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1+1d background :  flux tube sourced by two parallel null lines

Wilson loops at finite coupling in N=4 SYM
[Alday,Gaiotto,Maldacena,Sever,Vieira’10]

Sum over all flux-tube eigenstates
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Valid at any coupling

Refinement : the pentagon way
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To compute amplitudes we need

The spectrum of flux-tube states 

All the pentagon transitions

Valid at any coupling

Refinement : the pentagon way
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f6 =
1.04

(�2 + ⌧2)1/72
+O(e�

p
2⌧ )

Simplest case : hexagon (n = 6) WL

Pre-factor

minimal area
in

[Alday,Gaiotto,Maldacena’09]
[Alday,Maldacena,Sever,Vieira’10]

Figure 1: The polygon is specified at the AdS boundary by the positions of the cusps xi.
These positions are related to an ordered sequence of momenta ki by ki = xi−xi−1. The two
dimensional a minimal surface streches in the AdS bulk and ends on the polygonal contour
at the boundary.

2 The classical sigma model and Hitchin equations

The classical AdS5 sigma model is integrable. This can be shown by exhibiting a one pa-
rameter family of flat connections. For our problem, it will be convenient to choose this
one parameter family in a special way which will simplify its asymptotic behavior on the
worldsheet. In fact, to make this choice we will make use of the Virasoro constraints of the
theory. This has been explained in detail in previous papers [22, 23, 24, 25, 26, 27]. Instead
of repeating the whole discussion, we will present a slightly more abstract and algebraic
version here.

2.1 General integrable theories and Hitchin equations

Let us assume that we have a coset space G/H . Let us assume that the Lie algebra G
has a Z2 symmetry that ensures integrability. In other words, imagine that the Lie algebra
has the decomposition G = H + K so that H is left invariant under the action of the Z2

generator while elements in K are sent to minus themselves. We then write the G invariant
currents J = g−1dg. This is a flat current dJ + J ∧ J = 0. We can decompose J in terms its
components along H and K as

J = g−1dg = H + K (3)

When we gauge the sigma model we add a gauge field along H, and we can do local H
gauge transformations. The equations of motion of the system can be written in terms of
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Beyond the area paradigm
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The flux-tube eigenstates

 = N particles state

(Adjoint) field insertions along a light-ray :
create/annihilate state on the flux tube

p(u) = 2u+ g2...

rapidity

p = p(u1) + · · ·+ p(uN )

Spectral data

E(u) = twist + g2 . . .

can be found using integrability
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Lightest states dominate at large

i.e. in collinear limit

What are they?

Pentagon/OPE series for hexagon
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Decoupling limit

Scalar mass is exponentially small
at strong coupling

[Alday,Maldacena’07]
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Low energy effective theory :
(relativistic) O(6) sigma model
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Minimal surface from low-energy viewpoint
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sphere embedding 
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induced metric

square pentagon hexagon

AdS5

S5
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Minimal surface from low-energy viewpoint

square pentagon hexagon

AdS5

S5

Flat 2d euclidean metric
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Minimal surface from low-energy viewpoint

square pentagon hexagon

AdS5

S5

All curvature concentrated in few points only:
Conical defect
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Monodromy
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One can go around the pentagon with 5 mirror rotations

This is one more than for a square
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In short, a pentagon = 5 quadrants glued together

excess angle =
⇡

2

�D1

1

2 2

3
3

4
4

4

5
5

=

twist operator

Pentagon as twist operator

Geometrical 
picture :

Hamiltonian 
picture:

�D
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Hexagon as a correlator of twist operators
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Hexagon as a correlator of twist operators
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W6 = h0|�D(⌧,�)�D(0, 0) |0i + O(e�
p
2⌧ )

corrections from heavy modes
irrelevant in collinear limit

WO(6)(z) z = m
p

�2 + ⌧2
Probes the physics of the
O(6) sigma model :

Large distance z � 1

Short distance z ⌧ 1

WO(6) = 1 +O(e�2z)

WO(6) = ?
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Insert complete basis of states

P (0|✓1, . . . , ✓N ) = h✓1, . . . , ✓N |�D |0i

Pentagon transition = form factor of twist operator

Normalization

h0|�D |0i = 1 which enforces that z ! 1

See [Cardy,Castro-Alvaredo,Doyon’07]
for similar considerations for computing
entanglement entropy in integrable QFT

WO(6) ! 1

OPE as form factor expansion
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Hexagon beyond 2pt approximation
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Hexagon beyond 2pt approximation
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All group/algebraic 
structure inthereGeneral formula:
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Interlude on matrix part
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Hexagon beyond 2pt approximation
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We have all ingredients!
We can plot the form factor series...

integrand =

Y

i<j

1

P (✓i|✓j)P (✓j |✓i)
⇥ rational

✓

w1

w2

w3
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representation for 
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Numerical analysis
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with        the scaling dimension of the twist operator �k�k

�k =
c

12
(k � 1

k
)[Knizhnik’87]

[Lunin,Mathur’00]
[Calabrese,Cardy’04]

c = central charge

2⇡(k � 1) = excess angle for �k

Short distance analysis

Short distance OPE (valid for           )z ⌧ 1

3-point function

Critical exponent A

�D(⌧,�)�D(0, 0) ⇠ log (1/z)B

zA
�7(0, 0)

A = 2�D ��7 = 2�5/4 ��3/2
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Critical exponent from one-loop anomalous dimensions

since in our case c = 5

Short distance OPE (valid for           )z ⌧ 1

3-point function

Critical exponent

A =
1
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2
A = � 1

24
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Short distance analysis
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z ⌧ 1For include subleading
RG logs

and is thus non perturbative

WO(6) =
C

z1/36 log (1/z)1/24
+ . . .

WO(6) ! 1 when z ! 1

Constant       is fixed in the IR by C

Short distance analysis
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6 8 10 12 14
a-0.0130

-0.0125

-0.0120

-0.0115

-0.0110
log W + 1ê36 log z + 1ê24 log a

running coupling

↵ = log (1/z) + . . .
logC = �0.01

Numerical analysis
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Short distance analysis

z ⌧ 1For

f6 =
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(�2 + ⌧2)1/72
+O(e�

p
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Pre-factor
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controlled by the gluons

(i.e. 1 ⌧ ⌧ ⌧ e
p
�/4 )
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Deep (infrared) collinear limit

O(6) � model ↵0
expansion

1/⌧m 10

Infrared/non-perturbative regime

Completely non perturbative

⌧ � e
p
�/4z � 1 equivalently
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z ⌧ 1 1 ⌧ ⌧ ⌧ e
p
�/4equivalently

O(6) � model ↵0
expansion

1/⌧m 10

Cross over

UV regime of O(6) model :
perturbative collinear limit
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O(6) � model ↵0
expansion

1/⌧m 10

Cross over

here
we could match O(6) analysis

with
string perturbative expansion
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O(6) � model ↵0
expansion

1/⌧m 10

Full stringy pre-factor

full thing :
include all heavy modes

gluons, fermions, ...

f6 =
1.04

(�2 + ⌧2)1/72
+O(e�
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2⌧ ) +O(e�2⌧ )

Thursday, 14 August, 14



At strong coupling SA develop a non-perturbative regime in 
the near collinear limit

That’s because flux tube mass gap      becomes extremely smallm

One should think in terms of correlators of twist operators

This fixes the collinear limit of SA at strong coupling

The string      expansion breaks down for extremely large 
values of 

↵0

⌧ ⇠ � log u2⇠ e
p
�/4

Conclusions
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Next-to-MHV amplitudes?

Full one-loop pre-factor?

Higher multiplicity (heptagon, ....)?

One-loop Thermodynamical-Bubble-Ansatz equations?

... and many other questions...

Outlook
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THANK YOU!
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BACK UP
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Higher multiplicity

Wn = h0|�D(⌧n�4,�n�4) . . .�D(⌧1,�1) |0i

Higher-point amplitudes correspond to higher-points correlators

Overall short-distance scaling is controlled by OPE

�D . . .�D| {z }
n�4

⇠ m�(n�4)�( 5
4 )+�(n

4 )�'

' = 2⇡ ⇥ n� 4

4
with final excess angle 

This leads to the addition

W
n

= e�
p

�
2⇡ An+

p
�(n�4)(n�5)

48n +o(
p
�)
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