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Plan 

Study of exact results in gauge theories  both at large N and finite N 
 

“Exact” =  all order in coupling, including both perturbative and non-perturbative contributions 
 

 
 
 

1. Four-dimensional N = 2 SQCD and N = 2* SYM at large N                                                  
 

2. N = 2 U(N) CS-matter theory at large N                             
 

3. N = 2 U(N) CS-matter theory with finite N 
 

 
 

 
 



Localization 

 

I . Exact partition function for N = 2 supersymmetric YM theories on S4,  with 
arbitrary matter content .                                [Pestun,  0712.2824] 

 

II.  Exact partition function for N = 2 supersymmetric CS –matter theories on S3                                                                              

    [Kapustin,  Willett and Yaakov, 0909.4559] 
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VEV of scalar of vector multiplet 

N = 2 SYM theories in four dimensions:  

Partition function localizes to a matrix integral over Coulomb moduli  

This a complicated integral which we still need to compute in order to understand the 
underlying physics. 

Z = Z(g)  
Exact g dependence 

 



N = 4 Super Yang-Mills theory on S4 

•Instantons do not contribute. 
 

•1-loop corrections cancel 
 

Gaussian matrix model: 
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           At large N the integral is dominated by a saddle-point. 
 
Introducing the eigenvalue density: 
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the saddle-point equation reads 
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Eigenvalues are distributed in a 
semicircle (Wigner’s law) 
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N = 4 SYM : Wilson loop 
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Reproduced by 
holography 

Expanding the Bessel function at small l one gets the perturbative series that must reproduce 
the Feynman diagram calculations 
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[Erickson, Semenoff and Zarembo, 0003055] [Drukker, Gross, 0010274] 

There is a smooth dependence with l all the way from 0 to infinity.  
No phase transition between the perturbative l << 1 regime and the strong coupling l >> 1 regime  
(described by AdS/CFT duality). 

 

What about N = 2 SYM theories? 
 

Is the interpolation between weak and strong coupling still smooth? 

Could there be a quantum phase transition at some value of l ? 
 



1.      N  =  2 SQCD with 2Nf  massive hypermultiplets 

J.R and K. Zarembo, arxiv:1309.1004 
 

We assume Nf  <  N, in which case the theory is asymptotically free.  

The partition function computed by localization is given by                                 [Pestun,  0712.2824] 

N

N
R

gaz
MaHMaH

aaHaa

adZ

f

inst

a
N

N

i

N

i

i

jiji

jiN i

i

ff






























,e

);(e
)()(

)()(

)1(

4

2
2

8
22

1

2

2
2

Dynamically generated scale 

The one-loop factor is expressed in terms of a single function n
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At large N, instantons do not contribute.  

The integral is determined by the saddle-point at the solution of the integral equation 

Here 

m: width of eigenvalue distribution,  - m < x < m  

_ 



In the decompactification limit,  

 

The saddle-point equation simplifies.   
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The RHS has poles at  x  =  ± M  which may or may not lie within the eigenvalue distribution.  
They represent  points in moduli space where the hypermultiplet are massless. 
  
 
 
 
 
 
 
 
 
 
 
The model thus has two phases: 
 
1. The weak-coupling phase with m < M, in which all hypermultiplets are heavy. 

 
2. The strong-coupling phase at  m > M, where massless hypermultiplets contribute to the saddle-point. 
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Massless hypermultiplets: 
The masses of the hypermultiplets are not just M, but get a contribution from the vacuum 
condensate. They are equal to |M + a| and |M - a|. 
 
The solution to the saddle-point equations changes 
discontinuously when the pole at x = M crosses the endpoint at x = μ. 
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1. Strong coupling phase m > M. 
 

The poles sit within the eigenvalue distribution.  
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The phase transition thus occurs when m = M, i.e. at Mc = 2 L 

2. Weak coupling phase m < M. 
 

The poles sit outside the eigenvalue distribution.  
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Free energy 
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in each phase we find a discontinuity in the third derivative of F 
Thus the transition is third order. 
 

 Computing 

The width of the eigenvalue distribution m  and susceptibility                                    as functions of the quark mass for 
different values of z .  
Wilson loop W= exp(2 pm)  is thus discontinuous in the first derivative. 
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LIGHT STATES AT CRITICAL COUPLINGS 

The mass spectrum in the scalar VEV background is given by Maamaam jiijjiij  hv ,

   Recall –m < ai < m.  
 

- If m < M/2, the hypermultiplet mass cannot vanish for any ai 

  
- However, when m > M/2, there can be light hypermultiplets for states with Maa ji 
 
 

N = 2*  SYM  is N = 4 theory  with mass term preserving N = 2 supersymmetry.  
This means a mass term for the hypermultiplet, i.e. the same mass for 4 scalars and 2 fermions. 

Phase transitions with adjoint matter:      N = 2* SU(N) Super Yang-Mills theory 

extra light states contribute to the saddle-point whenever m crosses  n M/2,  n = 1, 2, 3, … 
  
At which coupling these resonances occur?  
For n >> 1 we can use the strong coupling analytic formula for  m. Infinite number of phase 
transitions at  
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l = 180 

As l is increased, the theory goes through new phases where more cusps are formed 
pairwise, whenever  m  crosses nM/2, n = 1,2,3,…  
 



This looks different from what one expects to find at strong coupling: 

r(x) 
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Getting the Wigner’s semicircle distribution is necessary to match the 
AdS/CFT prediction.  
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l = 5000 

 
 
The Wigner distribution at strong coupling is the result of a coarse grain averaging over an 
infinite number of infinitely weak cusps. 



Do Chern-Simons-matter theories undergo quantum phase transitions  
like in the analogous four-dimensional case? 

 
Consider the N = 2 supersymmetric U(N) Chern-Simons theory with level k,  coupled to a matter 
content given by  Nf fundamentals and Nf  antifundamentals chiral multiplets of mass m .  
 
The partition function localizes to                                                                                     [Kapustin, Willett, Yaakov, 1003.5694] 
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Can this integral be computed explicitly? It depends on four parameters (g, m, N, Nf) 

 
Consider the infinite N (planar) limit. Then the partition function can be determined by a 
saddle-point calculation.  
Veneziano limit 
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The saddle-point equations are then 
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This is an exactly solvable model                                                             [Barranco, J.R, 1401.3672] 

2. Supersymmetric Chern-Simons with massive matter 



Large N solution in the decompactification limit 
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Repulsion                    attraction to origin                  attraction to m = +-  m   (combined effect: attraction to m = 0) 

Restore R dependence and take decompactification limit  

 RRmm ,

If t is fixed, then this limit just decouples  matter multiplets, which get an infinite mass. The theory reduces to 

pure N = 2 Chern-Simons theory. 
 

An inspection of the saddle-point equation shows that the limit R = infinity is regular if at the same time  t goes 

to infinity with 
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Then the  dependence on R completely cancels out and one obtains 



Potential 
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As the coupling l is increased from 0, the system goes through different phases I, II, III, where: 
 I. A < m 
II. A = m 
III. A  > m  

Phase I      (l < 1):  arises when A < m, implying that |μ| < m. Then the sign functions cancel out. 

Phase III     (l > 1/(1-z)):  arises when A > m. 
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The distribution expands as  l    is increased, until the endpoints hit  + /- m.  
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Phase II   (1 < l < 1/(1-z)):     A = m  

Consider the integral equation: 

We assumed:  )(1 NN f )0(10 NN f   When                                   only phase I, II remain 
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Analogy: N oranges on a canvas with one well at the center and two wells at +m and –
m, where only Nf/2 oranges can fit. 



General solution 

By standard matrix model methods, one can find the general solution to the 
integral equation for finite three-sphere radius R  
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Special cases: 
 
a) Massless flavors: 

 
 
 
 
 

b) Pure N = 2 CS theory ( = 0 ) 
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Reproduces known results of the 
literature  [Marino] 



Eigenvalue density 

 t ≪ 1 : r(m) approaches the Wigner      
distribution (t=0.1, m=50,   z = 0.25) 

Phase I : r(m) for m = 50,  z = 0.25,  t = 47. 

Phase II : r(m) for m = 50,  z = 0.25,  t = 60. 

Phase II : Case Nf > N.  r(m) for m = 50,   

                    z = 2,  t = 150. 

Phase III :  r(m) for m = 50,   z =0.25,  t = 150. 



Free energy: 
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This implies a discontinuity in the third derivative at both critical points, λ = 1 and λ = (1 − ζ)−1: 
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Therefore, both phase transitions are third order. 

Phase I Phase II Phase III 



Case of adjoint matter (e.g. ABJM)  
[Anderson, Zarembo 1406.3366] 

 

Infinitely many phase transitions like in N=2* theory. 

They can be understood in terms of  resonances and nth-order secondary resonances. 
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Strong coupling limit g >> m 

Derivation from AdS/CFT? 
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3. N = 2 U(N) Chern-Simons-matter with finite N 
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Finite N: One can use the method of  orthogonal polynomials.  

Then computing Z reduces to the problem of  computing the integral: 
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Since 19th century, this integral appeared in many interesting contexts. In particular,  studies 

of  Riemann zeta functions by Siegel and Mock theta functions by Ramanujan. 

In 1933, it was studied in great detail in a classical paper by Mordell, who gave the 

result for all possible values of  parameters a, b, c, d. 

The previous saddle-point method only computes Z in the special corner of the parameter space  
 
 

involving the planar N=infinity limit  
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[J.R., G. Silva and M. Tierz, arxiv:1407.4794] 

Consider 



U(N) partition function from orthogonal polynomials 

Using the method of orthogonal polynomials, the partition function can be written as follows: 
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The integral I( ,m) is a particular case of the Mordell integral. It can in general be evaluated in terms of expressions 

involving infinite sums. However, in two cases, it reduces to a finite sum of terms. 
 
 Luckily, one of these cases is when k = 2p i/g is an integer, which in CS theory is required by gauge invariance. 



Using Mordell’s formula, we find 
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The formula contains perturbative as well as non-perturbative terms 
Perturbative: e.g. exp(gn2/2) 
Non-perturbative: e.g. exp(2pim/g) 

Massless case 
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Finite dimensional 
Hilbert space? 



Large g coupling and phase transitions 
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The partition function is proportional to the determinant of  Jij defined by the basic integral 

When g is large, the main contribution of the integral comes from the saddle-point at  x = l 
Define m = g p, and consider large g with fixed p. This is equivalent to the decompactification 
limit considered before, but now we take it at finite N (even low N, e.g. N = 2) 
 
This implies 
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Which term is dominant depends on whether the saddle-point lies within the interval (-p,p) or 
outside. This leads to three different cases , which are in one-to-one correspondence to the three 
phases encountered in the planar limit). 



I) g(N-1) < m. In this case we simply have 

 
  

 
 

 
 Large N: the free energy becomes 

 
 
 
 

 
II) g(N-1-Nf) < m  ≤ g(N-1) . In this case Z is given by a finite product. At large N 

 
 
 

III)  m ≤ g(N-1-Nf) 
 
 
 

 

 We thus reproduce the free energies found in the planar limit in phases 1,2 and 3  

 starting with exact finite N expressions. 
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Unitary matrix model formulation and large N 

An interesting limit is the large N limit at fixed Chern-Simons level k. 

A convenient approach is to formulate the unitary version of  the matrix model, where the eigenvalues lie 

on S1. In pure CS theory one can show that this approach gives equivalent results [Romo, Tierz, 1103.2421] 

 

The unitary matrix model can be viewed as a deformation of  the contour of  integration to imaginary 

eigenvalues. The partition function now has trigonometric functions 
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This can be written as an integration on the compact interval 
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where we used Poisson resummation formula. This form permits to compute the large N limit by 

writing Z as a Toeplitz determinant and use the Szegő theorem. 



Toeplitz determinants and Szegő theorem 
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[ln f]k are the coefficients of the Fourier expansion of ln f, and   G(f)=exp([log f ]0 ) 

i.e. the Toeplitz determinant is the partition function of a U(N) unitary matrix model 
Then the strong Szegő limit theorem states that 
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Heine-Szegő formula 



In our case this gives 
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If we further take the limit of g to infinity at fixed m/g, then this reproduces 
the expression of Z for phase I. 
 
The other phases II and III cannot be recovered because in the unitary model 
|m ± i m| can never be zero.  



Conclusions 

Massive supersymmetric gauge theories exhibit large N phase transitions at critical couplings.  

Transitions occur when the eigenvalue distribution expands and the largest eigenvalue hits the mass.  

Then extra massless states contribute to the planar free energy. 

 

Examples: 

Four dimensional N = 2∗ SYM and N = 2 SQCD. 

 

N = 2∗ theory has a gravity dual. It predicts something special occurring at  

   

1,  nn

N = 2 U(N) Chern-Simons with 2Nf  massive flavors: 

The planar theory presents three phases when 0 < Nf < N and two phases when Nf ≥ N. 

 

Finite N: The matrix integral defining Z can be computed explicitly using Mordell integrals. 

Large N with fixed k: Z can be computed using Szegő limit theorem. 

Mass deformed ABJM Model 

Rich structure of  phase transitions at imaginary values of  the couplings, analogous to N = 2∗ SYM  

[Anderson, Zarembo 1406.3366]. Gravity dual phenomenon in terms of  M2 branes? 

Phase transitions also in 5d N = 1 SYM+CS term and adjoint matter [Minahan, Nedelin 1408.2767] 

•Phase transition at some critical relative value of  the two couplings.  

•Pure CS case with adjoint matter: evidence for infinite number of  phase transitions. 
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