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Back to the bootstrap

Conformal field theory revisited

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

σ(x1)σ(x2) ∼ 1

(x1 − x2)2∆σ
+

ε(x2)

(x1 − x2)2∆σ−∆ε
+ . . .

∆ε

∆σ

[Rattazzi, Rychkov, Tonni, Vichi (2008)]
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Figure 3: Shaded: the part of the (��,�") plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �� in this range, we ask: What is the maximal �" allowed by (5.3)?

The result is plotted in Fig. 3: only the points (��,�") in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �� and �" error bands given in Table 1.
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the �� and �" error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  �"  1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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[El-Showk, Paulos, Poland, Simmons-Duffin, Rychkov, Vichi (2012)]



The superconformal bootstrap program

We are going to explore the consequences of crossing symmetry for
superconformal field theories.

• Can we bootstrap specific superconformal theories?
• What can we learn about the space of all superconformal theories?



Spaces of superconformal field theories

The space of all N -extended superconformal field theories in four dimensions

N = 4

• Lagrangian theories are classified by

(G, τ)/SL(2,Z)

where G is a simple Lie group and τ ∈ H
• No exotic theories?

N = 2

• Quiver classification of Lagrangian theories
[Bhardwaj, Tachikawa (2013)]

• Class ‘S’ theories obtained from six
dimensions [Gaiotto (2008)]

• Many non-Lagrangian theories
• Do we have a complete classification?

The N = 2 landscape: class S(ix), or 6= 4+2
Geometric understanding of these novel SCFTs and their dualities (Gaiotto)
Urmutter of SCFTs: six-dimensional (2, 0) theory.

Put (2, 0) on R4 ⇥ C, where C is a Riemann
surface with appropriate punctures. In the IR,
the theory flows to an N = 2 SCFT that lives on
R4. We call it T [C].

��� 4d SCFT T [C] 2d data on C
���

���Marginal gauge couplings Complex moduli of C
������ SU(N) gauge group cylinder
������ with coupling ⌧ with sewing parameter q = exp(2⇡i⌧)
������ Isolated SCFT Three-punctured sphere (trinion)
������ Flavor-symmetry factor Puncture
������ Generalized S-duality Modular transformation of C
���

The metric on C is “irrelevant” (in the RG sense), while its complex moduli are
interpreted as the gauge couplings of the 4d theory. Roughly, decomposing C into
cylinders and trivalent vertices, the lengths of the cylinders are associated to
inverse gauge couplings 1/gi.
The punctures are associated to flavor symmetries.
Cylinders = vectormultiplets
Trivalent vertices (three-punctured spheres) = elementary isolated SCFTs.
Modular transformations of a C = generalized S-duality.
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Can the bootstrap program help us?



The superconformal bootstrap program

We are going to explore the consequences of crossing symmetry for
superconformal field theories.

• Can we bootstrap specific superconformal theories?
• What can we learn about the space of all superconformal theories?



The superconformal bootstrap

Is there a protected, solvable subsector of the crossing symmetry constraints
for superconformal field theories?

Yes, for

d = 4 theories with N = 2 susy

d = 6 theories with (2, 0) susy

d = 2 theories with (0, 4) susy

More precisely, we find that twisted correlation functions of certain protected
operators become those of a two-dimensional chiral algebra and can be
completely solved.

For example,

T (z)T (w) ∼ c/2

(z − w)2
+

2T

(z − w)2
+

∂T

z − w

completely determines all the correlation functions of T (z).

[Beem, Lemos, Liendo, Peelaers, Rastelli, BvR (2013)]



The superconformal bootstrap program

Consequently, our program splits into two parts:�� ��Minibootstrap

• Protected
• Meromorphic
• Virasoro, Kac-Moody, W , . . .

−→

�� ��Maxibootstrap

• Not protected
• Numerical
• Linear programming
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Definition

Take an N = 2 superconformal field theory. Recall that the N = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

su(2, 2)× su(2)R × u(1)r

so irreps are labeled with ∆, (j1, j2) and (R, r).

Consider now an n-point correlation function

〈OI1(x1) . . .OIn(xn)〉

and restrict it in the following way:

1 Take all operators to be ‘Schur’ operators satisfying ∆ = 2R+ j1 + j2.

2 Take all n points to lie in a two-plane R2 ⊂ R4.

3 Contract the su(2)R indices with position-dependent vectors vI(z̄).
For example, for the fundamental representation v(z̄) = (1, z̄).

Claim: the resulting correlation function is meromorphic in all the positions.



Definition

Take an N = 2 superconformal field theory. Recall that the N = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

su(2, 2)× su(2)R × u(1)r

so irreps are labeled with ∆, (j1, j2) and (R, r).

Consider now an n-point correlation function

〈OI1(z1, z̄1) . . .OIn(zn, z̄n)〉

and restrict it in the following way:

1 Take all operators to be ‘Schur’ operators satisfying ∆ = 2R+ j1 + j2.

2 Take all n points to lie in a two-plane R2 ⊂ R4.

3 Contract the su(2)R indices with position-dependent vectors vI(z̄).
For example, for the fundamental representation v(z̄) = (1, z̄).

Claim: the resulting correlation function is meromorphic in all the positions.



Definition

Take an N = 2 superconformal field theory. Recall that the N = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

su(2, 2)× su(2)R × u(1)r

so irreps are labeled with ∆, (j1, j2) and (R, r).

Consider now an n-point correlation function

vI1(z̄1) . . . vIn(z̄n)〈OI1(z1, z̄1) . . .OIn(zn, z̄n)〉

and restrict it in the following way:

1 Take all operators to be ‘Schur’ operators satisfying ∆ = 2R+ j1 + j2.

2 Take all n points to lie in a two-plane R2 ⊂ R4.

3 Contract the su(2)R indices with position-dependent vectors vI(z̄).
For example, for the fundamental representation v(z̄) = (1, z̄).

Claim: the resulting correlation function is meromorphic in all the positions.



Definition

Take an N = 2 superconformal field theory. Recall that the N = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

su(2, 2)× su(2)R × u(1)r

so irreps are labeled with ∆, (j1, j2) and (R, r).

Consider now an n-point correlation function

∂

∂z̄k

(
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)
= 0
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Example: free hypermultiplet

In a free hypermultiplet the scalars QI = (Q, Q̃∗) and Q̃J = (Q̃,−Q∗) form
two su(2)R doublets and satisfy ∆ = 2R+ j1 + j2. Their OPE is

QI(z, z̄)Q̃J(0) ∼ −ε
IJ

zz̄

so

vI(z̄)Q
I(z, z̄)vJ(0)Q̃J(0) ∼ −vI(z̄)vJ(0)εIJ

zz̄
=

1

z

Defining q(z) = vIQ
I and q̃(z) = vIQ̃

I we find the two-dimensional OPE

q(z)q̃(0) ∼ 1

z

corresponding to a (non-unitary) pair of symplectic bosons of dimension 1/2.



Definition

Claim:
∂

∂z̄k
〈vI1(z̄1)OI1(z1, z̄1) . . . . . . vIn(z̄n)OIn(zn, z̄n)〉 = 0

Proof:
• There exists a particular nilpotent supercharge Q such that

{Q, Q†} = H− 2R−M +
+ −M +̇

+̇

so necessarily ∆− 2R− j1 − j2 ≥ 0 and a Schur operator satisfies

[Q,O1...1
+...++̇...+̇(0)} = 0 .

We can pick Q = Q1
− − S̃ 2̇−.

• Holomorphic translations are Q closed

[Q, Pz] = 0

• In the antiholomorphic direction we find that

∂z̄
(
vI(z̄)OI(z, z̄)

)
= vI(z̄)[Pz̄ +R−,OI(z̄)]

and such twisted antiholomorphic translations are Q exact

Pz̄ +R− = {Q, . . .}

Meromorphicity then follows from the usual cohomological argument.



Definition

In fact, by restricting ourselves to R2 ⊂ R4 we preserve

sl(2)L × sl(2|2)R ⊂ su(2, 2|2)

The entire sl(2)L is closed

[Q, L−1] = 0 [Q, L0] = 0 [Q, L1] = 0

and the entire twisted sl(2)R is exact

L̄−1 +R− = {Q, . . .} L̄0 −R = {Q, . . .} L̄1 −R+ = {Q, . . .}

→ We have a superconformal twist. Notice that

L0 =
1

2

(
H+M +

+ +M +̇

+̇

)
→ h =

1

2
(∆ + j1 + j2)

L̄0 −R =
1

2

(
H− 2R−M +

+ −M +̇

+̇

)
=

1

2
{Q, Q†} = 0

→ The twist works for any superconformal algebra with an sl(2|2)
subalgebra, so chiral algebras also exist for (2, 0) SUSY in d = 6 and
(0, 4) SUSY in d = 2.



Dictionary

Hypermultiplet → Symplectic bosons

Vector multiplet → (b, c) ghost system of type (1, 0)

Flavor symmetry G → affine Kac-Moody symmetry G

jA(z)jB(0) ∼ k2d
z2

+
fABC
z

jC(0)
k2d = −k4d/2

Stress tensor → Virasoro stress tensor
T (z)T (0) ∼ c2d

z4
+ 2T (0)

z2
+ ∂T (0)

z

c2d = −12c4d

Higgs branch chiral ring → Virasoro primaries

Chiral ring relations → Null states

Coulomb branch chiral ring →/

. . .



Consequences for four-dimensional physics

To summarize, N = 2 SCFTs in d = 4 always have infinite chiral symmetry in
a protected sector. In particular we have Virasoro symmetry, but there is
often much more.

Practical consequences?
• Representation theory: Schur operators form Virasoro (or AKM) irreps
• OPE coefficients: infinite classes are fixed by meromorphicity
• New unitarity bounds:

for example, for SU(N) flavor symmetry with N ≥ 3 we have k4d ≥ N



Outlook

What else do we know?
• Chiral algebras in six dimensions: Wg for Ag type theories
• Chiral algebras on defects: AKM at a critical level k = −h∨

• Nonmaximal punctures in class S: QDS reduction
• Class S structure: a generalized TQFT with values in chiral algebras
• . . .

[Beem, Rastelli, BvR (2014)]
[Beem, Peelaers, Rastelli, BvR (to appear)]

What don’t we know yet?
• Proofs for chiral algebras for specific theories
• Classifications of chiral algebras?
• Connection to AGT?
• Connection to geometric Langlands?

The N = 2 landscape: class S(ix), or 6= 4+2
Geometric understanding of these novel SCFTs and their dualities (Gaiotto)
Urmutter of SCFTs: six-dimensional (2, 0) theory.

Put (2, 0) on R4 ⇥ C, where C is a Riemann
surface with appropriate punctures. In the IR,
the theory flows to an N = 2 SCFT that lives on
R4. We call it T [C].

��� 4d SCFT T [C] 2d data on C
���

���Marginal gauge couplings Complex moduli of C
������ SU(N) gauge group cylinder
������ with coupling ⌧ with sewing parameter q = exp(2⇡i⌧)
������ Isolated SCFT Three-punctured sphere (trinion)
������ Flavor-symmetry factor Puncture
������ Generalized S-duality Modular transformation of C
���

The metric on C is “irrelevant” (in the RG sense), while its complex moduli are
interpreted as the gauge couplings of the 4d theory. Roughly, decomposing C into
cylinders and trivalent vertices, the lengths of the cylinders are associated to
inverse gauge couplings 1/gi.
The punctures are associated to flavor symmetries.
Cylinders = vectormultiplets
Trivalent vertices (three-punctured spheres) = elementary isolated SCFTs.
Modular transformations of a C = generalized S-duality.
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The N = 4 maxibootstrap

In theories with N = 4 superconformal symmetry, the primary Oi20′ is a
universal operator. So let’s bootstrap its four-point function,

〈Oi120′(x1)Oi220′(x2)Oi320′(x3)Oi420′(x4) 〉 =
Ai1i2i3i4(u, v)

x4
12x

4
34

A priori there are 6 different functions but they are fixed in terms of a single
unconstrained function A(u, v) and two meromorphic functions f1(z) and
f2(z).

• The fi(z) are fixed by the chiral algebra in terms of a = dim G/4 so they
are input for the numerical bootstrap.

• The unconstrained function A(u, v) contains information on the
unprotected operators only and is analyzed numerically.

Note: the only long multiplets that can appear have R = 0 and even spin.
Examples would be Konishi Tr (ΦIΦI) or the double-trace operator
Tr (Φ{IΦJ})Tr (Φ{IΦJ}).



The N = 4 maxibootstrap

Results for the first unprotected scalar with R = 0
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Figure : Bounds for the scaling dimension of the leading twist unprotected
operator of spin zero. The bounds are displayed as a function of the (square root
of the) central charge a. The best bound is shown in blue.

Note: kink at a = 3/4 is part of the input.
F short(u, v; a) has non-analytic behavior (continuous but not di↵erentiable) at
a = 3/4. For a < 3/4 unitarity forces the introduction of higher spin currents.
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[Beem, Rastelli, BvR (2013)]

∆kon = 2+ 3Ng
π
− 3N2g2

π2 + 21N3g3

4π3 +
(
−39 + 9 ζ(3)− 45 ζ(5)

(
1
2

+ 6
N2

))
N4g4

4π4 +· · · ,

[Velizhanin, . . . ]



The N = 2 maxibootstrap

In theories with N = 2 superconformal symmetry, a flavor symmetry multiplet
contains a dimension two scalar µA,IJ in the triplet of su(2)R known as the
moment map.

Its four-point function is decomposed into a set of meromorphic functions
fABCD(z) and unconstrained functions GABCD(u, v). The meromorphic
functions are fixed from

〈jA(0)jB(z)jC(1)jD(∞)〉 = fABCD(z)

and we analyze the two-variable functions numerically.

Input parameters:
• global symmetry algebra G
• flavor central charge k
• central charge c

Output:
• Can the theory exist?
• Bounds on e.g. scalar operators
• . . .



The N = 2 maxibootstrap

Global symmetry group: E6
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[Beem, Lemos, Liendo, Rastelli, BvR (2013)]



The N = 2 maxibootstrap

Global symmetry group: su(2)
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The N = 2 maxibootstrap

Global symmetry group: su(2)
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[Beem, Lemos, Liendo, Rastelli, BvR (2013)]



Other results

Other work on the superconformal maxibootstrap:
• N = 1 in d = 4

[Poland, Simmons-Duffin, Vichi (2010-2011);
Berkooz, Yacoby, Zait (2014)]

• N = 4 in d = 4 [Alday, Bissi (2013-2014)]
• N = 8 in d = 3 [Chester, Lee, Pufu, Yacoby (2014)]
• (2, 0) in d = 6 [Beem, Lemos, Rastelli, BvR (to appear)]
• . . .

Lots of analytic work, for example on the computation of superconformal
blocks, the lightcone limit, etc.
[Fitzpatrick, Kaplan, Khandker, Komargodski, Li, Poland, Simmons-Duffin,
Zhiboedov, . . . (2010-2014)]



Conclusions

We are only beginning to understand the consequences of crossing
symmetry for superconformal theories. The results so far have been very
promising.

Grand questions:
• Spaces of SCFTs?
• Microscopic derivation of AGT?
• From bounds to solutions?



Extra slides



Conformal multiplets

The conformal group in four dimensions is SU(2, 2) ∼ SO(4, 2) with
generators

Pµ Mµν D Kµ

Consider the set of local operators in a CFT

{O∆,j1,j2
i (x)}

where [D,O] = ∆O and (j1, j2) are the Lorentz quantum numbers.

They can be organized in conformal multiplets consisting of

primary: [Kµ,O∆,j1,j2
i (0)] = 0

descendants: ∂µ1 . . . ∂µnO
∆,j1,j2
i (0)

Sometimes representations are short, e.g.

∂µJ
µ = 0 �φ = 0

and then the dimensions are fixed

[D, Jµ] = 3 [D,φ] = 1



Superconformal multiplets

The N = 4 superconformal group in four dimensions is PSU(2, 2|4) with
generators

Pµ Mµν D Kµ QIα Q̃α̇I SαI S̃α̇I RJI

The local operators
{O∆,j1,j2,R

i (x)}
can be organized in superconformal multiplets consisting of

superconformal primary: [SαI ,O∆,j1,j2,R
i (0)] = 0 [S̃α̇I ,O∆,j1,j2,R

i (0)] = 0

superconformal descendants: Q . . .QQ̃ . . . Q̃O∆,j1,j2,R
i

Generic superconformal multiplets contain 28 conformal multiplets.

Sometimes representations are short or semishort, e.g.

Q3
αO = Q4

αO = 0 Q̃α̇3O = Q̃α̇4O = 0

(but Q1
αO, Q2

αO, Q̃α̇1O, Q̃α̇2O 6= 0).

Then there are relations between the quantum numbers. For this case:

j1 = j2 = 0 R = [0, p, 0] ∆ = p

(These are the chiral primaries, with O = Tr (Φ{I1 . . .ΦIp}) in N = 4 SYM.)



Gauging prescription

In a free vectormultiplet the Schur operators are the gauginos λAα and λ̃Aα̇ .
Defining

bA(z) ∼ v(z̄) · λA+(z, z̄) ∂cA(z) ∼ v(z̄) · λ̃A+̇(z, z̄)

we find a (small) (b, c) ghost system with dimensions (1, 0) and OPE

bA(z)cB(0) ∼ δAB

z

Gauging of a flavor symmetry now corresponds to a restriction to the
cohomology of

QBRST =
1

2πi

∮
dz

(
cAJ

A − 1

2
fABCcAcBb

C

)
in the chiral algebra.

This operator is nilpotent precisely when the four-dimensional beta function
vanishes!



The big picture

For specific theories we have precise claims for the chiral algebra:
• su(2) with four fundamental flavors:

so(8)−2 AKM algebra

• Minahan-Nemeschansky E6 theory:

(e6)−3 AKM algebra

• su(Nc) with Nf = 2Nc fundamental flavors:

u(1)× su(Nf )−Nc AKM algebra + baryons

• N = 4 SYM theories:

small N = 4 algebra + primaries from half BPS chiral ring

Furthermore, for class S theories:
• Chiral algebra of TN?
• Gauging: as before
• Maximal puncture: AKM algebra at k = −h∨

• Closing puncture: quantum Drinfeld-Sokolov
reduction

The N = 2 landscape: class S(ix), or 6= 4+2
Geometric understanding of these novel SCFTs and their dualities (Gaiotto)
Urmutter of SCFTs: six-dimensional (2, 0) theory.

Put (2, 0) on R4 ⇥ C, where C is a Riemann
surface with appropriate punctures. In the IR,
the theory flows to an N = 2 SCFT that lives on
R4. We call it T [C].

��� 4d SCFT T [C] 2d data on C
���

���Marginal gauge couplings Complex moduli of C
������ SU(N) gauge group cylinder
������ with coupling ⌧ with sewing parameter q = exp(2⇡i⌧)
������ Isolated SCFT Three-punctured sphere (trinion)
������ Flavor-symmetry factor Puncture
������ Generalized S-duality Modular transformation of C
���

The metric on C is “irrelevant” (in the RG sense), while its complex moduli are
interpreted as the gauge couplings of the 4d theory. Roughly, decomposing C into
cylinders and trivalent vertices, the lengths of the cylinders are associated to
inverse gauge couplings 1/gi.
The punctures are associated to flavor symmetries.
Cylinders = vectormultiplets
Trivalent vertices (three-punctured spheres) = elementary isolated SCFTs.
Modular transformations of a C = generalized S-duality.
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Results for the first three spins
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Figure : Bounds for the scaling dimension of the leading twist unprotected
operator of spin ` = 0, 2, 4. The bounds are displayed as a function of the (square
root of the) central charge a. The best bound is shown in blue.
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Combining spins

Figure : Exclusion plots in the space of leading twist gaps �0, �2, and �4. The
central charge a = 3/4, a = 15/4 and a = 1 are shown, corresponding to N = 4
SYM with gauge group SU(2), SU(4) and SU(1).
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Why the cubes?

We are looking at bounds

→ there is a special solution to crossing symmetry at the corner

We conjecture that it corresponds to a self-dual point of N = 4 SYM.

This leads e.g to
∆ . 2.90

for the Konishi operator Tr (ΦIΦI) in SU(2) N = 4 SYM at τ = i or at
τ = exp(iπ/3).

Not in disagreement with resumming the four-loop result...
[Beem, Rastelli, Sen, BvR (2013), Alday, Bissi (2013)]

Can we find the rest of the conformal manifold?



Back to the bootstrap

Conformal field theory revisited

σ(x1)σ(x2) ∼ 1

(x1 − x2)2∆σ
+

ε(x2)

(x1 − x2)2∆σ−∆ε
+ . . .

allowed region with ∆σ′ ≥ 3 (nmax = 6)
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Figure 2: Allowed region of (∆σ,∆ϵ) in a Z2-symmetric CFT3 where ∆σ′ ≥ 3 (only one
Z2-odd scalar is relevant). This bound uses crossing symmetry and unitarity for ⟨σσσσ⟩,
⟨σσϵϵ⟩, and ⟨ϵϵϵϵ⟩, with nmax = 6 (105-dimensional functional), νmax = 8. The 3D Ising point
is indicated with black crosshairs. The gap in the Z2-odd sector is responsible for creating a
small closed region around the Ising point.

The allowed region around the Ising point shrinks further when we increase the value
of nmax. Finding the allowed region at nmax = 10 (N = 275) is computationally intensive,
so we tested only the grid of 700 points shown in figure 5. The disallowed points in the
figure were excluded by assuming both ∆σ′ ≥ 3 and ∆ϵ′ ≥ 3. On the same plot, we also
show the nmax = 14 single-correlator bound on ∆ϵ computed in [22] using a very different
optimization algorithm. The final allowed region is the intersection of the region below the
nmax = 14 curve and the region indicated by our allowed multiple correlator points.

Since the point corresponding to the 3D Ising model must lie somewhere in the allowed
region, we can think of the allowed region as a rigorous prediction of the Ising model
dimensions, giving ∆σ = 1/2 + η/2 = 0.51820(14) and ∆ϵ = 3 − 1/ν = 1.4127(11). In
figure 6 we compare our rigorous bound with the best-to-date predictions using Monte
Carlo simulations [35] and the c-minimization conjecture [22]. Although our result has un-
certainties greater than c-minimization by a factor of ∼10 and Monte-Carlo determinations
by a factor of ∼3, they still determine ∆σ and ∆ϵ with 0.03% and 0.08% relative uncertainty,
respectively. Increasing nmax further could potentially lead to even better determinations of
∆σ and ∆ϵ. Indeed, the single correlator bound at nmax = 14 passing through the allowed
region in figure 5 indicates that the nmax = 10 allowed region is not yet optimal. At this
point, it is not even clear whether continually increasing nmax might lead to a finite allowed
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The bootstrap in two minutes



The conformal bootstrap

We are interested in correlation functions of local operators

〈O1(x1) . . .On(xn)〉

These are heavily constrained by conformal symmetry, for example

〈Oi(x)Oj(y)〉 =
δij

(x− y)2∆

Conformal invariance further guarantees the existence of a convergent
operator product expansion (or OPE) of the form

Oi(x)Oj(y) ∼
∑
k

λ k
ij C[x− y, ∂y]Ok(y)

We can use the OPE to decompose correlation functions as

〈O1(x1)O2(x2)O3(x3)O4(x4)〉

=
∑
k

λ k
12λ

k
34C[x1 − x2, ∂2]C[x3 − x4, ∂4]〈Ok(x2)Ok(x4)〉
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The conformal bootstrap
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Crossing symmetry: an infinite set of constraints for ∆k and λ k
ij

Can we solve them? Could we determine the theory using
• global symmetries
• unitarity
• crossing symmetry

and nothing else? In other words, can we bootstrap the theory?

[Ferrara, Gatto, Grillo, Parisi (1972); Polyakov (1974)]



Success stories

• Minimal models in two dimensions
[Belavin, Polyakov, Zamolodchikov (1984)]

• Rational CFTs in two dimensions [Moore, Seiberg (1989), . . . ]



Success stories

Conformal field theory revisited

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

σ(x1)σ(x2) ∼ 1

(x1 − x2)2∆σ
+

ε(x2)

(x1 − x2)2∆σ−∆ε
+ . . .

∆ε

∆σ

[Rattazzi, Rychkov, Tonni, Vichi (2008)]



Bootstrapping the 3d Ising model

Conformal field theory revisited

〈σ(x1)σ(x2)σ(x3)σ(x4)〉

σ(x1)σ(x2) ∼ 1

(x1 − x2)2∆σ
+

ε(x2)

(x1 − x2)2∆σ−∆ε
+ . . .
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Figure 3: Shaded: the part of the (��,�") plane allowed by the crossing symmetry constraint
(5.3). The boundary of this region has a kink remarkably close to the known 3D Ising model
operator dimensions (the tip of the arrow). The zoom of the dashed rectangle area is shown in
Fig. 4. This plot was obtained with the algorithm described in Appendix D with nmax = 11.

end of this interval is fixed by the unitarity bound, while the upper end has been chosen
arbitrarily. For each �� in this range, we ask: What is the maximal �" allowed by (5.3)?

The result is plotted in Fig. 3: only the points (��,�") in the shaded region are allowed.4

Just like similar plots in 4D and 2D [16, 17, 23] the curve bounding the allowed region starts
at the free theory point and rises steadily. Moreover, just like in 2D [17] the curve shows a
kink whose position looks remarkably close to the Ising model point.5 This is better seen in
Fig. 4 where we zoom in on the kink region. The boundary of the allowed region intersects
the red rectangle drawn using the �� and �" error bands given in Table 1.

Ising
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Figure 4: The zoom of the dashed rectangle area from Fig. 3. The small red rectangle is
drawn using the �� and �" error bands given in Table 1.

From this comparison, we can draw two solid conclusions. First of all, the old results
for the allowed dimensions are not inconsistent with conformal invariance, though they are

4To avoid possible confusion: we show only the upper boundary of the allowed region. 0.5  �"  1 is
also a priori allowed.

5In contrast, the 4D dimension bounds do not show kinks, except in supersymmetric theories [23].
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[El-Showk, Paulos, Poland, Simmons-Duffin, Rychkov, Vichi (2012)]
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