



### **Transients**

Melvyn B. Davies
Lund Observatory
Department of Astronomy and Theoretical Physics
Lund University

Collaborators include: Ross Church (Lund), Chunglee Kim (Lund, Seoul), Andrew Levan (Warwick), Nial Tanvir (Leicester), Chris Tout (Cambridge)

#### Talk Plan

Physical processes in binary evolution

Explosions from compact binaries:

Short-duration gamma-ray bursts

Long-duration gamma-ray bursts

Gap transients

Fast Radio Bursts:

What they are. How might they be made?

# Gamma-ray bursts

Observation: a bright flash of gamma-rays, lasting for typically a few seconds, detected by space telescopes.

Energetics suggest that we are seeing the birth of an accreting, rapidly-rotating black hole.



(Stephan Rosswog, Stockholm)



(Bill Saxton, NRAO)

## Gap transients



Luminosities between those of novae and supernovae.

Thought to be formed from mass transfer in WD-NS binaries.

Spectra dominated by calcium (made by nuclear burning in accretion disc).

Offset from the host galaxies.

Kasliwal et al. (2012)

## Binaries are important

Long GRBs may also form in compact binaries where companion spins up GRB progenitor.

e.g. Church, Kim, Levan & Davies (2012)

80-100% of massive stars are in binaries.

1000

Envelope stripping

100

Initial orbital period (d)

10



10000

e.g. Kiminki & Kobulniki (2012)

About 70% of high-mass (Otype) stars interact significantly

Sana et al. (2013)

### Evolutionary pathway to produce NS-NS binaries



### Locations of short bursts



Localisations from the Swift satellite

Church, Levan, Davies & Tanvir (2011)

# Offsets larger than expected

060502B - burst occurred outside host galaxy.





It could be that the progenitor formed dynamically in a globular cluster.

Church, Levan, Davies & Tanvir (2011)

# Predicted offsets for gap transients



Church, Levan & Davies in preparation

#### Fast Radio Bursts

|                                                                 | FRB 010724                   | FRB 010621                    | FRB 110220                   | FRB 110627                   | FRB 110703                   | FRB 120127                   |
|-----------------------------------------------------------------|------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| Observed width (ms)                                             | 4.6                          | 8.3                           | 5.6                          | <1.4                         | <4.3                         | <1.1                         |
| $(\tau_0^2 + \tau_s^2)^{1/2}$ (ms)                              | 3.1                          | 4.8                           | 5.5                          | <1.1                         | <4.1                         | < 0.9                        |
| Predicted $\tau_s$ (ms) <sup>a</sup>                            | 2.89                         | 177                           | 802                          | 145                          | 2251                         | 28                           |
| DM (pc cm <sup>-3</sup> )                                       | $375 \pm 1$                  | $746 \pm 1$                   | $944.38 \pm 0.05$            | $723.0 \pm 0.3$              | $1103.6 \pm 0.7$             | $553.3 \pm 0.3$              |
| Extragalactic DM (pc cm <sup>-3</sup> )                         | 330                          | 213                           | 910                          | 677                          | 1072                         | 521                          |
| Peak flux density (Jy)                                          | $30 \pm 10$                  | $0.4 \pm 0.1$                 | 1.3                          | 0.4                          | 0.5                          | 0.5                          |
| Spectral index <sup>b2</sup>                                    | $-4 \pm 1$                   | $0 \pm 1$                     | $0 \pm 1$                    | $0 \pm 1$                    | $0 \pm 1$                    | $0 \pm 1$                    |
| Observed rate (h <sup>-1</sup> deg <sup>-2</sup> ) <sup>c</sup> | $0.0019^{+0.0045}_{-0.0006}$ | $0.00051^{+0.0013}_{-0.0001}$ | $0.0017^{+0.0013}_{-0.0005}$ | $0.0017^{+0.0013}_{-0.0005}$ | $0.0017^{+0.0013}_{-0.0005}$ | $0.0017^{+0.0013}_{-0.0005}$ |

Hassall, Keane & Fender (2013)

(see also Lorimer et al 2007; Keane et al 2012; Thornton et al 2013)

Short timescales (few ms implying ~1000km source)

High DM implies cosmological distances (though note Loeb et al 2013)

Energetic events (~10<sup>33</sup>J)

#### What are FRBs?

Soft gamma-ray repeaters (SGRs)

(Ofek 2007; Hurley et al 2005)

Merging NS-NS binaries

(Hansen & Lyutikov 2001; Totani 2013)

ccSN explosion + NS magnetic field

Egorov & Postnov (2009)

Rotating supramassive neutron stars

Falcke & Rezzolla (2013)

Linked to GRBs

Zhang (2014)

#### What are FRB rates?

| Object                                                                          | Rate <sup><math>a</math></sup> (Gpc <sup><math>-3</math></sup> d <sup><math>-1</math></sup> ) | Reference                                                                    |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| FRBs (high scattering) FRBs (no scattering) Short GRBs NS mergers CC supernovae | $51^{+31}_{-14}$ $5.3^{+3.1}_{-1.4}$ $\sim 0.3-3$ $\sim 0.3-30$ $\sim 200-2000$               | This work This work Fong et al. (2012) Abadie et al. (2010) Li et al. (2011) |

<sup>&</sup>lt;sup>a</sup>The rates given here are 'local' (z < 1), but the true rates depend on redshift. They should be treated as order of magnitude estimates.

Hassall, Keane & Fender (2013)

#### Detection rate with SKA Phase I could be one per hour.

(Trott, Tingay & Wayth 2013; Hassall, Keane & Fender 2013)