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Introduction

• Kepler problem and hydrogen atom are 
important classical and quantum mechanics 
problems that can be exactly solved 

• will show that N=4 super Yang-Mills is a 
natural QFT analogue of these systems

they have a hidden symmetry

• apply hidden symmetry to calculation of 
bound state energies of massive W bosons 
in the theory



Kepler problem

• orbits do not precess

• conservation of Laplace-Runge-Lenz vector
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Hydrogen atom

• hidden symmetry:
Laplace-Runge-Lenz-Pauli vector

• operator algebra allows to find spectrum

• Hamiltonian

• conserved quantity in quantum mechanics
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• In the early days of relativistic QFT, 
Wick and Cutkowski considered the following 
model:

• This is the ladder approximation to ep → ep,
 ignoring the spin of the photon.

• In the nonrelativistic limit, for massless exchange, 
this reduces to the H Hamiltonian
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massless...

massive

p1

p3

extension to a relativistic QFT
• Wick and Cutcosky considered the following model:

• This is the ladder approximation to              ,
ignoring the spin of the photon  

ep ! ep

• In the non-relativistic limit, this reduces to the
hydrogen Hamiltonian



SO(4) symmetry of Wick-Cutcosky model
• this model possesses an exact SO(4) symmetry,
even away from the NR limit
• consider the Bethe-Salpether equation

• not obvious in this form, but there is a 
conformal symmetry in momentum space

• apart from obvious symmetries, this contains 
the Laplace-Runge-Lenz vector!

• spectrum only depends on cross-ratio

u =
4m1m3

�s+ (m1 �m3)2
[Wick, 1954]
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The classical Kepler problem, as well as its quantum mechanical version, the Hydrogen atom,
enjoy a well-known hidden symmetry, the conservation of the Laplace-Runge-Lenz vector, which
makes these problems superintegrable. Is there a relativistic quantum field theory extension that
preserves this symmetry? In this Letter we show that the answer is positive: in the non-relativistic
limit, we identify the dual conformal symmetry of planar N = 4 super Yang-Mills with the well-
known symmetries of the Hydrogen atom. We point out that the dual conformal symmetry o↵ers a
novel way to compute the spectrum of bound states of massive W bosons in the theory. We perform
nontrivial tests of this setup at weak and strong coupling, and comment on the possible extension
to arbitrary values of the coupling.
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The classical two-body (or Kepler) problem, with
Hamiltonian

H =
p2

2µ
� �

4⇡

1

|x| , (1)

is well-known to possess a non-obvious conserved vec-
tor which makes it superintegrable. This Laplace-Runge-
Lenz vector is expressed as

~A =
1

2

⇣
~p ⇥ ~L � ~L ⇥ ~p

⌘
� µ

�

4⇡

~x

|x| , (2)

where ~L = ~x ⇥ ~p is the angular momentum. Physically,
its conservation accounts for the fact that the orbits of
the 1/|x| central potential form closed ellipses which do
not precess with time.

The same Hamiltonian is relevant for the quantum me-
chanical description of the Hydrogen atom, with ~x and
~p replaced by operators. As was pointed out early on by
Pauli, the Laplace-Runge-Lenz vector in the above form
is also conserved quantum mechanically, i.e. it commutes
with the Hamiltonian. The symmetry group is enlarged
from SO(3) rotations to SO(4). This gives rise to a sim-
ple algebraic way of calculating the spectrum, which au-
tomatically accounts for its degeneracies [1].

In real Hydrogen atoms, both this symmetry and its as-
sociated degeneracies are approximate due to relativistic
e↵ects whose size are of order me↵4, where ↵ is the fine-
structure constant and me the electron mass. Is there
a relativistic quantum field theory which has an exact
symmetry generalizing the conservation of the Laplace-
Runge-Lenz vector? In this Letter we will show that
such a system exists and use the additional symmetry to
facilitate the calculation of its spectrum.

To understand how to formulate the symmetry (2) rel-
ativistically it will be helpful to recall the classic work by

Wick and Cutkosky [2]. These authors studied the rela-
tivistic Bethe-Salpeter equation for a bound-state wave-
function  ,

 (p) =

Z �4i�m1m3  (q) d4q/(2⇡)4

(p�q)2
⇥
(q�y1)2 + m2

1

⇤⇥
(y3�q)2 + m2

3

⇤ , (3)

where (y3�y1)µ = Pµ is the total four-momentum of the
bound state and (q�y1)µ and (y3�q)µ are the momenta
of its two constituents. This is a natural relativistic gen-
eralization of the Schrödinger equation, and arises as the
approximation to electron-proton scattering where one
retains only all planar ladder diagrams and treats the
photon as a spin-0 particle.

Wick and Cutkosky noticed that the equation is invari-
ant under a larger symmetry than the expected SO(3)
rotations. In modern language, their findings may be
summarized by the statement that eq. (3) is covariant
under the transformations

�⇠p
µ = 2(⇠·p)pµ � p2⇠µ , � (p) = �2(⇠·p) (p) ,

�⇠y
µ
i = 2(⇠·yi)yµ

i � �
y2
i + m2

i

�
⇠µ , �mi = 2(⇠·yi)mi .

(4)

These transformations have a simple interpretation as
conformal transformations of the momentum space of the
theory. Following recent literature, we will refer to them
as dual conformal transformations. Noticing that eq. (3)
is also invariant under translations of (p, yi) as well as un-
der Lorentz transformations, one may see that the equa-
tion is covariant under a full SO(4, 2) group.

The transformations (4) can be used to relate solutions
which correspond to di↵erent masses. In fact, they imply
that the dynamics depends only on the combination [2]

u =
4m1m3

�s + (m1 � m3)2
. (5)

[Caron-Huot, JMH]



Beyond the ladder approximation

• Unfortunately, ladder approximation is not a 
consistent QFT

• e.g. misses multi-particle effects, and therefore has 
problems with unitarity

• is there a 4-dimensional QFT that has this hidden 
symmetry?



Hints for dual conformal symmetry

One-loop: ‘scalar box’ integral
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Change variables to go to a dual ‘coordinate space’ picture
(not a Fourier transform!) [ Broadhurst; Drummond,J. H.,Smirnov,Sokatchev]
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All integrals contributing to A4 up to four (five) loops have this property!
[11/27]

N=4 super Yang-Mills

fast-forward from 1950’s to 2000’s

N=4 SYM has dual conformal symmetry
[Drummond, JMH, Smirnov, Sokatchev; 
Alday, Maldacena; Drummond, JMH, 
Korchemsky, Sokatchev; ...]

in massless sector:
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• this symmetry is at the heart of many developments 

- duality Wilson loops/scattering amplitudes

- integrability of N=4 SYM theory

- and other recent developments

• we have just argued that it is a natural generalization 
of the hydrogen atom’s SO(4), itself inherited from the 
Kepler problem

• let us return to massive particles



introducing massive particles

N D3-branes

M D3-branes

z = 0

zi = 1/mi

(a)

p2 p3

p4p1

i2i2

i3
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i4i4
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j k
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Figure 1: (a) String theory description for the scattering of M gluons in the large N limit. Putting
the M D3-branes at different positions zi != 0 serves as a regulator and also allows us to exhibit dual
conformal symmetry. (b) Gauge theory analogue of (a): a generic scattering amplitude at large N (here:
a sample two-loop diagram).

moving M D3-branes away from the N parallel D3-branes and also separating these M distinct
branes from one another. One then has “light” gauge fields corresponding to strings stretching
between the M separated D3-branes, which are our external scattering states. Then there are
the “heavy” gauge fields corresponding to the strings stretching between the coincident N D3-
branes and one of the M branes. These are the massive particles running on the outer line of the
diagrams, see figure 1. In doing so, we argue that dual conformal symmetry, suitably extended to
act on the Higgs masses as well, is an exact, i.e. unbroken, symmetry of the scattering amplitudes.

This exact symmetry has very profound consequences. It was already noticed in [18] that
the integrals contributing to loop amplitudes in N = 4 SYM have very special properties under
dual conformal transformations, but this observation was somewhat obscured by the infrared
regulator. With our infrared regularisation, the dual conformal symmetry is exact and hence so
is the symmetry of the integrals. Therefore, the loop integrals appearing in our regularisation will
have an exact dual conformal symmetry. This observation severely restricts the class of integrals
allowed to appear in an amplitude. As a simple application, triangle sub-graphs are immediately
excluded.

The alert reader might wonder whether computing a scattering amplitude with several, dis-
tinct Higgs masses might not be hopelessly complicated. In fact, this is not the case. The
different masses are crucial for the exact dual conformal symmetry to work. However, once we
have used this symmetry in order to restrict the number of basis loop integrals, we can set all
Higgs masses equal and think about the common mass as a regulator. As we will show in several
examples, computing the small mass expansion in this regulator is particularly simple. In fact,

4

gauge theory string theory

Higgs mechanism
� �! h�i+ '

U(N +M) �! U(N)⇥ U(M)

• e.g. four-particle scattering
U(N + 4) �! U(N)⇥ U(4)

consider scattering of U(4) fields in large N limit
- infrared finite
- preserves dual conformal symmetry



• dual conformal symmetry (planar) 

p2i = �(mi �mi+1)
2

p

µ
i = x

µ
i � x

µ
i+1

isometries of AdS_5 space
Poincare coordinates

2

This provides a generalization of the concept of reduced
mass to this particular relativistic setup. The remain-
ing nontrivial predictions of the SO(4, 2) symmetry arise
from the subgroup which preserves the masses and yi.

This subgroup is 6-dimensional, since SO(4, 2) is 15-
dimensional and 10 constraints are imposed, but only 9
are independent. Explicitly, in a rest frame where y1 = 0
and y3 = (P 0,~0), and setting m1 = m3 = m = 2µ with-
out loss of generality, we find that the nontrivial genera-
tors are the following combinations of (4), Lorentz boosts,
and translations:

�0~⇠~q = ~⇠
�
q2
0 � ~q 2 � P 0q0 + m2

�
+ 2~⇠·~q ~q

�0~⇠q
0 = ~⇠·~q �2q0 � P 0

�
,

(6)

with a similar transformation for p. By construction, the
points (yi, mi) are invariant under this symmetry.

These transformations can be interpreted more easily
by taking the non-relativistic limit of the model. It is
well known that eq. (3) reduces to the Schrödinger equa-
tion in this limit, a fact which can be demonstrated by
approximating the frequency integration by its residue
on the 1/(q2 +m2) propagator. Substituting the value of
q0 on the residue, q0 ⇡ m+~q 2/(2m), the transformation
(6) is reduced to

�0~⇠~q = �~⇠
⇥
m(P 0 � 2m) + ~q 2

⇤
+ 2~⇠·~q ~q . (7)

It is easy to see that this is the canonical transformation
generated by the Laplace-Runge-Lenz vector (2) [20].
This demonstrates that the symmetries (6), which arose
from SO(4, 2) conformal transformations in momentum
space, are nothing but a relativistic generalization of the
Laplace-Runge-Lenz vector. For more on the interpreta-
tion of the latter we refer to [3].

Unfortunately, the Wick-Cutkosky model does not de-
fine a consistent relativistic theory, as the ladder approx-
imation is not unitary and lacks multi-particle e↵ects.
Remarkably, a consistent quantum field theory general-
izing the above symmetry does exist. It has been ob-
served that maximally supersymmetric Yang-Mills the-
ory N = 4 SYM with gauge group SU(Nc), which has
a superconformal symmetry, also has a dual momentum
space version of this symmetry, in the planar limit [4].
(The planar limit, which we are going to work in, is de-
fined by Nc ! 1, with the ‘t Hooft coupling � = g2Nc

held fixed.) As far as we are aware this is the only known
example of a four-dimensional quantum field theory with
such a symmetry.

In the usual formulation this is a theory of massless
particles. However, massive particles can be introduced
in a natural way via the Higgs mechanism. This al-
lows us to discuss the scattering of massive W bosons.
Their masses can be freely adjusted by varying scalar
field expectation values. Let us focus on the four-particle
scattering amplitude depicted in Fig. 1. This ampli-
tude is finite in the ultraviolet, due to the finiteness

m3

m4

m1

m2

|m1 � m2|

|m2 � m3| |m3 � m4|

|m4 � m1|

FIG. 1: Four-point amplitude in N = 4 SYM with non-trivial
scalar vacuum expectation values. Thick lines correspond to
massive W bosons, while dashed lines correspond to massless
particles.

of N = 4 SYM, as well as in the infrared, thanks to
the particle masses. Dual conformal symmetry implies
that the dependence on the kinematical invariants and
masses is as follows, for the symmetry breaking pattern
SU(Nc) ! SU(Nc � 4) ⇥ U(1)4 [5]:

A4(s, t, m1, m2, m3, m4) = Atree
4 ⇥ M(u, v) , (8)

where, as a generalization of eq. (5),

u =
4m1m3

�s + (m1 � m3)2
, v =

4m2m4

�t + (m2 � m4)2
. (9)

In the remainder of this Letter we wish to discuss impli-
cations of the structure (8), which as we have seen is inti-
mately tied to the Laplace-Runge-Lenz vector, regarding
the spectrum of the theory.

As depicted in Fig. 1, the W bosons interact by ex-
changing massless gauge fields from the unbroken part
of the gauge group. One can readily see that the inter-
action is attractive, so they will form bound states. At
weak coupling these are similar to Hydrogen states. As in
the Wick-Cutkosky model we may use eq. (9) to restrict
to the case m1 = m3 = m.

The exact dual conformal symmetry ensures that the
spectrum organizes into complete SO(4) multiplets, non-
perturbatively at any coupling �. The total degeneracy
at principal quantum number n, including supersymme-
try, is 256n2. To extract the spectrum from the am-
plitude we will benefit from relativity by making use of
Regge theory [6]. The latter instructs us to group the
highest-spin state at each energy En into a trajectory
j(s), where j is the spin:

j(sn)+1 = n when sn = E2
n (n = 1, 2, . . .) . (10)

The analytic continuation of the function j(s) then de-
termines the behavior of the amplitude in the ultra-
relativistic limit t ! 1 with s < 0 fixed, through
M ⇠ tj(s)+1. (Provided only that j(s) remains the lead-
ing trajectory in that region.) Conversely, if one knows

• four-particle scattering (planar)

[Alday, JMH, Plefka,Schuster]

[proof of DCS for loop integrands: Dennen, Huang, 6d;
Caron-Huot, O`Connell, 10d]

yAi ! yAi
y2i

y

A
i = (xµ

i ,mi)



uses of the symmetry

• equivalence of two physical pictures as
3

s

t t ! 1

m4 ! 0

FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:

�cusp(⇡ � �) =
��

4⇡�

✓
1 � �

⇡

◆
+

�2

8⇡3�
log

✏uv

2�

� �

4⇡2

Z 1

✏uv

d⌧

cosh(⌧) � 1

⇣
e�⌧ �

4⇡� � 1
⌘

+ O(�3) .

(15)
Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following

[Alday, JMH, Plefka,Schuster]

u =
4m1m3

�s+ (m1 �m3)2
, v =

4m2m4

�t+ (m2 �m4)2

[JMH, Naculich Plefka, Schnitzer]

M ⇠t!1 t(j(s)+1)
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FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
lines denote Wilson lines.

j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)

To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have

�cusp(⇡ � �) ⇡ � �

4⇡�
, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
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Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following
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j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],

�cusp(�) = � �

8⇡2
� tan

�

2
+ O(�2) . (12)
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so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find
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This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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Here ✏uv is a small ultraviolet regulator, which cancels
against a divergence of the integral. In fact we were able
to perform the latter analytically. Upon equating the
left-hand-side to minus an integer we obtain the following
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j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �
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. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],
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To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have
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so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find
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+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],
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To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have
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, (13)

so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find

En � 2m = � �2m

64⇡2n2
+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
we borrow:
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The classical two-body (or Kepler) problem, with
Hamiltonian

H =
p2

2µ
� �

4⇡

1

|x| , (1)

is well-known to possess a non-obvious conserved vec-
tor which makes it superintegrable. This Laplace-Runge-
Lenz vector is expressed as

~A =
1

2

⇣
~p ⇥ ~L � ~L ⇥ ~p

⌘
� µ

�

4⇡

~x

|x| , (2)

where ~L = ~x ⇥ ~p is the angular momentum. Physically,
its conservation accounts for the fact that the orbits of
the 1/|x| central potential form closed ellipses which do
not precess with time.

The same Hamiltonian is relevant for the quantum me-
chanical description of the Hydrogen atom, with ~x and
~p replaced by operators. As was pointed out early on by
Pauli, the Laplace-Runge-Lenz vector in the above form
is also conserved quantum mechanically, i.e. it commutes
with the Hamiltonian. The symmetry group is enlarged
from SO(3) rotations to SO(4). This gives rise to a sim-
ple algebraic way of calculating the spectrum, which au-
tomatically accounts for its degeneracies [1].

In real Hydrogen atoms, both this symmetry and its as-
sociated degeneracies are approximate due to relativistic
e↵ects whose size are of order me↵4, where ↵ is the fine-
structure constant and me the electron mass. Is there
a relativistic quantum field theory which has an exact
symmetry generalizing the conservation of the Laplace-
Runge-Lenz vector? In this Letter we will show that
such a system exists and use the additional symmetry to
facilitate the calculation of its spectrum.

To understand how to formulate the symmetry (2) rel-
ativistically it will be helpful to recall the classic work by

Wick and Cutkosky [2]. These authors studied the rela-
tivistic Bethe-Salpeter equation for a bound-state wave-
function  ,

 (p) =

Z �4i�m1m3  (q) d4q/(2⇡)4

(p�q)2
⇥
(q�y1)2 + m2

1

⇤⇥
(y3�q)2 + m2

3

⇤ , (3)

where (y3�y1)µ = Pµ is the total four-momentum of the
bound state and (q�y1)µ and (y3�q)µ are the momenta
of its two constituents. This is a natural relativistic gen-
eralization of the Schrödinger equation, and arises as the
approximation to electron-proton scattering where one
retains only all planar ladder diagrams and treats the
photon as a spin-0 particle.

Wick and Cutkosky noticed that the equation is invari-
ant under a larger symmetry than the expected SO(3)
rotations. In modern language, their findings may be
summarized by the statement that eq. (3) is covariant
under the transformations

�⇠p
µ = 2(⇠·p)pµ � p2⇠µ , � (p) = �2(⇠·p) (p) ,

�⇠y
µ
i = 2(⇠·yi)yµ

i � �
y2
i + m2

i

�
⇠µ , �mi = 2(⇠·yi)mi .

(4)

These transformations have a simple interpretation as
conformal transformations of the momentum space of the
theory. Following recent literature, we will refer to them
as dual conformal transformations. Noticing that eq. (3)
is also invariant under translations of (p, yi) as well as un-
der Lorentz transformations, one may see that the equa-
tion is covariant under a full SO(4, 2) group.

The transformations (4) can be used to relate solutions
which correspond to di↵erent masses. In fact, they imply
that the dynamics depends only on the combination [2]

u =
4m1m3

�s + (m1 � m3)2
. (5)
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FIG. 2: Di↵erent limits of the four-point amplitude that are
equivalent thanks to dual conformal symmetry. The double
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j(s) by some means, eq. (10) can be used to determine
the spectrum.

A traditional way to calculate Regge trajectories per-
turbatively is to sum logarithmically enhanced graphs.
For example at the leading-logarithmic accuracy the lad-
der integrals shown in Fig. 2 dominate and exponentiate
in a simple way. The exponent, the gluon Regge trajec-
tory j(s), is given by a two-dimensional bubble integral.
In principle this calculation could be carried out to sub-
leading orders as well, see e.g. [8, 9].

The relativistic Laplace-Runge-Lenz symmetry o↵ers a
novel, and easier, way to calculate the Regge trajectory
j(s). Through eq. (9), we see that the limit t ! 1 of the
amplitude, with all other variables held fixed, is equiva-

lent to the limit m4 ! 0. In this limit the amplitude is
known to become infrared-divergent and its leading terms
are governed by the anomalous dimension �cusp of a Wil-
son loop with a cusp [7], M ⇠ (m4)�cusp(�). Equating the
exponents in the two asymptotic limits using eq. (9), we
thus find that

j(s) + 1 = ��cusp(�) where s = 4m2 sin2 �

2
. (11)

This relation has been derived and used previously in
refs. [8, 9], to which we refer the reader for more details.
A similar relation is known to give the infrared-divergent
part of the gluon trajectory as m2 ! 0 [10], but we stress
that in planar N = 4 SYM eq. (11) holds for the complete
function of s/m2.

We wish to combine this relation with eq. (10) as a
means to obtain the spectrum of Hydrogen-like bound
states in this theory. At the lowest order the cusp anoma-
lous dimension is readily calculated by a one-loop graph
that corresponds to one rung in the Wilson line integral
of Fig. 2 [21],
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To obtain the spectrum we need to solve eq. (10), or,
equivalently, �cusp(�n) = �n. From eq. (12) we see that,
since � is small, the solution can only occur for � close
to ⇡. In this region we have
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so that �n ⇡ �/(4⇡n). Converting to an energy using
eqs. (10) and (11) we thus find
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+ O(�3) . (14)

This is the well-known Hydrogen-like spectrum associ-
ated with eq. (1), as expected, giving a first confirmation
of the method.

Because the present Hydrogen-like system is embed-
ded in a relativistic quantum field theory we expect the
spectrum to be sensitive to a rich set of multi-particle ef-
fects. For example, one expects large logarithms to arise
from so-called ultrasoft virtual particles, in analogy with
the computation of the Lamb shift in QED. These are
modes which are infrared compared to the atomic radius
but not compared to the binding energies. In fact, as we
will see, closely related e↵ects do appear in the computa-
tion of �cusp at the next order, which make a nontrivial
resummation necessary.

To carry out this resummation systematically we bor-
row methods used in the study of the heavy quark static
potential in QCD [12]. But first we will need to use con-
formal symmetry one more time, now in the coordinate
space of the theory. Through radial quantization, confor-
mal symmetry equates the anomalous dimension �cusp(�)
to the energy of a pair of static heavy quarks on S3 ⇥R,
where the “time” r 2 R is the radial distance from the
cusp, and � is the distance between the two quarks on the
sphere [9, 13]. Combined with the duality (11) we thus
have a relation between dynamical quarks in flat space,
and static quarks in the curved space S3 ⇥ R. Such rela-
tions (in flat space) are generic in the large mass limit,
but we wish to stress that here we are not taking such a
limit and we are discussing the full, relativistic system.
The mapping to the cylinder S3⇥R helps apply standard
methods because one is now computing a static potential.

In the regime � ⇠ � relevant to the bound states, there
are two important length scales on the cylinder: the small
size of the pair and the (unit) radius of the sphere, the lat-
ter being comparable to the singlet-adjoint energy split-
ting �/(4⇡�). This second fact signals the need for a
resummation of perturbation theory. This was carried
out to the next-to-leading order in ref. [9], whose results
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• result for energy

• checks
- [...] bounded for any n
- n large correctly gives quark-antiquark potential

[Ericksson, Semenoff, Szabo Zarembo, 1999; Pineda 2007]

4

correction to eq. (14):

(En�2m) |�3 =
��3m

64⇡4n2


S1(n) + log

�

2⇡n
� 1 � 1

2n

�
, (16)

for n = 1, 2, 3, . . ., and where S1(n) =
Pn

k=1
1
k is the

harmonic number.
Let us discuss this equation. First, we note that the

size of the correction is uniformly bounded as a function
of n, and therefore for small � it is always smaller than
the leading term given in eq. (14). This demonstrates
that the perturbative expansion is under control.

Second, we notice the non-analytic dependence on the
coupling through the log � term. This originates from
the ultrasoft modes alluded to earlier, and is conceptually
similar to the (me↵5 log ↵) contribution to the Lamb shift
in QED. It appears earlier by two powers of the coupling
in the present model because ultrasoft scalar exchanges
are not dipole-suppressed.

Third, the square bracket becomes constant at large n.
Its value is in perfect agreement with replacing the cou-
pling � in eq. (14) with the (flat space) static potential,

� 7! � + �2

2⇡2

�
log �

2⇡ + �E � 1
�
+ O(�3) [12], as it should.

Finally, we wish to mention that we have verified
eq. (16) against a direct next-to-leading order calculation
of the spectrum using conventional methods [14]. This
confirms, in a nontrivial way, that the method based on
eqs. (10)-(11) provides the correct spectrum.

The duality (11) can also be verified at strong cou-
pling. The cusp anomalous dimension was obtained in
semi-analytic form in ref. [15] while the spectrum was
obtained in ref. [16] by solving numerically a di↵erential
equation, both using the AdS/CFT correspondence. The
two formulations appear very di↵erent and we were not
able to find an analytic match between them. Nonethe-
less, when we evaluated numerically the two formulas
throughout the range 0 < E < 2m, (corresponding to
0 < � < ⇡), we found perfect agreement within numeri-
cal accuracy.

In Fig. 3 we show the next-to-leading order trajectory
at weak-coupling [22] as well as the strong coupling for-
mula taken from either one of refs. [15, 16]. The spectrum
is obtained from the curves by solving jn(sn) = n�1,
see eq. (10). With increasing coupling the ground state
becomes more tightly bound, as expected. The reader
should not attribute a deep meaning to the agreement
of the two curves at � = 10 and large spin; this is sim-
ply due to the fact that the weak and strong coupling
extrapolations of the flat space static potential turn out
to cross roughly at this value. The di↵erence in shape
between the two curves o↵ers one measure of the current
uncertainties at intermediate coupling. At small s the
slope is exactly known [17].

As a final application, the Laplace-Runge-Lenz sym-
metry allows to extend the conventional SO(3) partial
wave decomposition of the four-particle amplitude so as
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FIG. 3: Regge trajectories of Hydrogen-like states in N = 4
SYM theory for � = 5, 10, 10, 30, 100 (bottom to top). The
solid-blue lines use the weak-coupling formulas while the
dashed-red lines use the large-� formulas (see text). The
bound states (crosses) are obtained by equating j to an inte-
ger. The inset shows the same curves with the total energy
in units of mass on the horizontal axis.

to account for the contribution of full SO(4) multiplets,
reducing the complexity of the expansion. By analyzing
the three-loop results from ref. [18] in this way we found
evidence that the first subleading power correction in the
high-energy limit is controlled by a single Regge pole, or,
equivalently via eq. (11), a single operator of dimension

�1(�) =1 + �/(4⇡2) + O(�2) . (17)

Details of the analysis and the full three-loop trajectory
will be reported elsewhere [14]. This simplicity hints at
further structure in the dynamics of this model, which
does not directly follow from the Laplace-Runge-Lenz
symmetry but which the latter may help uncover.

To conclude we mention that the cusp anomalous di-
mension in N = 4 SYM has been recently reformulated
in terms of a system of integral equations which embody
the integrability of this theory [19]. Combined with the
present results this could lead to an exact determina-
tion of the spectrum at finite coupling in this interacting
quantum field theory.
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S1(n) =
nX

k=1

1

k

- confirmed by standard ‘Coulomb resummation’
[Caron-Huot, JMH, to appear]

[systematic EFT, e.g. 
Pineda 2007]

[Correa, JMH, 
Maldacena, Sever, 2012]

[see Beneke, Kiyo & Schuller 1312.4791]



Strong coupling check

• cusp anomalous dimension              at strong 
coupling was computed from minimal surface

[Drukker, Gross,Ooguri, 1999]

�cusp(�)

• spectrum of ‘mesons’ was computed at strong 
coupling in 2003

[Kruczensky, Mateos, Myers, Winters, 2003]

• the two curves agree perfectly, once one uses 
the correct dictionary!

En = 2m sin
�n

2



Regge trajectories of Hydrogen-like states

solid/blue: based on weak-coupling formulas
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� = 5, 10, 10, 30, 100 (bottom to top)

dashed/red: based on strong-coupling formulas

[Correa, Maldacena, Sever; Drukker]

• exact spectrum should be computable 
from TBA for �cusp(�)



Conclusions & outlook
• dual conformal symmetry of N=4 SYM is QFT 
generalization of conservation of Laplace-Runge-Lenz 
vector in classical in quantum mechanics

- open question: is this unique? other 4-d 
QFT’s with such a hidden symmetry?

- determine exact result for bound state energy from integrability

• application: equivalence between gluon Regge 
trajectory and cusp anomalous dimension in this theory

• compute bound state energies of hydrogen-like 
system from

�cusp(�n) = �n En = 2m sin
�n

2

[Correa, Maldacena, Sever; Drukker]



• we started a systematic investigation of massive four-
particle amplitudes             in N=4 SYM (to 3 loops)

• e.g. one loop

M(u, v)
[Caron-Huot & JMH, hep-th/1404.2922]

This expression can be derived using unitarity cuts [22]. The topology of these integrals
was depicted in Figs. 1,2.

Let us have a first look at these amplitudes. At one loop only one integral is required,
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1

. It is given analytically by (the form below is due to [23]),
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Here we introduced dimensionless variables2

u =

4m2

�s
, v =

4m2

�t
, (2.11)

and the following abbreviations,

�u =

p
1 + u , �v =

p
1 + v , �uv =

p
1 + u + v . (2.12)

The functions appearing in eq. (2.10) are examples of polylogarithms. For these and more
general classes of integral functions that we will discuss one can define a “symbol” [24–26].
Roughly speaking, the symbol contains information about the integration kernels leading
to those functions, while forgetting about boundary constants at each integration step.
We note that the symbol of the above formula is very simple, and visibly more compact
compared to eq. (2.10),

S [�uv I
1

] = 2



�u � 1

�u + 1

⌦ �uv � �u

�uv + �u
+

�v � 1

�v + 1

⌦ �uv � �v
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�

. (2.13)

This foreshadows a simple structure under the action of differential operators. In the next
two sections, we will see how this structure arises in a systematic way. It will not be
necessary to restrict the analysis to the level of the symbol, rather the observations will
apply to the functions directly. Indeed, we will be able to write compact formulas in terms
of iterated integrals that make the simplicity manifest, and at the same time keep track of
the integration constants.

In particular, the complete information specifying the multi-loop integrals we will dis-
cuss will be contained in simple formulas similar to eq. (2.13). In the next two sections, we
will first see how to reproduce this formula from differential equations, and then proceed
to compute the required integrals at two and three loops.

3 Differential equation at one loop: 4 versus D dimensions

Computing loop integrals via differential equations by now a fairly standard procedure [27–
29], so we will only briefly outline the main steps. For a given class of integrals under

2
From the context there should be no confusion between the ratio u and the Mandelstam invariant

u = �s� t. Also note that our normalization of u and v differs by a factor 4 from those in ref. [8].
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• symmetry suggests SO(4) partial wave expansion
[Caron-Huot & JMH, to appear]

remarkably, only one subleading Regge trajectory (to 3 loops),
corresponding to operator of dimension

4

correction to eq. (14):

(En�2m) |�3 =
��3m

64⇡4n2


S1(n) + log

�

2⇡n
� 1 � 1

2n

�
, (16)

for n = 1, 2, 3, . . ., and where S1(n) =
Pn

k=1
1
k is the

harmonic number.
Let us discuss this equation. First, we note that the

size of the correction is uniformly bounded as a function
of n, and therefore for small � it is always smaller than
the leading term given in eq. (14). This demonstrates
that the perturbative expansion is under control.

Second, we notice the non-analytic dependence on the
coupling through the log � term. This originates from
the ultrasoft modes alluded to earlier, and is conceptually
similar to the (me↵5 log ↵) contribution to the Lamb shift
in QED. It appears earlier by two powers of the coupling
in the present model because ultrasoft scalar exchanges
are not dipole-suppressed.

Third, the square bracket becomes constant at large n.
Its value is in perfect agreement with replacing the cou-
pling � in eq. (14) with the (flat space) static potential,

� 7! � + �2

2⇡2

�
log �

2⇡ + �E � 1
�
+ O(�3) [12], as it should.

Finally, we wish to mention that we have verified
eq. (16) against a direct next-to-leading order calculation
of the spectrum using conventional methods [14]. This
confirms, in a nontrivial way, that the method based on
eqs. (10)-(11) provides the correct spectrum.

The duality (11) can also be verified at strong cou-
pling. The cusp anomalous dimension was obtained in
semi-analytic form in ref. [15] while the spectrum was
obtained in ref. [16] by solving numerically a di↵erential
equation, both using the AdS/CFT correspondence. The
two formulations appear very di↵erent and we were not
able to find an analytic match between them. Nonethe-
less, when we evaluated numerically the two formulas
throughout the range 0 < E < 2m, (corresponding to
0 < � < ⇡), we found perfect agreement within numeri-
cal accuracy.

In Fig. 3 we show the next-to-leading order trajectory
at weak-coupling [22] as well as the strong coupling for-
mula taken from either one of refs. [15, 16]. The spectrum
is obtained from the curves by solving jn(sn) = n�1,
see eq. (10). With increasing coupling the ground state
becomes more tightly bound, as expected. The reader
should not attribute a deep meaning to the agreement
of the two curves at � = 10 and large spin; this is sim-
ply due to the fact that the weak and strong coupling
extrapolations of the flat space static potential turn out
to cross roughly at this value. The di↵erence in shape
between the two curves o↵ers one measure of the current
uncertainties at intermediate coupling. At small s the
slope is exactly known [17].

As a final application, the Laplace-Runge-Lenz sym-
metry allows to extend the conventional SO(3) partial
wave decomposition of the four-particle amplitude so as
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FIG. 3: Regge trajectories of Hydrogen-like states in N = 4
SYM theory for � = 5, 10, 10, 30, 100 (bottom to top). The
solid-blue lines use the weak-coupling formulas while the
dashed-red lines use the large-� formulas (see text). The
bound states (crosses) are obtained by equating j to an inte-
ger. The inset shows the same curves with the total energy
in units of mass on the horizontal axis.

to account for the contribution of full SO(4) multiplets,
reducing the complexity of the expansion. By analyzing
the three-loop results from ref. [18] in this way we found
evidence that the first subleading power correction in the
high-energy limit is controlled by a single Regge pole, or,
equivalently via eq. (11), a single operator of dimension

�1(�) =1 + �/(4⇡2) + O(�2) . (17)

Details of the analysis and the full three-loop trajectory
will be reported elsewhere [14]. This simplicity hints at
further structure in the dynamics of this model, which
does not directly follow from the Laplace-Runge-Lenz
symmetry but which the latter may help uncover.

To conclude we mention that the cusp anomalous di-
mension in N = 4 SYM has been recently reformulated
in terms of a system of integral equations which embody
the integrability of this theory [19]. Combined with the
present results this could lead to an exact determina-
tion of the spectrum at finite coupling in this interacting
quantum field theory.
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M = 1� �/(16⇡2)I1 +O(�2)

reproduce from integrability?
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