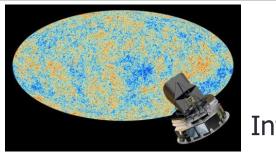
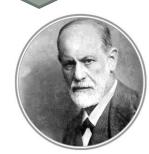
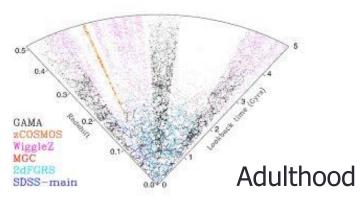
Cosmic Dawn and Reionization with the SKA

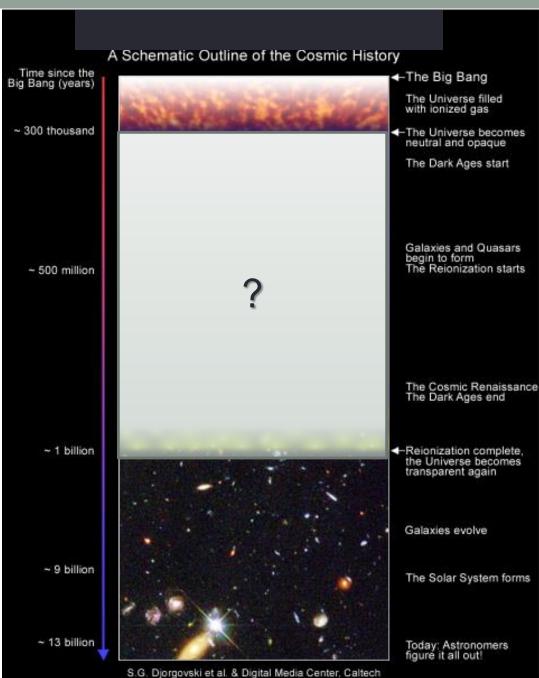

Garrelt Mellema

Department of Astronomy
Stockholm University

Contents

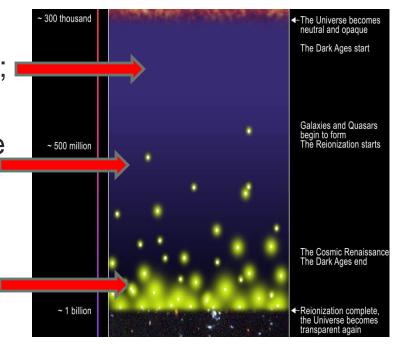

- What is the Cosmic Dawn & Reionization?
- What is the radio signal from this period?
- What is the relation between studies with LOFAR and the SKA?

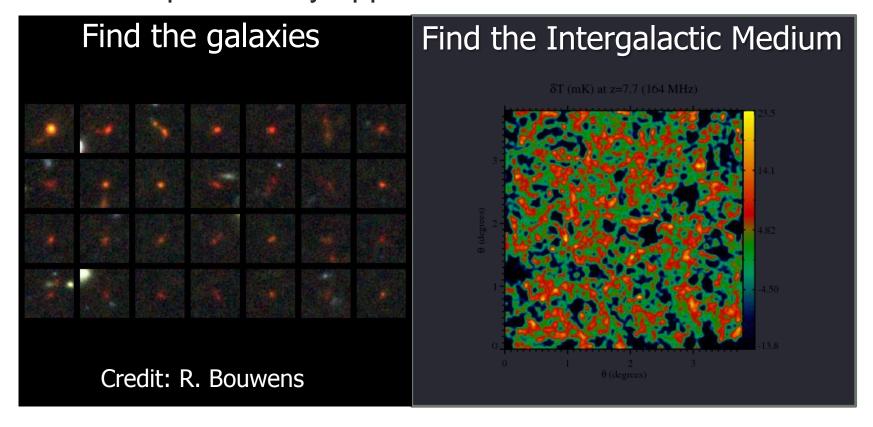



Infancy

Time line

Tell me about your childhood...

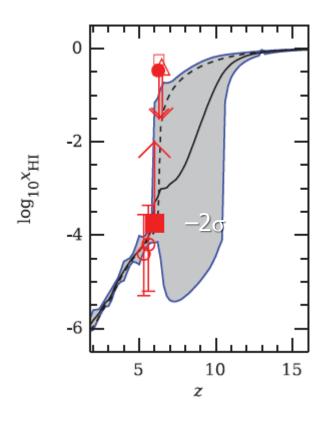



The Universe's childhood

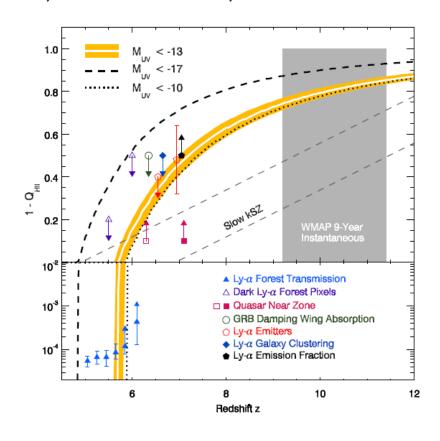
- `Childhood´ phases:
- Dark ages: no sources of radiation;
 Universe neutral.
- Cosmic Dawn: first stars; Universe mostly neutral.
- Reionization: earliest galaxies; neutral hydrogen starts to disappear.
- `Adolencence/adult´ phase:
- Post-reionization: galaxies grow, clusters of galaxies form, Universe filled with ionized hydrogen.

Studying the CD/EoR

Two complementary approaches:

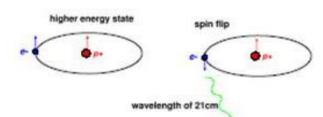


HST, Subaru, JWST, E-ELT, etc.


LOFAR, MWA, PAPER, GMRT, **SKA**

Combining Existing Constraints

Current data: WMAP, SPT, QSO, LAEs/LBGs, ...

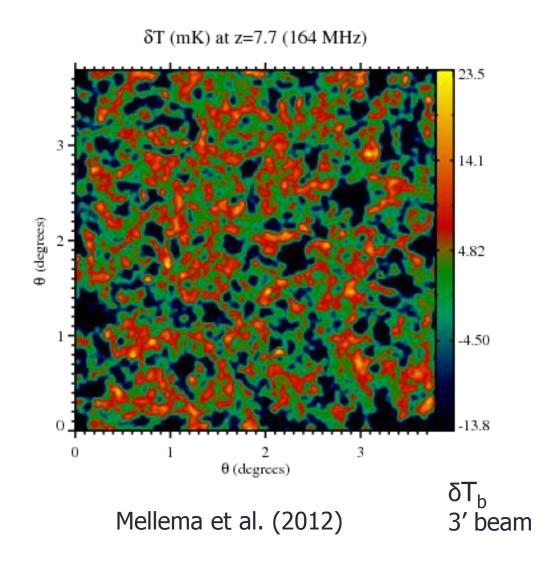


Mitra et al. (2012)

Robertson et al. (2013)

The Perfect Tool

- Neutral hydrogen has a forbidden, hyperfine transition between the two 1²s_{1/2} ground level states: 21cm.
- The measurable signal, differential brightness temperature δT_b


$$\approx 28x_{\rm HI}(1+\delta) \left(\frac{1+z}{10}\right)^{\frac{1}{2}} \left(1 - \frac{T_{\rm CMB}(z)}{T_{\rm s}}\right) \left(\frac{\Omega_{\rm b}}{0.042} \frac{h}{0.73}\right) \left(\frac{\Omega_{\rm m}}{0.24}\right)^{\frac{1}{2}}$$

$$\left(\frac{1-Y_{\rm p}}{1-0.248}\right) \left(1 + \frac{1}{H(z)} \frac{\mathrm{d}v_{\parallel}}{\mathrm{d}r_{\parallel}}\right)^{-1} \quad \text{mK}$$
(2)

• It is found at radio frequencies below 200 MHz.

The 21cm map

- The signal fills the sky.
- It has intrinsic fluctuations due to
 - Gas density (δ)
 - Ionized regions (x_{HI})
 - Excitation variations (T_s)
- It has additional observed fluctuations due to
 - LOS velocity gradient.

The 21cm image cube

 The signal is *line* emission: due to Doppler shifting it carries spatial, temporal and velocity information.

 $\log_{10}(\delta T)$ (mK) the Universe $\log_{10}(\delta T)$ (mK) $\log_{10}(\delta T)$ (mK)

v (MHz)

Frequency / Time

Redshift Mellema et al. (2006)

Spin Temperature

Populations of the triplet and singlet states of HI follow Boltzmann distribution, with excitation temperature, a.k.a. the spin temperature.

$$n_1/n_0 = 3 \exp(0.068 \text{ K} / T_s).$$

Processes affecting spin temperature:

- Collisions $(T_s \rightarrow T_k)$, z > 30
- Radiative

$$T_s = \frac{T_{CMB} + y_\alpha T_k + y_c T_k}{1 + y_\alpha + y_c}$$

- CMB photons $(T_s \rightarrow T_{CMB})$
- Ly- α photons $(T_s \to T_{Ly-\alpha} \approx T_k)$ ("Wouthuysen-Field effect")

IGM @ EoR: competition between CMB and Ly-α photons.

Spin Temperature Regions

 $\frac{T_s - T_{CMB}}{T_s}$

 Depending on T_k and local Ly-α flux: different regions of 21cm signals in IGM (for z<30).

	Heated IGM	Unheated IGM
Ly-α present	δT _b > 0	δT _b < 0
No Ly-α present	$\delta T_b = 0$	$\delta T_b = 0$

Late EoR: T_{IGM} » T_{CMB} , and Ly- α present: $\delta T_b > 0$

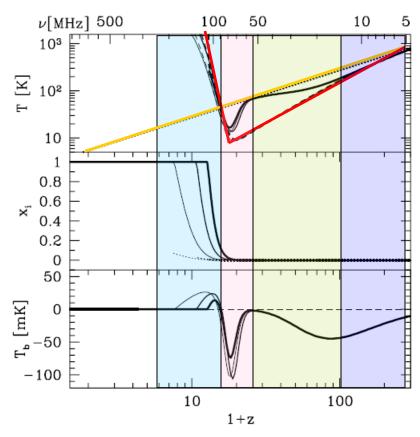
In this case: δT_b independent of T_s .

Cosmic Dawn: $T_{IGM} < T_{CMB}$, and Ly- α present: $\delta T_b < 0$ Fluctuations due to T_s variations.

History of Temperatures

- $T_{CMB} \propto (1+z)^{-1}$
- $T_{\text{kin IGM}} \propto (1+z)^{-2}$

 z >90: collisions couple T_s Dark to T_{IGM} ($< T_{CMB}$ for z<160).


Ages . z ~ 30-50: collisional coupling weakens, and T_s tends to T_{CMB} (z ~ 30-50).

Dawn

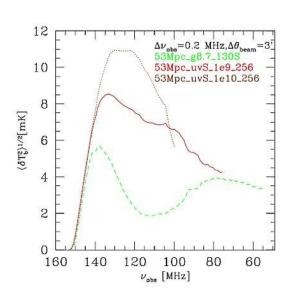
Cosmic \cdot z<25 (?): Coupling to Ly- α drives T_s back to low T_{IGM} (Wouthuysen-Field effect).

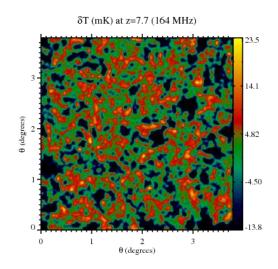
EoR

 z<15 (?): IGM heated (X- rays, shocks) + substantial ionization.

Pritchard & Loeb (2008)

Analysis 21cm Signal


Statistical:


- Variance measurements (as function of frequency)
- Power spectra
- Redshift space distortions
- Higher order statistics

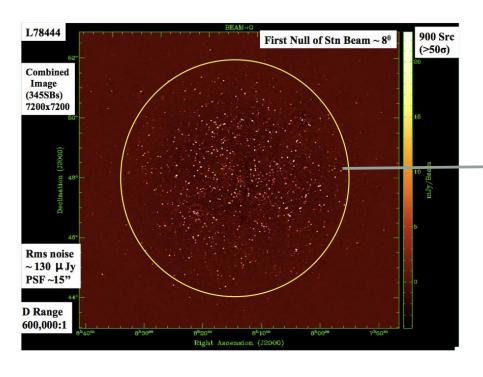
Tomography:

- Morphologies of HII regions
- Special objects (QSOs)
- Special regions (Galaxy surveys)
- Density fluctuations


SKA WP CD/EoR: Mellema et al. (2013)

Evolution of Power Spectrum

- Different models (Pritchard & Loeb 2009): many uncertainties.
- Three phases:
 - Ly-a coupling (CD)
 - X-ray heating (CD/EoR)
 - Photo-ionization (EoR)



LOFAR EoR Project

- Observing since December 2012.
- Can deliver for z < 11:
 - Variance measurements
 - Power spectra
 - Skewness & kurtosis
 - Redshift space distortions (Jensen et al. 2013).
- A statistical HI detection experiment.
 - Smallest scales: ~4'
 - Largest scales: ~5°

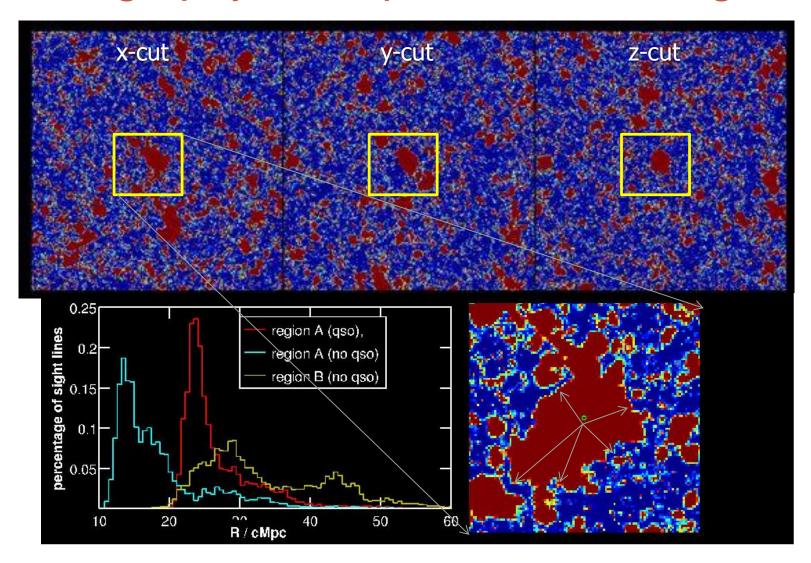
LOFAR Precursor EoR studies LOFAR

North Celestial Pole

Images with 10⁶:1 dynamic range.

Frequency range 115 – 200 MHz

First statistical detection of EoR HI signal (for z<11) by end of 2014?


SKA Transformational

The SKA, even in Phase I, can deliver

- Power spectra for the entire Cosmic Dawn/EoR period (6 < z < 25).
- Tomography at several arcmin scales for the entire EoR (6 < z < 15).
- Range of scales: ~5' to ~5° (frequency dependent).
- Will provide the first ever measurements of
 - The heating of the Universe before redshift 10.
 - The earliest star formation in the Universe.

Tomography Example: QSO HII Region

CD/EoR Science

Astrophysics:

- Obtaining a census of earliest star formation and galaxies.
- Mapping the early development of the cosmic web.
- Analysing the growth of Black Holes.
- Establishing the effect of radiative feedback on galaxy growth/formation

Cosmology:

- Testing the ΛCDM model of the Universe in new regimes.
- Measuring the statistics of the Universe's matter distribution.
- Imposing constraints on the nature of dark matter.

Summary

- The SKA will allow the first observations of
 - The Cosmic Dawn (15 < z < 25)
 - Tomography of the Epoch of Reionization (z < 15) at arcmin scales.
- The redshifted 21cm data is essential for constraining the reionization process.
- Beyond z=10, the 21cm signal is currently the only observable for our Universe!
- It's going to be exciting!