Double-copy structures of pure and matter-coupled supergravities

Henrik Johansson

CERN

August 14, 2014
Nordita workshop:
Supersymmetric
Field Theories

Based on: arXiv:1407.4772, HJ, A. Ochirov, arXiv:1408.0764 M. Chiodaroli, M. Gunaydin, HJ, R. Roiban

Gravity double-copy structure

いns	Graviton plane wave:	$\varepsilon^{\mu}(p) \varepsilon^{\nu}(p) e^{i p \cdot x}$
		$\underbrace{}_{\text {亿 Yang-Mills polarization }}$

On-shell 3-graviton vertex:

Gravity scattering amplitude:

$$
\begin{gathered}
M_{4}^{\text {tree }}(1,2,3,4)=-i \frac{s t}{u} A_{4}^{\text {tree }}(1,2,3,4) \tilde{A}_{4}^{\text {tree }}(1,2,3,4) \\
\leftarrow_{\text {Yang-Mills amplitude }}
\end{gathered}
$$

Kawai-Lewellen-Tye Relations ('86)

String theory tree-level identity:
closed string $\sim($ left open string $) \times($ right open string $)$

$\left.A_{n} \sim \int \frac{d x_{1} \cdots d x_{n}}{\mathcal{V}_{a b c}} \prod_{1 \leq i<j \leq n}\left|x_{i}-x_{j}\right|^{k_{i} \cdot k_{j}} \exp \left[\sum_{i<j}\left(\frac{\epsilon_{i} \cdot \epsilon_{j}}{\left(x_{i}-x_{j}\right)^{2}}+\frac{k_{i} \cdot \epsilon_{j}-k_{j} \cdot \epsilon_{i}}{\left(x_{i}-x_{j}\right)}\right)\right]\right|_{\text {multi-linear }}$
KLT relations emerge after nontrivial world-sheet integral identities
Field theory limit \Rightarrow gravity theory \sim (gauge theory) \times (gauge theory)

$$
\begin{aligned}
M_{4}^{\text {tree }}(1,2,3,4)= & -i s_{12} A_{4}^{\text {tree }}(1,2,3,4) \widetilde{A}_{4}^{\text {tree }}(1,2,4,3) \\
M_{5}^{\text {tree }}(1,2,3,4,5)= & i s_{12} s_{34} A_{5}^{\text {tree }}(1,2,3,4,5) \widetilde{A}_{5}^{\text {tree }}(2,1,4,3,5) \\
& +i s_{13} s_{24} A_{5}^{\text {tree }}(1,3,2,4,5) \widetilde{A}_{5}^{\text {tree }}(3,1,4,2,5)
\end{aligned}
$$

gravity states are products of gauge theory states:

$$
\begin{aligned}
& |2\rangle=|1\rangle \otimes|1\rangle \\
& |3 / 2\rangle=|1\rangle \otimes|1 / 2\rangle \\
& \text { etc... }
\end{aligned}
$$

Color-Kinematics Duality ('08)

Yang-Mills theories are controlled by a hidden kinematic Lie algebra
Bern, Carrasco, HJ

- Amplitude represented by cubic graphs:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \longleftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

Algebra enforces (BCJ) relations on partial amplitudes \rightarrow ($n-3$)! basis (proven via string theory by Bjerrum-Bohr, Damgaard, Vanhove; Stieberger)

Gravity is a double copy of YM

- Gravity amplitudes obtained by replacing color with kinematics

$$
\begin{align*}
\mathcal{A}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}} \tag{BCJ}\\
\mathcal{M}_{m}^{(L)} & =\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} \tilde{n}_{i}}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2}}
\end{align*}
$$

- The two numerators can belong to different theories:

$$
\begin{array}{cccc}
n_{i} & \tilde{n}_{i} & & \\
(\mathcal{N}=4) \times(\mathcal{N}=4) & \rightarrow & \mathcal{N}=8 \text { sugra } & \begin{array}{l}
\text { similar tc } \\
\text { Lewellen- } \\
\text { works at } ~
\end{array} \\
(\mathcal{N}=4) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=6 \text { sugra } & \\
(\mathcal{N}=4) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=4 \text { sugra } & \\
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity }+ \text { axion+ dillaton }
\end{array}
$$

General or accident?

Is the double copy structure a generic feature of gravity?
Or accident of maximal $N=8$ supergravity (and its truncations)?

Some known limitations (even for tree-level KLT):

- $N<4$ supergravities contaminated by extra matter (dilaton, axion,...)
- How are pure $N<4$ supergravities obtained ?
- Huge number of $N=<4$ supergravities that are not truncations of $N=8$ SG.
- Can extra matter be introduced in $N=<4$ supergravities ?
- Abelian
- Non-abelian (gauged supergravities)
- Tensor matter in $D=6$
- There are gauge-theory amplitudes that cannot be used in the KLT formula
- e.g. fundamental matter amplitudes - do they have a purpose ?

This talk

Two generalizations of color-kinematics duality

1) Color-kinematics duality for fundamental rep. matter HJ, Ochirov
\rightarrow "square" matter and vector states separately

e.g. | gravitons | $\sim(\text { (vector })^{2}$ |
| ---: | :--- |
| matter $/$ vector | $\sim(\text { matter })^{2}$ |

\rightarrow Pure $N<4$ supergravities
\rightarrow Generic abelian $N=<4$ matter (vectors, tensors, fermions...)
2) Color-kinematics duality for a certain bosonic YM + scalar theory \rightarrow Supergravity coupled to abelian and non-abelian vectors
i.e. Maxwell-Einstein and Yang-Mills-Einstein supergravity

Chiodaroli, Gunaydin, HJ, Roiban
These address/resolve the mentioned problems!

Motivation II: (super)gravity UV behavior

Old results on UV properties:

- susy forbids $\mathbf{1 , 2}$ loop div. $R^{2} \mathbb{R}^{3}$ Ferrara, Zumino, Deser, Kay, Stelle, Howe, Lindström,

Green, Schwarz, Brink, Marcus, Sagnotti

- Pure gravity 1-loop finite, 2-loop divergent Goroff \& Sagnotti, van de Ven
- With matter: 1-loop divergent 't Hooft \& Veltman; (van Nieuwenhuizen; Fischler.)

New results on $N \geq 4$ UV properties:

- $\mathcal{N}=8$ SG and $\mathcal{N}=4$ SG 3-loop finite!
- $\mathcal{N}=8$ SG: no divergence before 7 loops

Bern, Carrasco, Dixon, HJ, Kosower, Roiban;
Bern, Davies, Dennen, Huang
Beisert, Elvang, Freedman, Kiermaier, Morales,
Stieberger; Björnsson, Green, Bossard, Howe, Stelle, Vanhove Kallosh, Ramond, Lindström, Berkovits, Grisaru, Siegel, Russo, and more....

- First $\mathcal{N}=4$ SG divergence at 4 loops Bern, Davies, Dennen, Smirnov, Smirnov (unclear interpretation, $\mathrm{U}(1)$ anomaly?) Carrasco, Kallosh, Roiban, Tseytlin

However, no new results in pure $N<4$ SG

Need double-copy construction for pure $\mathcal{N}<4$ supergravity

Outline

- Motivation
- Color-kinematics duality for fundamental rep.
- Gravity-matter amplitudes
- Application to pure gravities in $D=4$
- Color-kinematics duality for bosonic YM+scalar theory
- Gauged supergravity (generic Jordan family of SGs)
- Explicit loop-level checks
- Conclusion

Color-kinematics duality for fundamental rep.

4pt matter ampl's

Since 2008, large body of evidence for color-kinematics duality However, 4 pt tree-level YM with matter seems broken?

\rightarrow YM amplitude forced to vanish.
\rightarrow Color-kinematics duality not generic?
or are we thinking about it incorrectly?

Switch to fundamental representation

The four-quark tree amplitude:

$$
\begin{aligned}
& 2^{+}, \bar{\jmath} \quad 3^{-}, k \\
& \text { +ome }=-i T_{i \bar{\jmath}}^{a} T_{k \bar{l}}^{a} \frac{\langle 13\rangle[24]}{s}=\frac{c_{1} n_{1}}{D_{1}} \\
& \overbrace{1^{-}, i}^{2^{+}, \bar{\jmath}} \overbrace{4^{+}, \bar{l}}^{3^{-}}, k
\end{aligned}
$$

Note: 1) diagrams are gauge invariant - each is a partial amplitude
2) not meaningful to impose constraints on numerators
3) any numerator relation have to be manifest
4) this amplitude must have manifest color-kinematics duality 12

Gravity amplitudes from double copy

Four-photon amplitude in GR (distinguishable matter):

$$
A\left(1_{\gamma}^{-}, 2_{\gamma}^{+}, 3_{\gamma^{\prime}}^{-}, 4_{\gamma^{\prime}}^{+}\right)=\frac{n_{s}^{2}}{s}=\frac{\langle 13\rangle^{2}[24]^{2}}{s}
$$

Four-scalar amplitude in GR (distinguishable matter):

$$
A\left(1_{\phi}^{-+}, 2_{\phi}^{+-}, 3_{\phi^{\prime}}^{-+}, 4_{\phi^{\prime}}^{+-}\right)=\frac{n_{s} \bar{n}_{s}}{s}=\frac{u^{2}}{s}
$$

indistinguishable matter:

$$
A\left(1_{\phi}^{-+}, 2_{\phi}^{+-}, 3_{\phi}^{-+}, 4_{\phi}^{+-}\right)=\frac{n_{s} \bar{n}_{s}}{s}+\frac{n_{s} \bar{n}_{s}}{t}=\frac{u^{2}}{s}+\frac{u^{2}}{t}
$$

More complicated 5pt example

Look at 3 Feynman diagrams out of 10 in total:

$5, a \underset{\text { à }}{\text { Q. }}=-\frac{i}{\sqrt{2}} \frac{1}{s_{25} s_{34}} T_{i \bar{m}}^{b} T_{m \bar{\jmath}}^{a} T_{k \bar{l}}^{b}\langle 13\rangle\left[2\left|\varepsilon_{5}\right| 2+5 \mid 4\right]=\frac{c_{2} n_{2}}{D_{2}}$
$2^{+}, \bar{\jmath} \quad 1^{-}, i$
$\left.\left.\left.3^{-}, k \xrightarrow[\rightarrow]{4^{+}, \bar{l}} 5, \left.a=\frac{i}{\sqrt{2}} \frac{1}{s_{12} s_{34}} \tilde{f}^{a b c} T_{i \bar{\jmath}}^{b} T_{k \bar{l}}^{c}\left(\langle 1| \varepsilon_{5} \mid 2\right]\langle 3| 5 \right\rvert\, 4\right]-\langle 1| 5 \mid 2\right]\langle 3| \varepsilon_{5} \mid 4\right]$

$$
\left.-2\langle 13\rangle[24]\left(\left(k_{1}+k_{2}\right) \cdot \varepsilon_{5}\right)\right)=\frac{c_{5} n_{5}}{D_{5}}
$$

Not gauge invariant, but accidentally satisfy color-kinematics duality

$$
c_{1}-c_{2}=-c_{5} \quad \Leftrightarrow \quad n_{1}-n_{2}=-n_{5}
$$

Double copy = gravity amplitudes

Indistinguishable matter:

$$
\begin{aligned}
A\left(1_{\gamma}^{-}, 2_{\gamma}^{+}, 3_{\gamma}^{-}, 4_{\gamma}^{+}, 5_{h}^{++}\right) & =\sum_{i=1}^{10} \frac{n_{i}^{2}}{D_{i}} \\
A\left(1_{\phi}^{-+}, 2_{\phi}^{+-}, 3_{\phi}^{-+}, 4_{\phi}^{+-}, 5_{h}^{++}\right) & =\sum_{i=1}^{10} \frac{n_{i} \bar{n}_{i}}{D_{i}}
\end{aligned}
$$

$$
\begin{aligned}
\text { distinguishable matter } \\
\qquad \begin{aligned}
A\left(1_{\gamma}^{-}, 2_{\gamma}^{+}, 3_{\gamma^{\prime}}^{-}, 4_{\gamma^{\prime}}^{+}, 5_{h}^{++}\right) & =\sum_{i=1}^{5} \frac{n_{i}^{2}}{D_{i}} \\
A\left(1_{\phi}^{-+}, 2_{\phi}^{+-}, 3_{\phi^{\prime}}^{-+}, 4_{\phi^{\prime}}^{+-}, 5_{h}^{++}\right) & =\sum_{i=1}^{5} \frac{n_{i} \bar{n}_{i}}{D_{i}}
\end{aligned}
\end{aligned}
$$

$$
\left(\varepsilon_{5}=\varepsilon_{5}^{+}\right)
$$

4 and 5pts are well behaved for accidental reasons. What kinematic algebra should be imposed on numerators in general?

‘Adjoint’ Color-Kinematics Duality

pure Yang-Mills theories are controlled by an 'adjoint' kinematic algebra

- Amplitude in cubic graph expansion:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i \in \Gamma_{3}} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i} \curvearrowleft \text { color factors }}{p_{i_{1}}^{2} p_{i_{2}}^{2} p_{i_{3}}^{2} \cdots p_{i_{l}}^{2} \leftarrow \text { propagators }}
$$

Color \& kinematic numerators satisfy same relations:

The 'adjoint' \& 'fundamental' algebra

Jacobi Id.

$$
\tilde{f}^{d a c} \tilde{f}^{c b e}-\tilde{f}^{d b c} \tilde{f}^{c a e}=\tilde{f}^{a b c} \tilde{f}^{d c e}
$$

Fundamental algebra

Are there additional algebraic relations?

Recall the 4pt example

The four-quark tree amplitude has an obvious numerator identity

$$
\begin{aligned}
& \overbrace{1}^{2^{+}, \bar{\jmath}}{ }^{-}{ }^{3^{-}, k} \\
& \overbrace{1^{-},{ }_{i}^{+},{ }^{4^{+}, \bar{l}}}^{3^{-}}, k \\
& \rightarrow \quad n_{s}=n_{t}
\end{aligned}
$$

Is the identity part of the kinematic algebra?

\rightarrow Optional kinematical identity

Two-term Id.

Possible to enforce for single scalar or fermion

$$
\text { in } D=3,4,6,10 \quad \text { (Chiodaroli, Jin, Roiban) }
$$

Color identity? Not for fundamental matter, but holds for certain complex representations of $\mathrm{U}(N)$

$$
T_{i \bar{\jmath}}^{a} T_{k \bar{l}}^{a}=T_{i \bar{l}}^{a} T_{k \bar{\jmath}}^{a}, \quad U(1): T_{i \bar{\jmath}}^{a}=1
$$

Amplitude representation for non-pure SYM

super-Yang-Mills amplitude with one fundamental matter multiplet:

$$
\mathcal{A}_{m}^{(L)}=\sum_{i} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{D_{i}}
$$

sum is over all cubic vector-matter graphs with vertices $\{$
Color factors c_{i} are built out of $f^{a b c}, T_{i \bar{\jmath}}^{a}$

If n_{i} satisfy the kinematic algebra, and external legs are vector multiplets, then consistent sugra ampl's are generated by replacing the color factors:
e.g. $\quad c_{i} \rightarrow\left(N_{V}\right)^{|i|} n_{i}$ or $\quad c_{i} \rightarrow\left(N_{X}\right)^{|i|} \bar{n}_{i}$
$|i|$ counts number of closed matter loops
\bar{n}_{i} conjugation denotes reversal of all matter arrows
$N_{X}+1=$ number of complex matter multiplets in theory
$N_{V}=$ number of abelian vector multiplets in theory

Factorizable non-pure gravities

archetype:

$$
\begin{array}{rll}
(\mathcal{N}=0) \times(\mathcal{N}=0) & \rightarrow & \text { Einstein gravity }+ \text { axion+ dilaton } \\
(\mathcal{N}=1) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=1 \text { sugra }+\mathcal{N}=2 \text { matter } \\
(\mathcal{N}=1) \times(\mathcal{N}=1) & \rightarrow & \mathcal{N}=2 \text { sugra }+ \text { two } \mathcal{N}=2 \text { matter } \\
(\mathcal{N}=2) \times(\mathcal{N}=0) & \rightarrow & \mathcal{N}=2 \text { sugra }+\mathcal{N}=2 \text { vector } \\
(\mathcal{N}=2) \times(\mathcal{N}=1) & \rightarrow & \mathcal{N}=3 \text { sugra }+\mathcal{N}=4 \text { vector } \\
(\mathcal{N}=2) \times(\mathcal{N}=2) & \rightarrow & \mathcal{N}=4 \text { sugra }+ \text { two } \mathcal{N}=4 \text { vectors } \\
& & \text { Definition: } \mathcal{N}=2 \text { matter: }(\lambda, 2 \phi, \bar{\lambda})
\end{array}
$$

In terms of on-shell superspace multiplets this can be summarized as:

$$
\mathcal{H}_{\mathcal{N}+\mathcal{M}} \equiv \mathcal{V}_{\mathcal{N}} \otimes \mathcal{V}_{\mathcal{M}}^{\prime}=H_{\mathcal{N}+\mathcal{M}} \oplus X_{\mathcal{N}+\mathcal{M}} \oplus \bar{X}_{\mathcal{N}+\mathcal{M}}
$$

factorizable graviton multiplet : $\quad \mathcal{H}_{\mathcal{N}+\mathcal{M}} \equiv \mathcal{V}_{\mathcal{N}} \otimes \mathcal{V}_{\mathcal{M}}^{\prime}$
gravity matter : $\quad X_{\mathcal{N}+\mathcal{M}} \equiv \Phi_{\mathcal{N}} \otimes \bar{\Phi}_{\mathcal{M}}^{\prime}$ gravity antimatter : $\quad \bar{X}_{\mathcal{N}+\mathcal{M}} \equiv \bar{\Phi}_{\mathcal{N}} \otimes \Phi_{\mathcal{M}}^{\prime}$

Obtaining Pure Supergravities

recall:
$N_{\phi}+1=$ number of complex scalars in theory
$N_{X}+1=$ number of complex matter multiplets in theory
if we want no extra matter in the (super)gravity theory we are forced to pick $N_{\phi}=-1$ and $N_{X}=-1$

What does it mean?
The double-copied matter has the wrong-sign statistics; that is, those matter fields are ghosts!

This is a welcome feature of the construction, not a bug

- Removes the unwanted states in the vector double copy
- Preserves the double-copy factorization of states
- Preserves Lorentz invariance

Pure $\mathcal{N}=0,1,2,3$ supergravity amplitudes

(super-)Yang-Mills amplitude with one fundamental matter multiplet

$$
\mathcal{A}_{m}^{(L)}=\sum_{i} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{1}{S_{i}} \frac{n_{i} c_{i}}{D_{i}}
$$

sum is over all cubic vector-matter graphs with vertices $\{$ Color factors c_{i} are built out of $f^{a b c}, T_{i \bar{\jmath}}^{a}$

If n_{i}, n_{i}^{\prime} satisfy the kinematic algebra \rightarrow pure (super-)gravity

$$
\mathcal{M}_{m}^{(L)}=\sum_{i} \int \frac{d^{L D} \ell}{(2 \pi)^{L D}} \frac{(-1)^{|i|}}{S_{i}} \frac{n_{i} \bar{n}_{i}^{\prime}}{D_{i}}
$$

$|i|$ counts number of closed matter loops (i.e. ghost loops)
\bar{n}_{i} conjugation denotes reversal of all matter arrows

Example: one-loop 4pt

Collect all diagrams with the same denominators

$\rightarrow i=$ \{Box, triangle, bubble $\}$

$$
\mathcal{M}_{4}^{(1)}=\sum_{\mathcal{S}_{4}} \sum_{i=\{B, t, b\}} \int \frac{d^{D} \ell}{(2 \pi)^{D}} \frac{1}{S_{i}} \frac{n_{i}^{V} n_{i} V^{\prime}-\bar{n}_{i}^{m} n_{i}{ }^{m \prime}-n_{i}^{m} \bar{n}_{i} m^{\prime \prime}}{D_{i}}
$$

If left and right states are the same \rightarrow effective gravity numerator is

...and similarly for triangle and bubble

Bosonic YM+scalar theory \rightarrow YM-Einstein SUGRA

YM + scalar theory

Consider the bosonic YM + scalar theory

$$
I_{H^{\hat{a}}}^{G^{\mu \nu}} \quad \text { Chiodaroli, Gunaydin, HJ, Roiban }
$$

$$
\begin{aligned}
& +\frac{1}{2}\left(D_{\mu} \phi^{a}\right)^{\hat{a}}\left(D^{\mu} \phi^{b}\right)_{\hat{a}} \delta_{a b}+\frac{\mathrm{g}^{2}}{4}\left(i \mathrm{f}_{\hat{a} \hat{b} \hat{c}} \phi^{\hat{b} b} \phi^{\hat{c} c}\right)\left(i \mathrm{f}^{\left.\hat{a}_{\hat{b^{\prime}} \hat{c}^{\prime}} \phi^{\hat{b}^{\prime} b^{\prime}} \phi^{\hat{c}^{\prime} c^{\prime}}\right) \delta_{b b^{\prime}} \delta_{c c^{\prime}}} \begin{array}{ll}
+\frac{\mathrm{g} g^{\prime}}{3!}\left(i \mathrm{f}_{\hat{a} \hat{b} \hat{c}}\right) F_{a b c} \phi^{\hat{a} a} \phi^{\hat{b} b} \phi^{\hat{c} c} & \text { (initially studied in 1999 } \\
\text { by Bern, De Freitas, Wong) }
\end{array}\right.
\end{aligned}
$$

It has two coupling constants, and two copies of Lie algebras: color \& flavor

Non-trivially satisfies color-kinematics duality ! (checked at tree level up to 6pts, and at 1-loop 4pts.)

Multiple gauged supergravities obtained after double copying: e.g. certain $N=0,1,2,4$ Yang-Mills-Einstein supergravities

E.g. N=2 Yang-Mills-Einstein SUGRA

Consider the tensor product of the spectrum

$$
\begin{aligned}
& (\mathcal{N}=0 \mathrm{YM}+\text { scalars }) \times(\mathcal{N}=2 \mathrm{SYM}) \\
& \left\{A_{+}, \phi^{a}, A_{-}\right\} \otimes\left\{A_{+}, \lambda_{+}, \varphi, \bar{\varphi}, \lambda_{-}, A_{-}\right\}
\end{aligned}
$$

This gives the spectrum of the generic Jordan family of $N=2$ Maxwell-Einstein and Yang-Mills-Einstein supergravities

```
Gunaydin, Sierra, Townsend;
de Wit, Lauwers, Philippe, Su, Van Proeyen;
de Wit, Lauwers, Van Proeyen
```

Indeed, using the explicit Feynman rules of this $N=2$ gravity theory we have confirmed that the double-copy construction reproduces amplitudes in this theory in $D=4$ and $D=5$ dimensions.

One-loop 4pt amplitudes

Algebra for one-loop 4pt calculations

diagrams:

vanish
after
integration
kinematic algebra:

$$
\begin{aligned}
n_{\text {tri }}(1,2,3,4, \ell) & =n_{\text {box }}([1,2], 3,4, \ell), \\
n_{\text {bub }}(1,2,3,4, \ell) & =n_{\text {box }}([1,2],[3,4], \ell), \\
n_{\text {snail }}(1,2,3,4, \ell) & =n_{\text {box }}([[1,2], 3], 4, \ell), \\
n_{\text {tadpole }}(1,2,3,4, \ell) & =n_{\text {box }}([[1,2],[3,4]], \ell), \\
n_{\text {xtadpole }}(1,2,3,4, \ell) & =n_{\text {box }}([[[1,2], 3], 4], \ell) .
\end{aligned}
$$

Amplitude in YM + scalar theory

Consider the 4 pt amplitude with external scalars in the YM+ scalar theory
Three types of contributions:

$$
n_{\mathrm{box}}^{(\mathrm{a})}(1,2,3,4)=-i g^{\prime 4} F^{b a_{1} c} F^{c a_{2} d} F^{d a_{3} e} F^{e a_{4} b}
$$

$$
\begin{aligned}
n_{\mathrm{box}}^{(\mathrm{b})}(1,2,3,4, \ell)=- & \frac{i}{12} g^{\prime 2}\left\{\left(N_{V}+2\right)\left(F^{a_{1} a_{4} b} F^{b a_{3} a_{2}}\left(\ell_{2}^{2}+\ell_{4}^{2}\right)+F^{a_{1} a_{2} b} F^{b a_{3} a_{4}}\left(\ell_{1}^{2}+\ell_{3}^{2}\right)\right)\right. \\
& +24\left(s F^{a_{1} a_{4} b} F^{b a_{3} a_{2}}+t F^{a_{1} a_{2} b} F^{b a_{3} a_{4}}\right)+\delta^{a_{3} a_{4}} \operatorname{Tr}_{12}\left(6 \ell_{3}^{2}-\ell_{2}^{2}-\ell_{4}^{2}\right) \\
& +\delta^{a_{2} a_{3}} \operatorname{Tr}_{14}\left(6 \ell_{2}^{2}-\ell_{1}^{2}-\ell_{3}^{2}\right)+\delta^{a_{1} a_{4}} \operatorname{Tr}_{23}\left(6 \ell_{4}^{2}-\ell_{1}^{2}-\ell_{3}^{2}\right) \\
& \left.+\delta^{a_{1} a_{2}} \operatorname{Tr}_{34}\left(6 \ell_{1}^{2}-\ell_{2}^{2}-\ell_{4}^{2}\right)+\left(\ell_{1}^{2}+\ell_{2}^{2}+\ell_{3}^{2}+\ell_{4}^{2}\right)\left(\delta^{a_{2} a_{4}} \operatorname{Tr}_{13}+\delta^{a_{1} a_{3}} \operatorname{Tr}_{24}\right)\right\}
\end{aligned}
$$

Amplitude in YM-Einstein SUGRA

Consider the 4 pt amplitude with external vectors in the YM-Einstein theory
The three types of contributions are obtained as double copies

$$
\begin{aligned}
& \tilde{n}_{\text {box }}^{\mathcal{N}=2, \text { mat. }}(1,2,3,4, \ell)=\left(\kappa_{12}+\kappa_{34}\right) \frac{\left(s-\ell_{s}\right)^{2}}{2 s^{2}}+\left(\kappa_{23}+\kappa_{14}\right) \frac{\ell_{t}^{2}}{2 t^{2}}+\left(\kappa_{13}+\kappa_{24}\right) \frac{s t+\left(s+\ell_{u}\right)^{2}}{2 u^{2}} \\
& +\mu^{2}\left(\frac{\kappa_{12}+\kappa_{34}}{s}+\frac{\kappa_{23}+\kappa_{14}}{t}+\frac{\kappa_{13}+\kappa_{24}}{u}\right) \\
& -2 i \epsilon(1,2,3, \ell) \frac{\kappa_{13}-\kappa_{24}}{u^{2}} \text {, }
\end{aligned}
$$

Ampl's for fundamental $N=1$ SYM and pure $N=2$ SG

$N=1$ matter parity odd:

$$
\begin{aligned}
n_{\text {box }}^{\mathcal{N}=1, \mathrm{odd}}= & -\left(\kappa_{12}-\kappa_{34}\right) \frac{\left(s+\tau_{35}+\tau_{45}\right)^{3}}{2 s^{3}}-\left(\kappa_{14}-\kappa_{23}\right) \frac{\left(\tau_{25}+\tau_{35}\right)^{3}}{2 t^{3}} \quad \text { HJ, Ochirov } \\
& +\left(\kappa_{13}-\kappa_{24}\right)\left[s\left(\frac{1}{2 u}-\frac{3\left(\tau_{15}+\tau_{35}\right)}{2 u^{2}}+\frac{3\left(\tau_{15}+\tau_{35}\right)^{2}}{2 u^{3}}\right) \quad \tau_{i 5}=2 k_{i} \cdot \ell\right. \\
& \left.+\frac{\left(\tau_{15}+\tau_{35}\right)^{3}}{2 u^{3}}\right]-2 i\left(\kappa_{13}+\kappa_{24}\right) \frac{2 \tau_{15}+2 \tau_{35}-u}{u^{3}} \epsilon(1,2,3,5)
\end{aligned}
$$

parity even: Carrasco, Chiodaroli, Gunaydin, Roiban; Nohle; Ochirov, Tourkine
E.g. pure $N=2$ gravity numerator:

$$
\begin{aligned}
n_{\text {box }}^{\mathcal{N}=2 \mathrm{SG}} & =\left(n_{\text {box }}^{\mathcal{N}=1 \mathrm{SYM}}\right)^{2}-2\left(n_{\text {box }}^{\mathcal{N}=1, \text { even }}+n_{\text {box }}^{\mathcal{N}=1, \text { odd }}\right)\left(n_{\text {box }}^{\mathcal{N}=1, \text { even }}-n_{\text {box }}^{\mathcal{N}=1, \text { odd }}\right) \\
& =\left(n_{\text {box }}^{\mathcal{N}=1 \mathrm{SYM}}\right)^{2}-2\left(n_{\text {box }}^{\mathcal{N}=1, \text { even }}\right)^{2}+2\left(n_{\text {box }}^{\mathcal{N}=1, \text { odd }}\right)^{2}
\end{aligned}
$$

After integration: agreement with Dunbar \& Norridge ('94)

Two-loop check

We have checked that the ghost prescription removes all dilaton and axion contributions in the physical unitarity cuts in 2-loop 4pt Einstein gravity

$D=4$
The double s-channel cut is the most nontrivial It mixes two diagrams of different statistics:
The cancellation between the ghosts, dilaton and axion is highly intricate in this case
\rightarrow works well for $\left(\lambda^{+} \otimes \lambda^{-}\right) \oplus\left(\lambda^{-} \otimes \lambda^{+}\right) \rightarrow \phi, a$
\rightarrow glitch/feature: $\left(\phi^{+} \otimes \phi^{-}\right) \oplus\left(\phi^{-} \otimes \phi^{+}\right) \rightarrow \phi, \phi^{\prime}$

Summary

- In the past color-kinematics duality could not be used for pure $\mathrm{N}<4$ (super)gravity theories - impeded studies of gravity UV behavior
- Similarly, how to properly "double-copy construct" supergravity coupled to abelian or non-abelian vectors was an open problem
- The problems are solved by the introduction of fundamental-matter colorkinematics duality, and a bosonic YM+scalar theory, respectively
- Double copies give amplitudes in a wide range of matter-coupled (super)gravity theories
- A ghost prescription is proposed to give pure gravities. Ghosts obtained from double copies of matter-antimatter pairs
- Checks: At tree-level, one and two loops.
- Opens a new window into the study of gravity UV properties

Extra Slides

Notation for one-loop calculations

diagrams:

ansatz for 4 pt MHV amplitude with internal matter, in any SYM theory: HJ, Ochirov
$n_{\text {box }}(1,2,3,4, \ell)=\sum_{1 \leq i<j \leq 4} \frac{\kappa_{i j}}{s_{i j}^{N}}\left(\sum_{k} a_{i j ; k} M_{k}^{(N)}+\epsilon(1,2,3, \ell) \sum_{k} \tilde{a}_{i j ; k} M_{k}^{(N-2)}\right)$
power-counting factor: $\quad N=4-\mathcal{N} \leftarrow$ SUSY
momentum monomials: $\quad M^{(N)}=\left\{\prod_{i=1}^{N} m_{i} \mid m_{i} \in\left\{s, t, \ell \cdot k_{j}, \ell^{2}, \mu^{2}\right\}\right\}$
state dependence: $\quad \kappa_{i j}=\frac{[12][34]}{\langle 12\rangle\langle 34\rangle} \delta^{(2 \mathcal{N})}(Q)\langle i j\rangle^{4-\mathcal{N}} \theta_{i} \theta_{j}$
(vector multiplet: $\mathcal{V}_{\mathcal{N}}=V_{\mathcal{N}}+\bar{V}_{\mathcal{N}} \theta$)

Other Spacetime Dimensions

The prescription for adding matter-antimatter ghosts is similar in other dimensions, however, starting in $D=6$ an unwanted 4 -form show up.

Dim	$A^{\mu} \otimes A^{\nu} \rightarrow \phi \oplus h^{\mu \nu} \oplus B^{\mu \nu}$	tensoring matter	$(\text { matter })^{2} \rightarrow \phi \oplus B^{\mu \nu} \oplus D^{\mu \nu \rho \sigma}$	resulting states
$D=3$	$1 \otimes 1 \rightarrow 1 \oplus 0 \oplus 0$	$\lambda \otimes \bar{\lambda}$	$1 \otimes 1 \rightarrow 1 \oplus 0 \oplus 0$	topological
$D=4$	$2 \otimes 2 \rightarrow 1 \oplus 2 \oplus 1$	$\left(\lambda^{+} \otimes \lambda^{-}\right) \oplus\left(\lambda^{-} \otimes \lambda^{+}\right)$	$(1 \otimes 1) \oplus(1 \otimes 1) \rightarrow 1 \oplus 1 \oplus 0$	$h_{\mu \nu}$
$D=5$	$3 \otimes 3 \rightarrow 1 \oplus 5 \oplus 3$	$\lambda^{\alpha} \otimes \bar{\lambda}^{\beta}$	$2 \otimes 2 \rightarrow 1 \oplus 3 \oplus 0$	$h_{\mu \nu}$
$D=6$	$4 \otimes 4 \rightarrow 1 \oplus 9 \oplus 6$	$\left(\lambda^{\alpha} \otimes \lambda^{\beta}\right) \oplus\left(\widetilde{\lambda}^{\dot{\alpha}} \otimes \widetilde{\lambda}^{\dot{\beta}}\right)$	$(2 \otimes 2) \oplus(2 \otimes 2) \rightarrow 1 \oplus 6 \oplus 1$	$h_{\mu \nu}, D^{\mu \nu \rho \sigma}$ (ghost)
$D=10$	$8 \otimes 8 \rightarrow 1 \oplus 35 \oplus 28$	$\lambda^{A} \otimes \lambda^{B}$	$8 \otimes 8 \rightarrow 1 \oplus 28 \oplus 35$	$h_{\mu \nu}, D^{\mu \nu \rho \sigma}$ (ghost)

possibly cured cured by:

- Projecting out states in the matter-antimatter double copy ?
- Adding back a 4 -form (axion in $D=6$) ?
- Other way?

