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Strong coupling in the Cuprates leads to:
m Interesting phase diagram
m Peculiar transport properties

m Use holographic methods!
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AdS/CMT

The recipe says:

Field Theory Bulk
Start with CFT, AdSg41 Asymptotics
Chemical potential p U(1) electric charge
Finite T' Killing horizon
2-point function G j;(w) Bulk perturbation 6A,, ...

Use Kubo’s formula



Perfect Holographic Conductor

Do it in D = 4 Einstein-Maxwell-Dilaton with AdS asymptotics:

Z(p)

1
LMD ZR——FMVF“V—§(5<P)2—W(<P)

dsi = -Udt* + U dr? +e*V (da? + da?)
A=adt, ¢=¢(r)

a=p—qrt+--

()0:0(‘07"3_A_|_...

Background black hole has temperature 1", energy F, pressure P,
entropy s and charge q.



Perfect Holographic Conductor

m To calculate conductivity need to source A, = —e‘“"t% on
the boundary

m Momentum (dg;,) couples because of background charge

Infalling BC A, = et (% —jr 4. )
v ¢ (Ts)?

w<<pu=o=j/E, =

wE+P  (E+P)

Generalisation from RN [Hartnoll, Herzog]



Minimal Gauged SUGRAs

There is two interesting gauged SUGRAs with bosonic sectors
coming from dim. reductions of string/M-theory [Gauntlett, Varela]

m N =2, D =4 just Einstein-Maxwell

1
L:vig<R+6—4Fﬁ

m N =1, D =5 just Einstein-Maxwell with CS coupling

1 1
L=*R+x12~ 3 FA*F — < AANFAF
32

m Chemical potential from U(1)r charge

Stick with D = 4 Einstein-Maxwell for now. CS term will make a
difference [AD, Hartnoll]



AdS-RN black hole

AdS RN black hole

L=+—g <R+6— 4F2>
reads
ds? = r? (—f dt? + f~rdr? + da? + dy2)
A=p (1 — —) dt

r

_ 1 oy oy gy
f=r=r) <r+r2+r3 474

m AdS, boundary at r = oo, BH horizon at r = r
m Finite entropy density at 7' = 0, ﬁ =%

m Also semilocal



AdS-RN black hole
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[Hartnoll, Herzog]

m Recover analytic expression for w << p

m For w >> p asymptotes to oopr = 1




Sum Rules

G(w)

m Conductivity is o =
w

m Causality implies G analytic for Imw > 0

m Charge redistributes spectral weight
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Drude peaks

Re o Im o

w

m Drude peaks are guaranteed
[Hartnoll, Hofman]

’I’lq2 T

m 1 —wwrt

m When the momentum relaxation rate 7 is parametrically the
largest scale

o o0 @ 2
m Without collisions 7 — 0o = 0 = =L (5(w) 4 i)



Holographic Lattice

To add momentum dissipation introduce a UV benign lattice:
m UV relevant deformation O(x) with period L

m To be “Drude” at low T the IR operator should be irrelevant
m Solve the PDEs and show that the IR remained the same

m Charge density is a universal relevant operator in our
constructions = Impose A; = u(x) — Jt (x) r~1 4 ...
[Hartnoll, Hofman][Horowitz, Santos, Tong]

u(@) = po + Alw), (A), =0

m /9 = chemical potential, A'(z) = periodic electric field



Inhomogeneity

Why bother with inhomogeneous lattices/impurities?:

m Deform the theory by a single mode ¢ (z) ~ A A (r) cos (kx)
of a relevant operator

m Higher harmonics sourced due to non-linearities but suppressed

m Q-lattices (also helical) fine-tuned situation where higher
modes consistently drop out

— Momentum dissipation

— Metal - Insulator transitions
[AD, Hartnoll], [AD,Gauntlett], [Andrade, Withers], [Gouteraux],
[AD, Gouteraux, Kiritsis], [AD, Blake]

m Sourcing higher modes does have further impact on mid-IR
physics. Perhaps interesting
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The (perturbative) ionic lattice

At T = 0 the solution is a domain wall

AdSy x R? AdS,

T:T+ r = 400
X

Add a lattice perturbation on top:

09"y (r,x) = e 6hk, (r) cos (kx),  (u,v) = {tt, zz, yy}
0A: (r,x) = edag (r) cos(kx), e<<pu

m Horizon + Infinity are singular points for the ODEs

= Find converging modes close to the singular points



The (perturbative) ionic lattice
Three modes close to AdS>

oh*, = c*, <r_u/\/ﬁ>6+...
dar = ¢t (r—u/\/ﬁ)Hng...

1 k2 k2

m Use it to find horizon profiles at small 7' << & << p.

m Leading mode that breaks translations on the horizon has e.g.
Sgty, ~T-W cos (kx), 64, ~T°-® cos (k)

m Notice 6_(0) = 0 = Large periods lead to tiny exponents



“Floppy" Horizons?

m Nice setup but recent numerical study suggested this is not
the whole story [Hartnoll, Santos]

Floppy

@
AdSQ X RQ AdS4

— Extremal RN
Extremal RN + Perturbative Lattice
— Nonperturbative solution
m Shouldn't see AdS> in the full solution



The (non-perturbative) ionic lattice

Non-linear ansatz:

H”'T‘ —
ds? = —U Hy + i dr* + % {eB (dz+Wdr)® +e deﬂ
A= at dt

m Plan is to use DeTurck's method
[Headrick, Kitchen, Wiseman][Figueras, Lucietti, Wiseman]

m A Smarr-type relation has to hold since 0, is Killing and
non-deganarate
[AD, Gauntlett]

/ [T (z) + T% (z) — p(z) J (z)] =TS

m Reducesto B+ P —puq—TS5=0



The (non-perturbative) ionic lattice

Hrr _
ds} = —U Hy dt? + 2 dr? + 3 [P (do+ W dr)® + 7 dyf]
A= Q¢ dt

Say we have our horizon at » = 0. Analyticity + Killing implies

Ulr)=4nTr+..., at(r,x):aio)(x)r—i—...
Hy(r,z) = Ht(to) () +..., Hp(r,z)= Hg)) () +...
S(r,2) =30 () +..., B(r,z)=B9 (z)+...



The (non-perturbative) ionic lattice

Horizon invariants to check “Floppiness”

max 9,2 _ 4
min [|0y [[2
[Santos, Hartnoll]

B(0)
m Y = f SO [8 In E(O)]

If AdS5 is the IR geometry then at T' << p

B 0=

@~ TN 26 (/)

m )\ would be fixed from by a low 7" limit

m opc and Kpc also suitable



The (non-perturbative) ionic lattice
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m Loglog plots suggest we have power laws with k-dependent
exponents at low T’

m Fix g (z) = po (1+ % cos (kz)) for

m k-independent power laws for hight 7' — related to UV
scaling dimensions



The (non-perturbative) ionic lattice

1.0 2
’\ET 0.5 <0
'E 0.0 7&
3—05 3_2
= 0 E
< = -4

-1.5

-2.0 -6

10° 10* 10° 102 0.1 1 10° 10* 10° 102 0.1
TIu Tiu

m Log derivatives with T give scaling exponents
m Estimate exponents based on AdSs expansion

0_ =0.059, 0.105, 0.204, 0.987

m Good agreement with low 7' Log derivatives




The (non-perturbative) ionic lattice

Logical possibilities:

m We are not low enough in T'. Something happens at lower T’

Floppy -

AdS, x R2 Sch. BH



The (non-perturbative) ionic lattice

Logical possibilities:

m There is a disconnected branch of black holes

Floppy -
S 2

o o
AdS, x R2 Sch. BH



The (non-perturbative) ionic lattice

Logical possibilities:

m The continuum limit of the domain walls with Floppy horizons
is just AdSy x R?

>

o o
AdS, x R2 Sch. BH



AC/DC Transport properties

Need to introduce sources to study transport
m AC transport:

m Electric Field: §4, ~ —1 Ew e w?
[Horowitz, Santos, Tong]

5gtt7 6gtrm 69:&27 59yy; 5At7 514:2
o (W) = (2w) ™ Gypp (W)

m DC transport:
[lgbal, Liu][lgbal, Liu][Davison][Blake, Tong, Vegh][Andrade, Withers]

m Electric field: 64, ~ —E't

m Temperature gradient: §gi, ~ —12(t, §A, ~ pu(x) (t
where ( =V, T/T



DC Transport

Introduce time dependent perturbation

6ds?® = 6g,, (1, x) do* dz”
0A = bay, (r,z) dzt — Etdx

Once again there is a Killing vector k = 0,

on (\/TQFW) =0
9, (V=g G™) = 3k

for

GH = Vi + k:WFV}OA - (w 20) FH
LiA = dy, sz_dG



DC Transport

Define
J=v—gF™ Q=2/—gG™
m Use previous to show 9,J =0, 9,Q = 0
m Fall offs at infinity give J is the electric current and

_ Q=T"—uJ
is the heat current.

m Constant in z is just boundary Ward identities

m Constant in r is used to relate J, Q to F

The same quantities constant when introducing a 1" gradient on
the boundary



DC Transport

In the end:
_1+M2 M
TcTxe Ty
_ (4m)?TC H7(47r)2TC’
PETx 0 R x e
where
0\ 2 0 \ 2
_ B© BO [ Gy _ B &g
o= (ferm) (fom (25)) - (f o 25)
tt tt
+CY

(0)
= / (u)7 M _/ BO at(o)
Hy,

Similar structure with homogeneous lattices but not quite the
same



DC Transport

mAtT >>p
Uy e [
S = w)?’ 3 [ur—(fp?
N S ,{_@Lg
S ey R T 7

m At T << i and assuming AdSo

o o T—20-(k/3)

k~T

o~ T2B-(/N) g 120 (/)

)

Agrees with memory matrix formalism
[Hartnoll, Hofman]



DC Transport
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m Fixed p(z)/p =1+ 5 cos (k)
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DC Transport

Examine Wiedemann-Franz type of laws

m Form the Lorentz ratio L = % At low temps or small
lattices

82

L— =

(=}

Agrees with memory matrix formalism

m Interesting to also examine

B 47rTfeB(0)

e B(0) ai::)
Htt

Q| =l

m Different from homogeneous lattices but the same for small

temperature or lattice %



AC Transport
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m Fix p(z)/p =1+ 5 cos(kz) with k/p = P

m At low frequencies w < T there is now a “Drude” peak

[Horowitz, Santos, Tong]



AC Transport
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m Plot 1+ %%’,’ but no clear sign of scaling laws

m Sum rule seems to work

S(y) = /Oy (Reo — Reocrr)

Lattice resolves the delta function at the origin




AC Transport

m Deform by p(x)/pn =1+ A cos (kx) for fixed k/p = (3\5)71
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m CFT result for w >> k., T

m Large lattices shift more spectral weight to mid-infrared
m Mid-infrared peak



AC Transport

m At linearised level, background lattice couples current to
longitudinal modes of fluctuations of undeformed RN bh

6gttv 5gtzv (5ng, 5gyya 5At7 5A:L

m Sound mode of RN bh lies in this sector
[Policastro, Son, Starinets|[Edalati, Jottar, Leigh]

—2F . . qg=05

Im (w/p)
|

Re (w/p)

m Sound mode has Re(w) ~ % k — Peak in 0 at w ~ k/+/2



AC Transport

m Deform by higher harmonics
wx)/mw=1+ A cos(kx)+ B cos(2kx)

0.0 0.5 1.0 1.5 0.0 0.5 1.0
[ wly

m Second peak appears

= Sourcing higher modes affects the mid-infrared. How?




AC Transport
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m Consider a “dirty lattice”
m Small frequency regime w < T < k, A gives a “Drude” peak



AC Transport
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m Used horizon data to find opc
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Summary

m Examined low temperature behaviour of lattice deformed RN
black hole

m Showed analytic expressions of transport coefficients in terms
of bh horizon data

m Revisited intermediate scaling laws in the optical conductivity

m Connection between sourced lattice modes and optical
conductivity peaks
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