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Bootstrap

Bootstrap: use internal consistency conditions to fix the observables in a QF T

o Unitarity
e Global symmetries (Poincaré, conformal, supersymmetry, flavor)
e Crossing symmetry
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Bootstrap

Bootstrap: use internal consistency conditions to fix the observables in a QF T

o Unitarity
e Global symmetries (Poincaré, conformal, supersymmetry, flavor)
e Crossing symmetry:

[Ferrara, Gatto, Grillo, Parisi (1972); Polyakov (1974)]



The bootstrap - is it possible?

Some success stories:

e Minimal models in two dimensions
[Belavin, Polyakov, Zamolodchikov (1984)]

e Rational CFTs in two dimensions
[Moore, Seiberg (1989), ...]

Use crossing symmetry for CFTs in more than two dimensions?



Back to the bootstrap

Conformal field theory revisited
(o(x1)o(22)0(x3)0(24))
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[Rattazzi, Rychkov, Tonni, Vichi (2008)]



Back to the bootstrap

Conformal field theory revisited
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[El-Showk, Paulos, Poland, Simmons-Duffin, Rychkov, Vichi (2012)]



The conformal bootstrap

What can we say about the space of conformal field theories?
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The conformal bootstrap

What can we say about the space of A/-extended
superconformal field theories?



Spaces of superconformal field theories

The space of all A-extended superconformal field theories in four dimensions
N =4
e Lagrangian theories are classified by
(G,7)/SL(2,Z)
where G is a simple Lie group and 7 € H
¢ No exotic theories?
N =2

e Quiver classification of Lagrangian theories
[Bhardwaj, Tachikawa (2013)]

e Class S theories obtained from six 6 \
dimensions [Gaiotto (2008)] °/\Q>
e Many non-Lagrangian theories _

e Do we have a complete classification?

Can the bootstrap program help us?



The superconformal bootstrap program

We are going to explore the consequences of crossing symmetry for
superconformal field theories.

e Can we bootstrap specific superconformal theories?
e What can we learn about the space of all superconformal theories?



The superconformal bootstrap

Is there a protected, solvable subsector of the crossing symmetry constraints
for superconformal field theories?

Yes, for
d = 4 theories with A/ = 2 susy
d = 6 theories with (2, 0) susy
d = 2 theories with (0, 4) susy
More precisely, we find that twisted correlation functions of certain protected

operators become those of a two-dimensional chiral algebra and can be
completely solved.

For example,

¢/2 ., 2T oT
(z—w)?  (z—w)? z—-w

T(2)T (w) ~

completely determines all the correlation functions of T'(z).
[Beem, Lemos, Liendo, Peelaers, Rastelli, BVvR (2013)]



The superconformal bootstrap program

Consequently, our program splits into two parts:

Minibootstrap Maxibootstrap

¢ Protected o Not protected
e Meromorphic e Numerical

e Virasoro, Kac-Moody, W, ... e Linear programming
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® The minibootstrap in d = 4



Take an N = 2 superconformal field theory. Recall that the ' = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

s5u(2,2) x su(2)r x u(l)r
so irreps are labeled with A, (41, 72) and (R, r).

Consider now an n-point correlation function

(O™ (z1)...0™ (z,))

and restrict it in the following way:
1 Take all operators to be ‘Schur’ operators satisfying A = 2R + j1 + jo.
2 Take all n points to lie in a two-plane R? ¢ R*.

3 Contract the su(2) r indices with position-dependent vectors v;(z).
For example, for the fundamental representation v(z) = (1, z).

Claim: the resulting correlation function is meromorphic in all the positions.
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Take an N = 2 superconformal field theory. Recall that the N = 2
superconformal algebra is su(2, 2|2) with maximal bosonic subgroup

s5u(2,2) x su(2)r x u(1)r
so irreps are labeled with A, (j1,72) and (R, 7).

Consider now an n-point correlation function

a% (v (21) 01, (2a) (O (21,21) .. O™ (20 20)) ) = 0

and restrict it in the following way:
1 Take all operators to be ‘Schur’ operators satisfying A = 2R + j1 + j2.
2 Take all n points to lie in a two-plane R? c R*.

3 Contract the su(2) r indices with position-dependent vectors v;(Z).
For example, for the fundamental representation v(z) = (1, z).

Claim: the resulting correlation function is meromorphic in all the positions.



Example: free hypermultiplet

In a free hypermultiplet the scalars Q7 = (Q, Q* ) and Q' = (Q, Q") form
two su(2) g doublets and satisfy A = 2R + j1 + j2. Their OPE is

1

Q'(2,2)Q7 (0) ~ —<
SO - o
01(2)Q (2, ) (0)G” (0) ~ —2E Qe _ 1

zZz z

Defining ¢(z) = v1Q’ and §(z) = v;Q" we find the two-dimensional OPE

4(2)i(0) ~

z

corresponding to a (non-unitary) pair of symplectic bosons of dimension 1/2.



Claim:

Proof:
e There exists a particular nilpotent supercharge @ such that

@@} =H-2R-M,* — M,
so necessarily A — 2R — j; — j2 > 0 and a Schur operator satisfies
@O 4(0)}=0.

We can pick @ = Q" — §*~.
¢ Holomorphic translations are @ closed

@P.]=0
¢ In the antiholomorphic direction we find that
0: (v[(z)of(z, 2)) = vr(2)[P= + R~,07(2)]
and such twisted antiholomorphic translations are Q exact
P:+R ={Q,...}
Meromorphicity then follows from the usual cohomological argument.



Dictionary

Hypermultiplet —  Symplectic bosons

Flavor symmetry —  affine Kac-Moody symmetry
742037 (0) ~ B 4 12(0)
koq = —k4a/2

Stress tensor —  Virasoro stress tensor
T(2)T(0) ~ 2 + 2ZQ 4 27O
c2qa = —12¢44



The minibootstrap

To summarize, N' = 2 SCFTs in d = 4 always have infinite chiral symmetry in
a protected sector. In particular we have Virasoro symmetry, but there is
often much more.
Results for A/ = 2 theories in d = 4:

e Flavor symmetry enhanced to Kac-Moody (or QDS thereof)

o New unitarity bounds
New three-point couplings
Holographic interpretation?

[Beem, Lemos, Liendo, Peelaers, Rastelli, BvR (2014)]
Results for (2, 0) theories in d = 6:

° Wg S
e All half-BPS three-point couplings <\\° 0\
¢ Microscopic understanding of AGT? °/\\\,>

Connections to geometric Langlands?

[Beem, Rastelli, BVR (2014)]



@® The maxibootstrap in d = 4



The N' = 4 maxibootstrap

In theories with A/ = 4 superconformal symmetry, the primary O%,, is a

universal operator. So let’s bootstrap its four-point function,

At1i21314 Tii

(Ol (£2)03 (22) Oy (20) Oy (a4)) = 2 (2)
12434

A priori there are 6 different functions but they are fixed in terms of a single
unconstrained function A(z;;) and two meromorphic functions f1(z;) and

f2(zi).
e The meromorphic functions are fixed by the chiral algebra in terms of
a = dim G/4 so they are input for the numerical bootstrap.

e The unconstrained function A(x;;) contains information on the
unprotected operators only and is analyzed numerically.



The N' = 4 maxibootstrap

i ia AT (g5 )
<020’(x1)020’ (x2)020/ (1'3)020/ ($4)> = 1 4

L1234
Note: the only long multiplets that can appear have R = 0 and even spin.
Examples are:

Konishi, Tr(®'®r):

2 2 3 3 4 4
Agon = 243Na 3N 0" 4 2WN"a” 1 (39 4 9¢(3) —45¢(5) (L + %)) X4+

4w

[Velizhanin, ...]

Double-trace, Tr(®!®7)Tr(®;®,):
Ag =4 — % + ...

[D’Hoker et al (1999)]

Qe



The N' = 4 maxibootstrap

Results for the first unprotected scalar with R = 0

[Beem, Rastelli, BvR (2013)]



The N' = 4 maxibootstrap

Results for the first unprotected scalar with R = 0
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Conjecture: for N = 2, with (g,6) = (1,0) or (2/+/3,1/2), we have

Agon =~ 3.05




The N' = 2 maxibootstrap

In theories with N/ = 2 superconformal symmetry, a flavor symmetry multiplet
contains a dimension two scalar /7 in the triplet of su(2) z known as the
moment map.

Its four-point function is decomposed into a set of meromorphic functions
FABCP ;) and unconstrained functions GAZL (). As before, the
meromorphic functions are fixed from the chiral algebra and we analyze the
two-variable functions numerically.

Input parameters: Output:
e global symmetry algebra G e Can the theory exist?
o flavor central charge k e Bounds on e.g. scalar operators

e central charge ¢ o ...



The N = 2 maxibootstrap

Global symmetry group: Eg
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[Beem, Lemos, Liendo, Rastelli, BVvR (to appear)]



The N = 2 maxibootstrap

Global symmetry group: su(2)
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[Beem, Lemos, Liendo, Rastelli, BvR (to appear)]



The N' = 2 maxibootstrap

Global symmetry group: su(2)

[Beem, Lemos, Liendo, Rastelli, BVvR (to appear)]



Other results

Other work on the superconformal maxibootstrap:

e N=1lind=14
[Poland, Simmons-Duffin, Vichi (2010-2011);
Berkooz, Yacoby, Zait (2014)]

e N =4ind = 4 [Alday, Bissi (2013-2014)]
e N =8ind = 3 [Chester, Lee, Pufu, Yacoby (2014)]
¢ (2,0) in d = 6 [Beem, Lemos, Rastelli, BvR (to appear)]

Lots of analytic work, for example on the computation of superconformal

blocks, the lightcone limit, etc.
[Fitzpatrick, Kaplan, Khandker, Komargodski, Li, Poland, Simmons-Duffin,

Zhiboedoyv, . .. (2010-2014)]



Conclusions

We are only beginning to understand the consequences of crossing
symmetry for superconformal theories. The results so far have been very
promising.

Highlights so far:
e Infinite chiral symmetry in four, six and two dimensions
e Quantitative results for strongly coupled non-planar theories

Grand questions:
e Spaces of SCFTs?
e Microscopic derivation of AGT?



Conclusion

The superconformal bootstrap program works!



Extra slides



In fact, by restricting ourselves to R? ¢ R* we preserve
sl(2)r x sl(2)2)r C su(2,2(2)
The entire s((2), is closed
[@L_1]=0 [@ Lol =0 [@ L] =0
and the entire twisted s1(2) r is exact
L.+R ={q...} Li-R={Q..} Li—-R"'={q...}
— We have a superconformal twist. Notice that
LO:%(H+M+++M++) - h:%(A+j1+j2)
Lo—R= % (H—QR—MJ—Mj) = %{m,mf}zo
— The twist works for any superconformal algebra with an sl(2|2)

subalgebra, so chiral algebras also exist for (2,0) SUSY in d = 6 and
(0,4) SUSY ind = 2.



Universal properties

e Consider a flavor symmetry multiplet containing (among other operators)
pis() T (@)

Here p#;(z) is the moment map with A = 2 and R = 1. In the chiral
algebra it becomes a dimension one current j*(z). The four-dimensional
OPE determines

so we find an affine Kac-Moody algebra with koq = —kaq/2.

o Similarly, the su(2) r symmetry current J./ (z) becomes a stress tensor
T(z) with

()T (0) ~ 2 4 2T0) | OTO)

z z z
so we find a Virasoro algebra with caq = —12c¢44.

e The elements of the Higgs branch chiral ring correspond to Virasoro
primaries, with null states indicating relations.

e The elements of the Coulomb branch chiral ring are not Schur.



Gauging prescription

In a free vectormultiplet the Schur operators are the gauginos A\ and A%
Defining
b (2) ~ v(2) - M (2, 2) dct(2) ~(z) - ANz, 2)
we find a (small) (b, ¢) ghost system with dimensions (1,0) and OPE
6AB
b (2)c”(0) ~ —
z

Gauging of a flavor symmetry now corresponds to a restriction to the
cohomology of

1 1
QBRsT = %%dz (CAJA — §fABCCACBbC)

in the chiral algebra.

This operator is nilpotent precisely if the four-dimensional beta function
vanishes!



The big picture

For specific theories we have precise claims for the chiral algebra:
e su(2) with four fundamental flavors:

s0(8)_2 AKM algebra
e Minahan-Nemeschansky Es theory:
(e¢)—3 AKM algebra
e su(N.) with Ny = 2N, fundamental flavors:
u(1) x su(Ny)_n, AKM algebra + baryons
e N =4 SYM theories:

small A/ = 4 algebra + primaries from half BPS chiral ring

Furthermore, for class S theories:

Chiral algebra of Tx? I
Gauging: as before 60 X,
Maximal puncture: AKM algebra at k = —h" 0/\\\ )

Closing puncture: quantum Drinfeld-Sokolov
reduction



Conformal multiplets

The conformal group in four dimensions is SU(2,2) ~ SO(4, 2) with
generators
P* M, D K,

Consider the set of local operators in a CFT
{02717 (@)}

where [D, O] = AO and (41, j2) are the Lorentz quantum numbers.
They can be organized in conformal multiplets consisting of

primary: (K, O27172(0)] = 0

descendants: Opy - - - Oy, OFT172(0)
Sometimes representations are short, e.g.

O J* =0 O¢ =0

and then the dimensions are fixed

[D7J‘U‘]:3 [Dvd)}:l



Superconformal multiplets

The N = 4 superconformal group in four dimensions is PSU (2, 2|4) with
generators

P* My, D K, Q. Qs St S8 Rf
The local operators
O
can be organized in superconformal multiplets consisting of
superconformal primary: [S¢, 0 R() =0 [§Y 02I2R(g)] =0
superconformal descendants: Q...QQ...Qor2R
Generic superconformal multiplets contain 2% conformal multiplets.
Sometimes representations are short or semishort, e.g.
QL0 =QAL0 =0 Qas0 = QasO =0
(but QLO, Q20, QMO, QdZO #0).
Then there are relations between the quantum numbers. For this case:
J1=72=0 R =[0,p,0] A=p
(These are the chiral primaries, with © = Tr (®{1 ... ®»}) in A = 4 SYM.)



Results for the first three spins
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Combining spins

a=3/4 a=15/4 a=o00




Why the cubes?

We are looking at bounds

- |

— there is a special solution to crossing symmetry at the corner
We conjecture that it corresponds to a self-dual point of ' = 4 SYM.

This leads e.g to
A <290

for the Konishi operator Tr (&'®;) in SU(2) N =4 SYM atr =i or at
T = exp(in/3).

Not in disagreement with resumming the four-loop result...
[Beem, Rastelli, Sen, BvR (2013), Alday, Bissi (2013)]

Can we find the rest of the conformal manifold?



The conformal bootstrap

We are interested in correlation functions of local operators
(O1(z1) ... On(z0))
These are heavily constrained by conformal symmetry, for example
Oij
(z —y)*2

Conformal invariance further guarantees the existence of a convergent
operator product expansion (or OPE) of the form

Oi()0;(y) ~ > A Cla — y,0,]0k(y)

(0i(z)0;(y)) =

We can use the OPE to decompose correlation functions as
(O1(21)O2(22)O3(23) Oa(4))

=Y M5ASClar — 32, 02]Clas — w4, 04](Ok (w2) Ok (24))
k



The conformal bootstrap

We are interested in correlation functions of local operators
(O1(x1) ... On(z0))
These are heavily constrained by conformal symmetry, for example
dij
(x—y)*2

Conformal invariance further guarantees the existence of a convergent
operator product expansion (or OPE) of the form

0i(2)0;(y) ~ > Ais Clo — y,0,] Ok (y)
k

(0i(2)0;(y)) =

We can use the OPE to decompose correlation functions as
(O1(21)O2(22)O3(23) Oa(w4))

W W AN
Zk: kN

k



The conformal bootstrap

(O1(21)O02(22)O3(23)O4(4))

= /\1]2“32\—/
2NN ==



The conformal bootstrap

(O1(21)O2(22)O3(x3) Oa(24))

= Z; /\1’5/\32% = Ep: /\15)‘2517)@



The conformal bootstrap

; /\1]5)\32% = ; Alg/\QZJG

Crossing symmetry: an infinite set of constraints for A, and A%

Can we solve them? Could we determine the theory using
e global symmetries
e unitarity
e crossing symmetry
and nothing else? In other words, can we bootstrap the theory?

[Ferrara, Gatto, Grillo, Parisi (1972); Polyakov (1974)]
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