of the �-function constraints in (2.8) (for positive energies), and the t- and
u-channels, for which there is only one.

5

�(p1 � p3)�(p2 � p4)

Cut-constructibility to be always checked 



Relativistic  models 

Bosonic models:

  generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)  
  plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

Supersymmetric generalizations (``Pohlmeyer reductions’’ of string theories):
N = 1, 2 supersymmetric sine-Gordon

 The method works up to a finite shift in the coupling.

 The method reproduces the full result.

Valentina Forini, Unitarity methods for scattering in 2d



Relativistic  models 

Bosonic models:

  generalized sine-Gordon: gauged WZW model for a coset G/H = SO(n + 1)/SO(n)  
  plus an integrable potential (n=1: sine-Gordon, n=2: complex sine-Gordon)

Supersymmetric generalizations (``Pohlmeyer reductions’’ of string theories):
N = 1, 2 supersymmetric sine-Gordon

 The method works up to a finite shift in the coupling.

 The method reproduces the full result.

Theory only integrable at classical level. Quantum counterterms restoring
various properties of integrability (e.g. Yang-Baxter equation).

In two cases (complex sine-Gordon and Pohlmeyer-reduced AdS3xS3 theory) 
cut-constructibility is highly non trivial!

It is this “quantum integrable” result that the unitarity method gives.

Valentina Forini, Unitarity methods for scattering in 2d



AdS/CFT S-matrix: exact and perturbative structure

Each factor has manifest                           invarianceSU(2)⇥ SU(2)

ei ✓S = ŜPSU(2|2) ⌦ ŜPSU(2|2)
ŜCD
AB =

8
>>>><

>>>>:

A�ca�
d
b +B�da�

c
b

D��↵�
�
� + E��↵�

�
�

C✏ab✏
�� F ✏↵�✏

cd

G�ca�
�
� H�da�

�
�

L��↵�
d
b K��↵�

c
b

by a (centrally extended) PSU(2|2)2 symmetry algebra.

From symmetries and integrability follows a group factorization

In the asymptotic case, matrix structure of the exact S-matrix is uniquely fixed



Logarithms 

AdS/CFT S-matrix: exact and perturbative structure

From symmetries and integrability follows a group factorization

Each factor has manifest                           invarianceSU(2)⇥ SU(2)

ei ✓S = ŜPSU(2|2) ⌦ ŜPSU(2|2)
ŜCD
AB =

8
>>>><

>>>>:

A�ca�
d
b +B�da�

c
b

D��↵�
�
� + E��↵�

�
�

C✏ab✏
�� F ✏↵�✏

cd

G�ca�
�
� H�da�

�
�

L��↵�
d
b K��↵�

c
b

Matrix structure,
rational dependence 
on momenta

by a (centrally extended) PSU(2|2)2 symmetry algebra.
In the asymptotic case, matrix structure of the exact S-matrix is uniquely fixed

A perturbative check should recover the tensor structure, group factorization 
and exponentiation of the logarithms.



Perturbative structure of worldsheet S-matrix

✓ =
1X

n=1

g�n✓(n�1)

S = 1+
i

g
T̂ (0) +

i

g2
�
T̂ (1) + ✓(1) 1) +

1

g3
(T̂ (2) +

i

2
✓(1)T̂ (0) + ✓(2) 1

�

Ŝ = 1+ i
X

n=1

g�nT̂ (n�1)

requires one-loop logarithms to contribute only to the diagonal terms

Expansion of symmetry-determined  and phase parts T (0)✓(0)(       absorbed in        )

Goal: compute one loop worldsheet S-matrix 
“bootstrapping” it from tree level.



String worldsheet S-matrix

Superstring action

Valentina Forini, Unitarity methods for scattering in 2d

Use an interpolating lightcone -gauge

a = 1/2

a = 0

light-cone gauge
temporal gaugeAdS5 S5

X+ = (1 + a) t+ a' ⌘ ⌧ + a�

 [Arutyunov Frolov Zamaklar 06]

Green-Schwarz formulation for fermions

quadratic part



Bosonic part invariant under                             .SO(4)⇥ SO(4)

Gauge fixing

Valentina Forini, Unitarity methods for scattering in 2d

 Lorentz invariance (quadratic part) broken by interactions.

Bosonic lagrangean to quartic order in the fields X = (Y, Z)

✏ =
p

1 + p2Massive states with relativistic dispersion relation

loop corrections 
✏ =

r
1 +

�

⇡2
sin2

p

2

 [Klose McLoughlin Roiban Zarembo 06]



Worldsheet fields

Worldsheet fields (embedding coordinates in AdS5xS5)

T, �, Y m, Zm, fermions

Yaȧ = (�m)aȧ Y
m, Z↵↵̇ = (�µ)↵↵̇ Zµ

can be represented as bispinors   SO(4) ' (SU(2)⇥ SU(2))/Z2

Bosons and fermions form bi-fundamental representation of   

Formal definition of a  bi-fundamental supermultiplet            ,    

PSU(2|2)L ⇥ PSU(2|2)R

providing a basis for the definition of the S-matrix.

a, ȧ,↵, ↵̇ = 1, 2

Valentina Forini, Unitarity methods for scattering in 2d

Two-particle S-matrix is 256 x 256 



Tree level result: first non trivial order in the perturbative expansion.

Worldsheet S-matrix: explicit perturbative evaluation

Obtained applying LSZ reduction to quartic vertices of the lagrangean. 

 ✓ Coincide with the related expansion of the exact spin chain S-matrix. 

Expansion of worldsheet S-matrix in coupling: defines the T-matrix 

S = +
1

g
T(0) +

1

g2
T(1) + . . . = + T g =

p
�

2⇡

 [Klose McLoughlin Roiban Zarembo 06]

ĝ
ĝ ĝ

Valentina Forini, Unitarity methods for scattering in 2d

where e.g. A(p1, p2) =
1

4

h
(1� 2a)(✏2p1 � ✏1p2) +

(p1 � p2)2

✏2p1 � ✏1p2

i

 ✓ It exhibits group factorization



Worldsheet S-matrix at one loop via unitarity cuts: result

SCD
AB (p1, p2) = exp

�
i'a(p1, p2)

�
˜SCD
AB

= exp

�� i

2g
(e2p1 � e1p2)(a� 1

2 ) +
i

g2
'̃(p1, p2)

�
˜SCD
AB +O

⇣
1

g3

⌘

A(1) = 1 +
i

4 g

(p1 � p2)2

✏2p1 � ✏1p2
+

1

4 g2
�
p1p2 �

(p1 + p2)4

8(✏2p1 � ✏1p2)2
�

where 

Ex.

 ✓ All rational dependence coincides  with related expansion of  EXACT worldsheet S-matrix

and

 ✓ All logarithmic dependence encoded in the scalar factor (as required from integrability!) 

 ✓ All gauge dependence encoded in the scalar factor (as required from physical arguments!) 

ĝ ĝ ĝ

ĝĝ
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Remarks and a wish list

Enough evidence that for large class of 2-d models (relativistic and not)
four-points one-loop amplitudes are cut-constructible  

 Cut-constructibility “criterion”

 > Standard unitarity (2-particle cuts) reproduces all rational terms,
    up to shifts in the coupling.

Efficient way for

 > Proposing/checking matrix structure and overall phases for models relevant 
    for the AdS/CFT correspondence. 

 > Checks of quantum integrability aspects (e.g. group factorization).

 > Integrability is crucial asset = = ==

 > Structure of the one-loop S-matrix derived by unitarity cuts
    automatically satisfies the Yang-Baxter equation S12S13S23 = S23S13S12 ,

L. Bianchi, B. Hoare, arXiv: 1405.7947



Wish list

Two loops rational terms (all logarithms reproduced in 

[Engelund McEwan Roiban 2013]

Higher points: factorization should emerge

Extend to other interesting integrable string backgrounds  
 

Extend to off-shell objects, including form factors  and correlation functions. 

(require a tree-level S-matrix! and massless modes treatment)
 

[Basso 2010]

[Klose McLoughlin 2012/2013]

[Engelund McEwan Roiban 2013]



String sigma-model perturbation theory II

ABJM cusp anomaly at two loops
and the interpolating function h(λ)

L. Bianchi, M.S. Bianchi, A. Bres, VF, E. Vescovi,  arxiv:1407.4788 



AdS4/CFT3 and integrability

super Chern-Simons theory in 3d andN = 6 AdS4 ⇥ CP3Type IIA strings in 

believed to be integrable: Bethe equations, quantum spectral curve approach.

1. The string background is not maximally supersymmetric

2. Dispersion relation  entering all-integrability based calculations

✏ =

r
1 + 4h2(�) sin2

p

2

is in terms of an unknown, here non-trivial, interpolating function of the coupling. 

Construction of the superstring action is complicated: coset sigma-model does not
cover full superspace, issues with κ-symmetry gauge-fixing.

Similarities with AdS5/CFT4, but two important differences:

Planar AdS4/CFT3 system

Valentina Forini, ABJM cusp anomaly at two loops



Integrable couplings

In ABJM  non-trivial dependence on the t’Hooft coupling

h2
(�) = �2 � 2⇡3

3

�4
+O �

�6
�

� ⌧ 1

h(�) =

r
�

2

� log 2

2⇡
+O(

p
�)�1 � � 1

N = 4In              SYM the function is “trivial”: h(�YM ) =

p
�YM

4⇡

Checked exactly via comparison between integrability and localisation results
for the ``Brehmstrahulung function’‘ of N=4 SYM. 

[Klose, McLoughlin, Minahan, Zarembo 2007][Hofman Maldacena 2006]
[Gross Mikhailov Roiban 2002] [Santambrogio Zanon 2002]

[Correa, Henn, Sever, Maldacena 2012]

Seen perturbatively at weak and strong coupling. 

[Gaiotto Giombi Yin 08] [Grignani Harmark Orselli] [Nihsioka Takayanagi 08] 
[Minahan, Ohlsson Sax, Sieg 09] [Leoni, Mauri, Minahan, Ohlsson Sax, Santambrogio, Sieg, 

Tartaglino Mazzucchellu 10]

Valentina Forini, ABJM cusp anomaly at two loops

[Sieg 2010]



A conjecture exist

� =
sinh 2⇡h(�)

2⇡
3F2

✓
1

2
,
1

2
,
1

2
; 1,

3

2
;� sinh2 2⇡h(�)

◆

extrapolated by “similarities” between two all-order calculations:

> one based on integrability: “slope-function” as exact solution of the ABJM spectral curve

> one based on localization: expectation1/6 BPS Wilson loop

h(�) = �� ⇡2

3

�3
+

5⇡4

12

�5 � 893⇡6

1260

�7
+O(�9

) � ⌧ 1

h(�) =

s
1

2

✓
�� 1

24

◆
� log 2

2⇡
+O

⇣
e�2⇡

p
2�
⌘

� � 1

  A conjecture for the ABJM integrable coupling

[Gromov Sizov 2014]

[Cavaglia’, Fioravanti, Gromov Tateo 2014]

[Marino, Putrov, 10] [Drukker, Marino, Putrov, 10]

Not yet integrability-derived ABJM  ``Brehmstrahlung function’‘ 
[Lewkowycz  Maldacena 2013] [Bianchi, Griguolo, Leoni, Penati, Seminara 2014]

Valentina Forini, ABJM cusp anomaly at two loops

Finite coupling dependence unknown from first principles.



Cusp anomaly in AdS5/CFT4 

Weak coupling: 

Strong coupling: corresponding string configurations are related 

> anomalous dimension of twist operators in large spin limit

> governs renormalization of light-like cusped Wilson loops

Integrability gives an all-order equation for cusp anomaly         , BES equation
matching all known perturbative results.

[Gubser, Klebanov, Polyakov,02] [Kruczenski,02] [Kruczenski, Tirziu, Roiban, Tseytlin 07]

hWcuspi ⇠ e�f(�)� ln ⇤
✏

�twist ⇠ f(�) lnS , S � 1

Eclassical ⇠ f(�) lnS , S � 1 hWcuspi = Zstring =

Z
[dXd✓]e�S[X,✓]

[Beisert Eden Staduacher 2006]
f(�)



ABJM cusp anomaly

BES equation is only slightly modified, therefore the prediction 

fABJM(�) =
1

2
fN=4(�YM)

����p�YM
4⇡ !h(�)

from which, knowing already the N=4 SYM case,  

fABJM(�) = 2h(�)� 3 log 2

2⇡
� K

8⇡2

1

h(�)
+ · · ·

A direct string sigma-model evaluation of the LHS 

� � 1

[Gromov Vieira 2008]

[ABJM]

fABJM(�) =
p
2�� 5 log 2

2⇡
+O(

p
�)�1

h(�) =

r
�

2

� log 2

2⇡
+O(

p
�)�1

will give also an extimation of the rhs.
[several papers]

Valentina Forini, ABJM cusp anomaly at two loops

Despite nontrivial differences of the cusp physics in ABJM 
[MS Bianchi, Griguolo, Penati, Seminara 2013,14] [Marmiroli 2013] [Lewkowitz Maldacena 2013]

[Basso Korchemsky Kotanski 2007]
[Roiban Tseytlin 2007]



Superstrings on AdS4xCP3

Solution of Type IIA sugra preserving 24 out of 32 supersymmetries.

Supercoset approach à la                              .  Sigma-model action  based on  

OSp(6|4)
U(3)⇥ SO(1, 3)

has 24 fermionic dof: interpreted as partial kappa-symmetry gauge-fixing of 
full action. Remaining kappa-symmetry generically removes 8 fermions.

   For strings only moving in AdS4 kappa-symmetry is enhanced: 
   only 12 (out of 16) physical fermions! Coset  model misses 4 physical fermions.

     For these configurations (and higher order perturbation theory) start from complete  
     AdS4xCP3 action and make alternative kappa-symmetry gauge fixing.

[Arutyunov Frolov 08] 
[Stefanski 08]

[Nilsson Pope, 84]

[Gomis Sorokin Wulff 08] [Grassi Sorokin Wulff 09] [Uvarov 09]

[Metsaev Tseytlin 98] 



AdS4xCP3  action in AdS light-cone gauge

Obtained in                       from double dimensional reduction from D=11 
membrane action based on supercoset OSp(8/4)/(SO(1,3)x S7)

κ-symmetry gauge-fixing: light-cone gauge, with light-cone in the boundary of AdS4 

[Uvarov, 09,10]

[de Wit, Peeters, Plefka, Sevrin 98]

> dramatically simplifies fermionic part of the action

In AdS5xS5 two ways to fix light-cone gauge corresponding to two inequivalent 
geodesics:

1. one wrapping a big circle in S5 

[Metsaev Tseytlin 00]
[Metsaev Thorn Tseytlin 00]

2. one running entirely inside AdS5 

> widely used in AdS/CFT (BMN, pp-waves, world-sheet S-matrix)

Valentina Forini, ABJM cusp anomaly at two loops

> quite complicated (non-polynomial) form.



AdS4xCP3 light-cone gauge action

   Convenient to use Poincaré patch

Take the natural light-cone coordinates on R1,2

ds

2
AdS4

=
dw

2 + dx

+
dx

� + dx

1
dx

1

w

2
x

± = x

2 ± x

0

   To fix bosonic diffeos choose a “modified” conformal gauge 

x

+
= p

+
⌧ , p

+
= const

combined with standard light-cone gauge

�ij = diag(�w2, w�2)

�+⇥ = (�0 + �2)⇥ = 0

> Kill that half of the fermions related to generators with negative 
   charge wrt          from Lorentz group acting on Minkowski boundaryJ+�

> Divide the 32-dimensional spinors associated to odd generators of OSp(8/4) in:
   
   θ fermions (superPoincare)
   η fermions (superconformal)

   To fix κ-symmetry, choose

Valentina Forini, ABJM cusp anomaly at two loops



2 AdS light-cone gauge in AdS4 ⇥ CP3

Our starting point is the AdS
4

⇥ CP3 Lagrangian in the -symmetry light-cone gauge proposed
in [?,?]. This is obtained by double dimensional reduction from the eleven-dimensional membrane
action [?] based on the supercoset OSp(8|4)/ (SO(1, 3)⇥ SO(7)), and choosing a -symmetry light-
cone gauge for which both light-like directions lie in AdS

4

. In the spirit of [?,?] (and of earlier
studies of brane models on the AdS⇥S backgrounds) the construction of [?,?] formulates the bulk
string theory in a way which is naturally related to the boundary CFT theory. In particular, the
32-dimensional spinors whose components are the coordinates associated to the odd generators of
OSp(8|4) are divided in ✓ and ⌘ fermions corresponding, respectively, to super-Poincaré generators
and superconformal generators. The AdS -symmetry light-cone gauge consists in setting to zero
that half of the fermions which correspond to fermionic generators having negative charge w.r.t.
the SO(1, 1) generatorM+� from the Lorentz group acting on the Minkowski boundary of AdS

4

11.
As our analysis below explicitly shows, it has the advantage of encompassing a quantum analysis
of string configurations classically moving in the AdS

4

sector of AdS
4

⇥ CP3

12.

The AdS
4

⇥ CP3 background metric is

ds2
10

= R2

✓

1

4
ds2

AdS4
+ ds2CP3

◆

, (2.1)

where R is the CP3 radius. For AdS
4

the Poincaré patch is used and the parametrization of CP3

is at this stage arbitrary

ds2
AdS4

=
dw2 + dx+dx� + dx1dx1

w2

x± ⌘ x2 ± x0 , (2.2)

ds2CP3 = g
MN

dzMdzN M = 1, ..., 6 . (2.3)

Above, x± are the light-cone coordinates, xm = (x0, x1, x2) parametrize the three-dimensional
boundary of AdS

4

and w ⌘ e2' is the radial coordinate. The -symmetry light-cone gauge-fixed
Lagrangian of [?,?] can be written as follows 13

S = �T

2

Z

d⌧ d�L (2.5)

L = �ij
ne�4'

4

�

@
i

x+@
j

x� + @
i

x1@
j

x1
�

+ @
i

'@
j

'+ g
MN

@
i

zM@
j

zN

+ e�4'

⇥

@
i

x+$
j

+ @
i

x+@
j

zMh
M

+ e�4'B@
i

x+@
j

x+
⇤

o

� 2 "ije�4'

�

!
i

@
j

x+ + e�2'C@
i

x1@
j

x+ + @
i

x+@
j

zM`
M

�

11Another -symmetry gauge condition based on a similar “superconformal” basis has been considered in [?].
12An alternative -symmetry gauge fixing of the complete AdS4⇥CP3 superspace [?] which is suitable for studying
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AdS4xCP3 light-cone gauge action

AdS lc gauge-fixed action: at most quartic in the remaining16 fermions
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where the string tension T has been defined in (1.5) and the following quantities
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include fermions up to the fourth power. As in the AdS
5

⇥ S5 case [?,?], the action is quadratic
in the ✓-fermions and quartic in the ⌘-fermions.

Above, the fermionic coordinates ⌘
a

and ✓
a

(and their conjugates) transform in the funda-
mental (antifundamental) representation of SU(3) (a = 1, 2, 3), and correspond to the unbroken
24 supersymmetries of the AdS

4

⇥ CP3 background. The remaining fermions ⌘
4

, ✓
4

and their
conjugates originate from the eight broken supersymmetries. The manifest symmetry of the ac-
tion is thus only the SU(3) subgroup of the SU(4) global symmetry of CP3. This feature, as we
will see, will be inherited by the quantum fluctuations around the light-like cusp (see also discus-
sion in Appendix A). The ⌦a

M

and ⌦
aM

appearing in the Lagrangian are the complex vielbein
of CP3, ds2CP3 = ⌦a
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dzM dzN , namely components of the Cartan one-forms of SU(4)/U(3),
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M

dzM and ⌦
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dzM . In the construction of [?], ⌦̃ a
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is associated to a one-form cor-
responding to the fiber direction of S7. Its expression is given explicitly below in terms of the CP3

coordinates. The ⌦a

M

and ⌦̃ a

a

appear in [?] in a “dressed” OSp(6|4)/(U(3)⇥SO(1, 3)) supercoset
element where the dressing incorporates the information on the broken supersymmetries and U(1)
fiber direction. In (2.6), hatted quantities are related to unhatted ones via a rotation by matrices
T (similar matrices were conveniently introduced in [?]) which depend on the CP3 coordinates and
act as follows on e.g. a ⌘
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In Appendix A we rewrite the Lagrangian (2.5) in a form that is more similar to the AdS
5

⇥ S5

of [?], and comment more on the Cartan forms ⌦ and T -matrices.

The parametrization for CP3 chosen in [?] consists of complex variables za and z̄
a

, transforming
in the 3 and 3̄ of SU(3) respectively. Then the metric reads
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For the one-forms appearing in the Lagrangian explicit expressions then follow, which can be
derived from their definition
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Only SU(3) symmetry is manifest (will be inherited by fluctuations on the cusp)

No studies at quantum level so far. One of our aims is to check its quantum 
consistency (finiteness) and shows that is in fact simple to handle.



Anomalous radius shift

Original ABJM dictionary proposal (R is the CP3 radius)

T =
R2

2⇡↵0 = 2
p
2�

� =
N

k

T =
R2

2⇡↵0 = 2

s

2

✓
�� 1

24

◆
 is modified to (in planar limit) 

(due to an orbifold singularity of the original, M-theory, background)  

 plays a role at 2-loop order in perturbation theory

[Bergman Hirano 2009]

2
p
2�� 1

12
p
2�

[ABJM 2008]

Valentina Forini, ABJM cusp anomaly at two loops

String perturbative expansion - in inverse string (effective) tension - is not affected.
Shift: assumed, new input which plays a role when expressing the result in terms of    .�



 Perturbative evaluation of path integral around the cusp

Classical solution

 describe a surface bounded by a null cusp, as at the AdS4 boundary                                 .0 = z

2 = �2x+
x

�

 To extract cusp anomaly, compute partition function around it.

⌘ e�
1
2 f(�)V V : ⇠ logS(infinite) 2d volume, 

hWcuspi = Zstring ⌘
Z

D[x,w, z, ⌘, ✓] e�SE

w ⌘ e

2' =

r
⌧

�

x

+ = ⌧ x

� = � 1

2�

Expand around the solution  X = Xcl + X̃

and evaluate the path integral perturbatively.

Zstring

As solution is “homogeneous”, i.e. fluctuation lagrangean has constant 
coefficients, one can factor out V.

f(g) = g


1 +

a1
g

+
a2
g2

+ . . .

�
, g =

T

2
.



W1 = � logZ1
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1

2

Z
d2p

(2⇡)2
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ln(p2 + 1) + ln
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1

2
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+ 6 ln(p2)� 2 ln(p2)� 6 ln

✓
p2 +

1

4

◆�

= �5 ln 2

16⇡

Z
dtds

| {z }
V

� lnZ1

 One loop

Very smooth calculation. 

Their determinant is easily evaluated 

 One-loop finiteness, expected result:    a1 = �5 log 2

2⇡

[McLoughlin, Roiban, Tseytlin 08] [Alday Arutyunov Bykov 08]

Valentina Forini, ABJM cusp anomaly at two loops



  loops

Expand the action up to quartic order in fluctuations 

 Two loops

and compute  all connected vacuum Feynman diagrams. 

Valentina Forini, ABJM cusp anomaly at two loops

(         parametrized by relative of Fubini-Study metric in terms of 
complex variables       and       , transforming in the      and      of             ). 3 3̄ SU(3)za z̄a
CP3



  loops Two loops

At this order, possible topologies of connected vacuum diagrams 
are sunset, double bubble, double tadpole.

where vertices carry up to two derivatives.

Finiteness is not obvious, each diagram is separately divergent.
Some simplicity occurring by bosonic propagators being diagonal.

Massless fermions (main difference wrt to AdS5xS5 case) behave as effectively decoupled

Valentina Forini, ABJM cusp anomaly at two loops



 Two loops

Standard reduction allows to rewrite every integral as linear combination of 
the two scalar integrals

Summing up diagrams, all divergences cancel, finite contributions 
always reduce to the three-propagator integral 

which is responsible for the appearance of the Catalan constant K.

Two-loop result:
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Valentina Forini, ABJM cusp anomaly at two loops



The two loop ABJM cusp anomaly at strong coupling

 Final result
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The two loop ABJM cusp anomaly at strong coupling     (                     )

 Final result

fABJM(�) = 2h(�)� 3 log 2
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8⇡2

1

h(�)
+ · · ·
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24
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The N=4 SYM result has different factors (effect of ratio of AdS4 and CP3 radii,
# of transverse bosons, # of massive fermions) in front of same structures.

Using integrability prediction

we get  for the interpolating function at strong coupling
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coinciding with strong coupling expansion of [Gromov Sizov 2014] conjecture



 ✓ Quantum consistency (UV-finiteness) of this AdS4xCP3 action.      

 ✓ First non-trivial perturbative check of          at strong coupling.h(�)

 ✓ Indirect evidence of quantum integrability of Type IIA  string in AdS4xCP3 

Concluding remarks & outlook

 ✓ Two-loop calculation of ABJM cusp  anomaly at strong coupling.

 Calculate           in backgrounds relevant for the AdS3/CFT2  correspondence.f(�)

Three loop calculation: should involve products of              and ⇣3K ln 2

Transcendentality properties studied, but yet unknown integrals.
Interesting for seeing divergence cancellation mechanism.

Finite coupling “stringy” test of          could be via lattice, à la                                : h(�)  [McEwan, Roiban, 13]
partition function of the discretized AdS light-cone gauge action in the background 
of the null cusp solution.
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EXTRAS



Brehmstrahlung function of N=4 SYM



Brehmstrahlung function of N=4 SYM

where L is the modified Laguerre polynomial and W0 is the 
[Erickson Semenoff Zarembo 00]
[Drukker  Gross 00]
[Pestun 07]The last line gives the planar expression.

1/2 BPS circular Wilson loop.



   Standard quantization of a soliton

L L̃fluct

>  Background field method

� = �cl + �̃
4p�

>  Effective action
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>  1-loop energy
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Semiclassical quantization for “non homogenous solutions”



Semiclassical quantization EXACTLY

Lamé equation
with periodic b.c.

Fluctuation operators obey eigenvalue equations that can be cast in a known form 
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Spectrum non-trivial, but  solution is known exactly 
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    Gelfand Yaglom theorem: to compute determinant, 
    solve an associated  initial value problem, then the
    determinant is simply given in terms of the solution
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Exact one-loop partition function

Not easy to deal with, but the expanded integrand is rich of information 



The phase

with Zhukovsky variables encoding dispersion relation

Beyond one loop each contribution is rational.

Bilinear of local charges

Crossing equation
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Compact formula for the one-loop contribution (explicitating bubble integrals) 

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by
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where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by
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where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (2.31)

9

| {z } | {z }
logarithmic terms rational real

| {z }
rational 

imaginary

✓ ⌘ arcsinh
�e0p� ep0

mm0
�

e =
p

p2 +m2 , e0 =
p

p02 +m02

necessarily satisfied by integrable theories.
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Unitarity-cut result and the Yang-Baxter equation

Useful to be used in the Yang-Baxter equation, a cubic matrix equation

Generalization to different masses.



Unitarity-cut result and the Yang-Baxter equation
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Unitarity-cut result and the Yang-Baxter equation

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by
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where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by
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where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,
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Unitarity-cut result and the Yang-Baxter equation

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by
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where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by

T

(1) =
✓

2⇡
(T (0) u

T

(0) � T

(0) s
T

(0)) +
i

2
T

(0) s
T

(0) +
1

16⇡
(
1

m

2
e
T

(0) t
 

T

(0) +
1

m

02T
(0) t
!

e
T

(0)) , (2.29)

where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,

[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0 . (2.31)

9

| {z } | {z }
logarithmic terms rational real

| {z }
rational 

imaginary

Classical Yang-Baxter[T(0)
12 ,T

(0)
13 ] + [T(0)

12 ,T
(0)
23 ] + [T(0)

13 ,T
(0)
23 ] = 0

[T(0)
12 ,T

(1)
13 ] + [T(0)

12 ,T
(1)
23 ] + [T(0)

13 ,T
(1)
23 ]� [T(0)

13 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
12 ]� [T(0)

23 ,T
(1)
13 ] =

T(0)
23 T

(0)
13 T

(0)
12 � T(0)

12 T
(0)
13 T

(0)
23

S12S13S23 = S23S13S12 ,

= = ==

⇠ 1⇠ 1

Yang-Baxter is automatically satisfied by the unitarity-constructed one-loop S-matrix.



Unitarity-cut result and the Yang-Baxter equation

The arguments of the second factor of eA(0) contain all four of the external momenta and therefore this part

is well-defined when we fix q = p and q

0 = p

0. Therefore, let us focus on the first factor of eA(0), whose

arguments only depend on two of the momenta. Recalling that in an integrable theory the amplitude should

vanish unless the set of outgoing momenta is a permutation of the set of incoming momenta, it follows that

this first factor vanishes unless ml = m. In this case (2.26) reduces to

(�1)[P ][S]+[R][S] eA(0)SP
MR(p, q, p, q) eA(0)RQ

SN (p, p0, q, q0) . (2.27)

Finally setting q = p and q

0 = p

0 this expression can then be written in terms of tree-level S-matrices.

A similar logic follows for the second solution (2.25), except that here the contribution vanishes unless

ml = m

0.

It therefore follows that the contribution from the t-channel is given by
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where e
T

(0) in the first term is built from the tree-level S-matrix for the scattering of two excitations of mass

m, while in the second term it is built from the tree-level S-matrix for two excitations of mass m0. We have

included an additional factor of 1/2 as we should still use both vertices to solve for the loop momenta and

take the average.

Combining eqs. (2.22) and (2.28) we find that the one-loop result in the case where an excitation of mass

m is scattered with an excitation of mass m0 is given by
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where, again under the assumption that T (0) is real, there is a natural split of the result into three pieces;

a logarithmic part, an imaginary rational part, and a real rational part. Setting m = m

0 = 1 we see that

this formula reduces to, and hence incorporates, the single-mass case given in eq. 2.21.

A key consequence of the results in this section is that the cut-constructible one-loop S-matrix for the

scattering of a particle of mass m with one of mass m

0 is built from the corresponding tree-level S-matrix

along with the tree-level S-matrices for the scattering of two particles of mass m and for two particles of

mass m

0, both evaluated at equal momenta. In particular there are no contributions containing tree-level

S-matrices for particles of masses other than m and m

0. This will be important in later sections as it

allows us to construct the one-loop cut-constructible S-matrix for various sectors without knowing the full

tree-level S-matrix.

The result (2.29) deserves a comment regarding its relation to integrability and the Yang-Baxter equation.

The Yang-Baxter equation is a cubic matrix equation that should be satisfied by S-matrices describing

scattering in integrable theories. Up to signs related to fermions, which we are not concerned with for this

schematic discussion, it can be written as

S12S13S23 = S23S13S12 , (2.30)

where these operators are acting on a three-particle state and the indices denote the particles that are

being scattered. The first non-trivial order in its perturbative expansion is called the classical Yang-Baxter

equation and is a relation that is quadratic in the tree-level S-matrix,
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Yang-Baxter is automatically satisfied by the unitarity-constructed one-loop S-matrix.


