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Figure 1: On the left we plot 〈O2〉 versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature 〈O2〉 vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.

3.1.1 The free energy

In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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Figure 1: On the left we plot 〈O2〉 versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature 〈O2〉 vanishes in this case.
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is larger than zero. Therefore, at the phase transition the condensate must jump a
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transition is necessarily first order.
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superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.
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In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of

9

�O2�/T
2
c

T/Tc

✟✟✟✟✟✟
U(1) −→ �O� �= 0

✟✟✟✟✟✟
U(1)

1

Holo-SC

+
0.0 0.2 0.4 0.6 0.8 1.0

5.98

5.99

6.00

6.01

6.02

6.03

x

Μ�x�

µ(x)Noise

★ Enhancement of SC =

0 2 4 6 8

1.00

1.05

1.10

1.15

1.20

w

T c
�T cw�

0

Superfluid
phase

Normal 
phase

disorder



0.2 0.4 0.6 0.8 1.0

T

Tc

10

20

30

40

50

60

!O
2
"

Tc

2

0.2 0.4 0.6 0.8 1.0

T

Tc

10

20

30

40

50

60

!O
2
"

Tc

2

Figure 1: On the left we plot 〈O2〉 versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature 〈O2〉 vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.
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the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.
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In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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Figure 1: On the left we plot 〈O2〉 versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature 〈O2〉 vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.

3.1.1 The free energy

In order to confirm our previous claim, namely that the states with lower value

of the condensate are indeed metastable, we shall now compute the free energy of
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★ Conductivities of disordered systems= [for branes too]
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> Motivation: Strong coupling, Disorder, Superconductors

> Review: Holographic Superconductors

> Dirty Holographic (p-wave) Superconductors

> Results: Phase diagram, spectrum, (some) noisy σ

> Future: Dirty Thin Films (islands of SC?), noisy σ, . . .
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we will refer to quasi-particles and quasi-holes collectively as quasi-particles.) Thus for a Fermi liquid, equation (1.3)
should be modified to

GR(t,�k) ∼ e−i�(k)t−Γ
2 t , Γ ∼ �2(k) (1.6)

which implies that near the Fermi surface the retarded function for the electron operator should have the form

GR(ω,�k) =
Z

ω − vF (k − kF ) + Σ(ω, k)
+ . . . , (1.7)

with the self-energy Σ(ω, k)

Σ =
iΓ

2
∼ iω2 . (1.8)

The residue Z ≤ 1 of the pole, which is called the quasiparticle weight, can be interpreted as the overlap between the
(approximate) one-quasiparticle state with the state generated by acting the electron operator on the vacuum.

The concept of quasi-particles is extremely powerful and makes it possible to develop a general low energy theory
– Fermi liquid theory – independently of the precise microscopic details of a system. With some phenomenological
input, the theory can then be used to predict essentially all the low energy behavior of the system. For example, the
theory predicts that the specific heat is linear in temperature (see e.g. [6])

Ce = γT + . . . γ ∼ m∗ (1.9)

and that the low temperature resistivity increases with temperature quadratically

ρe = ρ0 +AT 2 + . . . . (1.10)

The theory has been tremendously successful in explaining almost all metallic states in nature.
It is important to emphasize that Fermi liquid theory does not require interactions among the fundamental con-

stituents to be weak. For example for 3He, one finds that m∗ = 2.8mHe, indicating that interactions among 3He
atoms are clearly not weak. There also exist so-called heavy electron compounds for which the effective mass for
electron quasi-particles can be as large as 102 − 103 times of the electron mass.

It is rather remarkable that weakly interacting quasiparticles can emerge as the low energy collective excitations
of a strongly interacting many-body system, with only certain parameters (such as the effective mass) renormalized
compared to the fundamental constituents of the system. The self-consistency of Fermi liquid theory can also be
understood from an effective field theory perspective using the renormalization group [7–9]. Assuming the existence
of quasi-particles, one can then try to write down the most general local effective field theory for them. One finds
that due to kinematical constraints from the Fermi surface all interactions are irrelevant at low energies except
for the forward scatterings3 and BCS-type pairing instabilities leading to a superconductor. Note that while the
renormalization group analysis shows that the Fermi liquid theory is a stable fixed point (up to superconducting
instabilities), it does not tell us whether or why a specific microscopic theory will flow to this fixed point.

Strange 
metal 

Fermi liquid 
SC 

AFM 

Doping 

T

T

ρ

Tc

FIG. 1. Left: a cartoon picture of the phase diagram of cuprate superconductors; Right: a cartoon picture of linear temperature
dependence of the resistivity in the strange metal phase.

3 The forward scatterings give rise to interactions among quasi-particles via their densities, which are incorporated in the Fermi liquid
theory. Note that such interactions do not give rise to widths.

● Strange metal → Non-Fermi liquid

● Superconducting phase → BCS

> Challenges in Condensed Matter: 

> High Tc Superconductors

AdS/CFT

> Black holes with hair, domain wall 
geometries, electron stars . . .

> Strong Coupling: High Tc Superconductors (strange metals), heavy fermions, ...

> Disorder + Interactions: Anderson localization in many body int. systems

weak / strong coupling duality

∼

[‘gravities’ + matter in ~ AdS]



> Disorder and interactions

> Anderson Localization ’58: disorder suppresses conductivity

disorder

Insulator Metal

σDC(T = 0) = 0 σDC(T = 0) �= 0

Disorder and superconductors?



> Disorder and interactions

> Anderson Localization ’58: disorder suppresses conductivity

disorder (w)

Insulator Metal

σDC(T = 0) = 0 σDC(T = 0) �= 0

> Disorder and superconductors?

● Anderson Theorem
∆ �= ∆(r, w)● Ma&Lee’85 : ∆BCS

> Disorder + many  body interacting system -> difficult! (see cond-mat/0506617)

AdS/CFT ? Dirty Holographic Superconductors !



★  Holographic Superconductors (Hartnoll, Herzog, Horowitz,’08)

● Black Hole gets hair ∼ �
✟✟✟✟✟✟
U(1)�

�ψ� �= 0 , U(2) −→ U(1)

2

0.2 0.4 0.6 0.8 1.0

T

Tc

10

20

30

40

50

60

!O
2
"

Tc

2

0.2 0.4 0.6 0.8 1.0

T

Tc

10

20

30

40

50

60

!O
2
"

Tc

2

Figure 1: On the left we plot 〈O2〉 versus the temperature for several values of the

current: from the innermost to the outermost jx/T 2
c = 28.98 , 14.49 , 2.90 , 0.290. The

dotted lines correspond to the states with larger free energy than their counterparts at

the same temperature. On the right we show for comparison the result at zero current.

Notice that at the critical temperature 〈O2〉 vanishes in this case.

that the superconducting state exists up to a maximum value of the temperature

(where the plot turns back). Crucially, at that point the value of the condensate

is larger than zero. Therefore, at the phase transition the condensate must jump a

finite distance to zero. Such a jump requires some latent heat and thus the phase

transition is necessarily first order.

This phase transition pattern is quite different from that of refs. [7, 11]. The

analysis performed there corresponds to experiments where instead of the current,

the superfluid velocity is kept fixed. There it was found that the superconducting

phase is separated from the normal phase by a second order phase transition from

zero superfluid velocity up to a tricritical point where the phase transition becomes

first order and remains so up to the maximum velocity, where the phase transition

would be at zero temperature (similar results were found in [14], in the context of

superconducting D-brane models). In fact, as we will see in section 3.2, the different

phase transition pattern one finds when working at finite current agrees with what

is known about the relation between the current Jx and the superfluid velocity νx

in superconducting films.
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> 2+1 Holographic Superconductors + Noisy chemical potential µ = µ(x)

+
? Condensate
? Phase diagram
? Spectrum

Disorder
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● Field content

S =

�
d4x
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−g
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−1

4
F c
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6

KL2

�
● Action

Probe Limit
[./Tech Specs/pwave_1]
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● UV boundary conditions (z=0)

A2
t (x, z)

A1
i (x, z) = w(0)

i (x) + �J (1)
i (x)� z + . . .

A3
t (x, z) = µ(x) + . . .

A2
t (x, z) = µ2(x)− ρ2(x) z + . . .

➠ 4 Coupled PDEs
s-wave: 2 PDEs

Numerics

2nd ‘charge density’



>>>  Noisy chemical potential

● NOISE THROUGH RANDOM PHASES
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[see also Scardicchio cond-mat/0505050]
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>>>  Noisy chemical potential

● NOISE THROUGH RANDOM PHASES
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>  Free energy of competing solutions

Condensate likes noise

�µ� = 3.5 < µc
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★ Enhancement of SC 
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★ Enhancement of SC 

disorder

Phase Diagram
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● ‘Disorder-induced superfluidity’, Dang et al, Phys. Rev. B 79, 214529

Seen before in CM (hard-core bosons)



★ Spectrum ‘renormalization’
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★ Spectrum ‘renormalization’
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● S-wave [1308.1920]
● [Hartnoll&Santos 1402.0872]

● Fundamental matter (D3-D5) [w/ M. Araújo, J. Lizana, I.S. Landea]

● FT: noisy U(1) @ finite T [D. Musso, I.S. Landea]

Hints of universality

Sk =
1

k2α−2



A taste of  ‘disordered conductivities’ [WORK IN PROGRESS!]

● STUDY FLUCTUATIONS (ax ∼ jx)  [in the SC phase they’ll see the noise, even in the probe limit]

σx(ω) =
�jx(x,ω)�
Ex(ω)

● AVERAGED CONDUCTIVITY 

● SC PHASE:  σDC → ∞. SUPERFLUID DENSITY nS :

[see also Ryu et al 1103.6068]
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dirty

1/T

σx ≈ ns

�
π δ(ω) +

i

ω

�

ns >s-wave holo SC 
>fixed noise strength 



> FUTURE & ONGOING

>Disordered holo SCs: both s- and p-wave  ✔

>Enhancement of SC & ‘spectrum renormalization’  ✔
  (thermo limit OK)

>Conductivity of disordered strongly coupled systems [....%%%%]

> Dirty Thin Films (islands of superfluidity?) [....%%%%]
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> Noisy chemical potential

● NOISE THROUGH RANDOM PHASES
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> Thermodynamic limit

● Thermo limit: Noise correlation length << System length

   > Flat spectrum noise: correlation length        1 / (grid size)∝

● Condensate and Charge density are self-averaging in the thermo limit:

< X2
n > − < Xn >2

< Xn >2
→ 0> Xn is self-averaging when
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> Thermodynamic limit

● Thermo limit: Noise correlation length << System length

   > Flat spectrum noise: correlation length        1 / (grid size)∝

● Condensate and Charge density are self-averaging in the thermo limit:

< X2
n > − < Xn >2

< Xn >2
→ 0> Xn is self-averaging when

Charge density
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> Simulation #1 µ(x) = µ0 + �
k∗�

k=k0

�
Sk cos(k x+ δk) = µ0 + �

k∗�

k=k0

1

kα
cos(k x+ δk)

w = 25�/µ0

● µ0 = 3.50 , α = 1.50 , w = 3.50 [µ0 < µc = 3.66]

Lx = 2π →  K0 = 1

Nz x Nx = 25 x 75



> Simulation #1 µ(x) = µ0 + �
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● µ0 = 3.50 , α = 1.50 , w = 3.50 [µ0 < µc = 3.66]

Lx = 2π →  K0 = 1

Nz x Nx = 25 x 75
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> Simulation #2 µ(x) = µ0 + �
k∗�
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● [µ0 < µc = 3.66]

Lx = 2π →  K0 = 1

Nz x Nx = 25 x 75

Flat Noise

µ0 = 3.50 , α = 0 , w = 3.50



> Simulation #2 µ(x) = µ0 + �
k∗�

k=k0

�
Sk cos(k x+ δk) = µ0 + �

k∗�

k=k0
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cos(k x+ δk)

w = 25�/µ0

● [µ0 < µc = 3.66]

Lx = 2π →  K0 = 1

Nz x Nx = 25 x 75

Flat Noise

µ0 = 3.50 , α = 0 , w = 3.50
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