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Motivation

• Would like examples where computations in both sides are within reach
Test and understand the gauge/gravity duality with observables that are not protected by 
SUSY and can not be computed using integrability.

How does gravitation phenomena, like black holes, emerge from gauge theory side?

Idea: Study thermodynamics of black holes dual to Matrix Quantum Mechanics
          that can be simulated on a computer using Monte-Carlo methods.
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• Can put theory on a computer using Monte Carlo simulations
[Catterall, Wiseman ´07,´08,´09; Anagnostopoulos et al ´07; Hanada et al ´08,´13]
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• 11D SUGRA solution (near horizon geometry of non-extremal D0-brane)
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• Classical gravity domain (at horizon)
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If we instead make a one-parameter fit with p = 4.6 fixed,
we obtain C = 5.58(1). This value, in turn, provides a
prediction for the α′ corrections on the gravity side.
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FIG. 1: The deviation of the internal energy 1

N2 E from the

leading term 7.41 T
14

5 is plotted against the temperature in
the log-log scale for λ = 1. The solid line represents a fit
to a straight line with the slope 4.6 predicted from the α

′

corrections on the gravity side.
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FIG. 2: The internal energy 1

N2 E is plotted against T for
λ = 1. The solid line represents the leading asymptotic be-
havior at small T predicted by the gauge-gravity duality. The
dashed line represents a fit to the behavior (1) including the
subleading term with C = 5.58.

Summary.— We have discussed the α′ corrections to
the black hole thermodynamics, which enable us to de-
termine the power of the sub-leading term in (1). This
power is then found to be reproduced precisely by Monte
Carlo data in gauge theory. Let us emphasize that the
subleading term is crucial for the precision test of the
gauge-gravity duality. It is intriguing that our results in
gauge theory can tell us the absence of O(α′) and O(α′2)

corrections to the supergravity action.

Recently [20] Monte Carlo data for the Wilson loop
are also shown to reproduce a prediction obtained by es-
timating the disk amplitude in the dual geometry. Unlike
the present case, α′ corrections to that quantity start at
O(α′) due to the fluctuation of the string worldsheet and
its coupling to the background dilaton field.

While it is certainly motivated to obtain the coefficient
C of the subleading term from gravity, our results already
provide a strong evidence that the gauge-gravity duality
holds including α′ corrections. This, in particular, im-
plies that we can understand the microscopic origin of
the black hole thermodynamics including α′ corrections
in terms of the open strings attached to the D0-branes.
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Monte-Carlo 
simulation 
of MQM

In Fig. 3 we plot our results for the e⇥ective internal energy in the continuum limit as
a function of T for N = 3, 4, 5. (In the small box we show the extrapolation to � = ⇤
for N = 4 and T = 0.10 as an example.) The curves represent the fits to the behaviors
expected from the gravity side, which shall be explained later. We find that the internal
energy increases as temperature decreases, which implies that the specific heat is negative.
Such a behavior is possible since we are measuring the energy of the metastable bound
states.

Figure 3: The e�ective internal energy Egauge/N2 obtained for the metastable
bound states in the continuum limit as a function of T . Results for N = 3 (squares),
N = 4 (circles) and N = 5 (diamonds) are shown. The curves represent the fits to the
behaviors expected from the gravity side, which shall be explained later. The data points
and the fitting curve for N = 5 are slightly shifted along the horizontal axis so that the
data points and the error bars for N = 4 and N = 5 do not overlap. In the small box, we
show an extrapolation to � = ⇤ for N = 4 and T = 0.10.

Testing the gauge/gravity duality

Now we can test the gauge/gravity duality by comparing the results on the gauge theory
side shown in Fig. 3 with the results on the gravity side represented by eq. (4). In the
temperature regime 0.07 � T � 0.12 investigated here, the terms with the coe⌅cients a
and b, which represent the �� corrections, can be neglected unless |a| ⇥ 700 and |b| ⇥ 500.
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states.

Figure 3: The e�ective internal energy Egauge/N2 obtained for the metastable
bound states in the continuum limit as a function of T . Results for N = 3 (squares),
N = 4 (circles) and N = 5 (diamonds) are shown. The curves represent the fits to the
behaviors expected from the gravity side, which shall be explained later. The data points
and the fitting curve for N = 5 are slightly shifted along the horizontal axis so that the
data points and the error bars for N = 4 and N = 5 do not overlap. In the small box, we
show an extrapolation to � = ⇤ for N = 4 and T = 0.10.

Testing the gauge/gravity duality

Now we can test the gauge/gravity duality by comparing the results on the gauge theory
side shown in Fig. 3 with the results on the gravity side represented by eq. (4). In the
temperature regime 0.07 � T � 0.12 investigated here, the terms with the coe⌅cients a
and b, which represent the �� corrections, can be neglected unless |a| ⇥ 700 and |b| ⇥ 500.
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Today’s talk is not about D0-brane matrix model

Instability corresponds to Hawking radiation of D0-branes. At large N this is 
suppressed and black hole is stable (positive specific heat).

• Caveat: canonical ensemble ill defined - IR divergences from flat directions 
in D0-brane moduli space. This is suppressed at large N (metastable state), 
but it is a source of tension in Monte Carlo simulations

F (T, r)

N2
⇠ Ffinite(T ) +

9

N
ln r

[Catterall, Wiseman ´09]



Today’s talk is not about D0-brane matrix model

• Today’s talk is about BMN matrix model 

Mass deformation resolves IR divergence - canonical ensemble well defined.

Much richer thermodynamics with a 1st order phase transition
(at large N there are two dimensionless parameters).

[Berenstein, Maldacena, Nastase ´02]
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BMN matrix model

Canonical ensemble is well defined and may still be simulated on a computer.
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Exponential growth of spectrum with energy          Hagedorn transition!

N ! 1• Thermodynamics (              )
Dimensionless temperature ⌘ T

µ

Dimensionless coupling ⌘ � =

g2YMN

µ3

T

µ

TH

µ

� =
g2YMN

µ3

Confined phase

Deconfined phase
F = O(N2)

F = O(N0)

?
W
E
A
K

C
O
U
P
L
I
N
G

S
T
R
O
N
G

C
O
U
P
L
I
N
G



Exponential growth of spectrum with energy          Hagedorn transition!
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Today: strongly coupled limit

Dual geometry is SO(9) invariant 
non-extremal D0-brane with 
deformation turned on 

µ ! 0 ,
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Gravitational dual

• The different vacua of BMN matrix model correspond to the Lin-Maldacena 
geometries and asymptote to the M-theory plane wave solution
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Non-normalizable mode responsible for massive deformation

• The different vacua of BMN matrix model correspond to the Lin-Maldacena 
geometries and asymptote to the M-theory plane wave solution

ds

2 = dx

i
dx

i + dx

a
dx

a + 2dtdz �
✓
µ

2

32
x

i
x

i +
µ

2

62
x

a
x

a

◆
dt

2

dC = µdt ^ dx

1 ^ dx

2 ^ dx

3



Gravitational dual

• At strong coupling, for large temperature, dual geometry is SO(9) invariant and is 
approximately the non-extremal D0-brane solution
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Gravitational dual

• At strong coupling, for large temperature, dual geometry is SO(9) invariant and is 
approximately the non-extremal D0-brane solution
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This scaling symmetry will be important later...
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Derivatives are estimated using
polynomial approximation that 
involves all points in the grid
spectral methods - exponential convergence
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• Descretize PDEs with             Chebyshev grid N ⇥N
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Reproduces scalings predicted from strongly coupled low energy moduli estimate [Wiseman ’13]
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Phase diagram at large N

Very similar to SYM on a 3-sphere (µ ⌘ 1/R)
[Aharony, Marsano, Minwalla, Papadodimas, van Raamsdonk ’03]
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Boundary data

• The 10 functions               admit expansion 
near the boundary  (y = 0)
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• The 10 functions               admit expansion 
near the boundary  (y = 0)
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SO(9)
• Boundary metric has           symmetry, so           are harmonic functions on     . 
Thus we can classify the                       invariant perturbations according to
spin. This helps to establish bulk field / operator correspondence. 
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• Vevs read from normalizable modes appear first at order
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Numerics pass this highly non-trival check with 0.05% accuracy

• Smarr formulae involve coefficients in asymptotic expansion up to order y7



• Confirm phase diagram with Monte-Carlo simulations of PWMM; confirm 
predictions for expectation values of operators dual to normalizable modes 
that are turned on

• Study dynamical stability of our BH

• Construct BH duals of other vacua (different horizon topology)            
(caveat: we really only determined upper limit on critical temperature)

• Deeper question: What makes the PWMM special?                                 
What are the minimal ingredients of a quantum mechanical system such that 
it gives rise to classical gravity in the limit of many degrees of freedom?

Future work
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