Pairing induced superconductivity in holography

Andrey Bagrov with Balazs Meszena and Koenraad Schalm Based on 1403.3699

(see also Y. Liu, K. Schalm, Y. Sun, J. Zaanen; 1404.0571)

Holographic methods and applications Reykjavik, August 18-22, 2014

Motivation

We would like to use the power of AdS/CFT to analyze **realistic** quantum field theories at strong coupling and finite density.

In real solid state systems the "strong coupling" is rather the coupling between electrons than the gauge coupling.

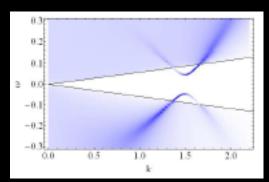
Motivation

 The main goal: to formulate a complete dynamical holographic model of unconventional SC with an explicit strong fermionic pairing mechanism.

 A step on this way: to reformulate the standard BCS theory in holographic terms

Fermionic pairing in holography

 Fermionic probes of a holographic superconductor (Faulkner, Horowitz, McGreevy, Roberts, Vegh; 0911.3402)



- Cooper pairing near a black hole (Hartman&Hartnoll; 1003.1918)
- Top-down models of fermionic bound states N=4 SYM, meson superfluid (Ammon, Erdmenger, Kaminski, O'Bannon; 1003.1134)

Backreacting fermions

Quantum electron star – fluid limit:

- Fermions backreacting on the U(1) gauge field (Allais, McGreevy, Suh; 1202.5308)
- Fermions backreacting both on the gauge field and the bulk metric (Allais, McGreevy; 1306.6075)
- Holographic Fermi liquid QM limit:
- Fermions backreacting on the gauge field in a hard wall model (Sachdev; 1107.5321)

Our strategy

- Consider the pure AdS4 hard wall holographic model of Fermi liquid
- Introduce scalar field (order parameter) and Yukawa-like coupling in the bulk
- Numerically solve the system of interacting scalar, fermionic, and electromagnetic fields in the bulk (metric is fixed)
- Read off spectrum of fermions and vev's in the boundary field theory

Holographic Fermi liquid

- Well-defined long living quasiparticles
- Certain transport properties

$$\begin{aligned} \mathcal{G}(\omega, k) &\sim \frac{1}{i\omega - \epsilon_{\mathbf{k}} - \Sigma(k, \omega)} \\ \Sigma(k, \omega) &\sim m_*^3 \frac{(\pi T)^2 + \omega^2}{1 + e^{-\beta\omega}} \end{aligned}$$

Holographic Fermi liquid

 Fermions in pure AdS4 spacetime + finite charge density, i.e. U(1) gauge field

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R - \frac{6}{L^2} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \overline{\Psi} \Gamma^{\mu} D_{\mu} \Psi - m_{\Psi} \overline{\Psi} \Psi \right)$$

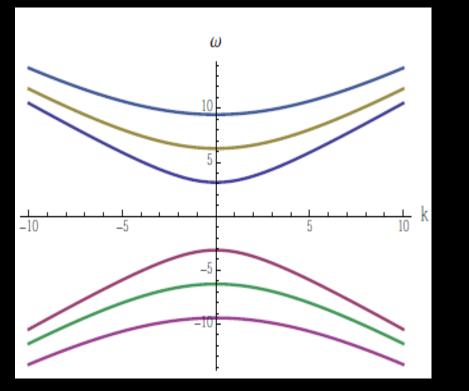
Gapless IR degrees of freedom are to be cut off

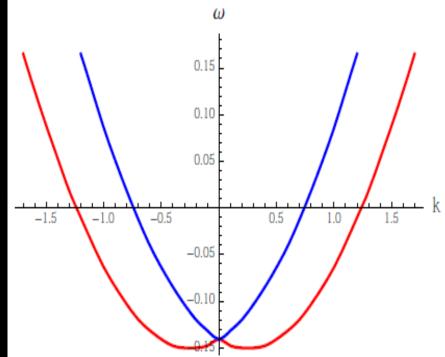
$$ds^{2} = \frac{1}{z^{2}} \left(-dt^{2} + dz^{2} + dx^{2} + dy^{2} \right), \quad z \in [0, z_{w}]$$

• All relevant information is contained in the spectrum of bulk fermions

Spin splitting

Zero vs. non-zero chemical potential





Majorana interaction

- The most general Lagrangian of relativistic BCS theory (D. Bertrand, PhD thesis, Leuven U.) $\mathcal{L}_{int} = g_1(\bar{\psi}\psi)^2 + g_2(\bar{\psi}\gamma_5\psi)^2 + g_3(\bar{\psi}\gamma^\mu\psi)^2 + g_4(\bar{\psi}\gamma^\mu\gamma_5\psi)^2 + g_5(\bar{\psi}\sigma^{\mu\nu}\psi)^2$
- The only important coupling

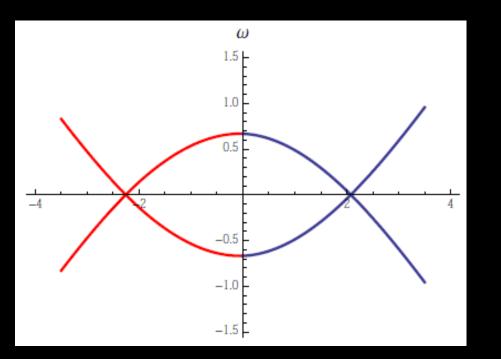
$$\mathcal{L}_{int} = g\left(ar{\psi}\gamma_5\psi
ight)\left(ar{\psi}\gamma_5\psi
ight)^\dagger$$

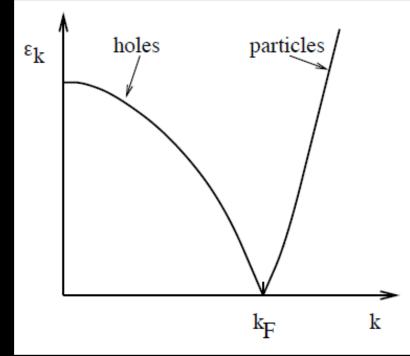
 $\mathcal{L} = \bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - \partial_{\mu}\bar{\psi}\gamma^{\mu}\psi - m\bar{\psi}\psi - eA_{\mu}\bar{\psi}\gamma^{\mu}\psi + g\left(\bar{\psi}\gamma_{5}\psi\right)\left(\bar{\psi}\gamma_{5}\psi\right)^{\dagger}$

Nambu-Gorkov transformation $S_D + S_M = \int d^4 x \overline{\chi} K \chi$ $\chi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_2^* \\ \psi_3^* \\ \psi_4^* \end{pmatrix}$ $K = \begin{pmatrix} D_{11} & 2\eta_5 \frac{\phi}{z} \sigma_3 \\ -2\eta_5^* \frac{\phi^*}{z} \sigma_3 & D_{22} \end{pmatrix}$ $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\chi_1, i\chi_2, \chi_3, i\chi_4)$

Nambu-Gorkov transformation

• Flipped spectrum





Schulz et. al., Fermi liquids and Luttinger liquids

Backreacting fermions

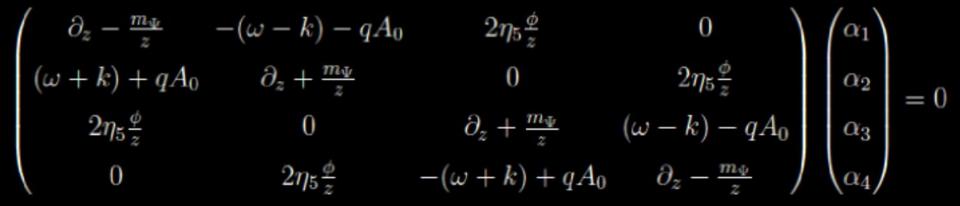
• Fermionic bilinears backreact on the scalar order parameter and on the gauge field

$$\langle \psi^+ \psi \rangle = \frac{1}{2\pi} \sum_n \int dk |k| \left(\alpha_{k,n,1}^2 + \alpha_{k,n,2}^2 \right) \Theta \left(-\omega_{k,n} \right)$$

 $\langle \psi^C \Gamma^5 \psi \rangle = \frac{i}{2\pi} \sum_n \int_{-\Lambda(\omega_D)} dk |k| \left[\Theta\left(\omega_{k,n}\right) \left(\alpha_{k,n,1} \alpha_{k,n,4} - \alpha_{k,n,2} \alpha_{k,n,3}\right) \right]$

Equations of motion

$$\begin{aligned} z^{2}\phi'' - 2z\phi' + 4q^{2}z^{2}A_{0}^{2}\phi - m_{\phi}^{2}\phi &= \frac{\eta_{5}z^{3}}{2\pi}\sum_{n}\int_{-\Lambda(\omega_{D})}^{\Lambda(\omega_{D})} dk|k|\Theta\left(\omega_{k,n}\right)\left(\alpha_{k,n,1}\alpha_{k,n,4} - \alpha_{k,n,2}\alpha_{k,n,3}\right),\\ z^{2}A_{0}'' - 8q^{2}A_{0} &= \frac{qz^{2}}{2\pi}\sum_{n}\int dk|k|\left(\alpha_{k,n,1}^{2} + \alpha_{k,n,2}^{2}\right)\Theta\left(-\omega_{k,n}\right),\end{aligned}$$



Boundary conditions

- At the holographic boundary all fields should be normalizable
- At the hard wall

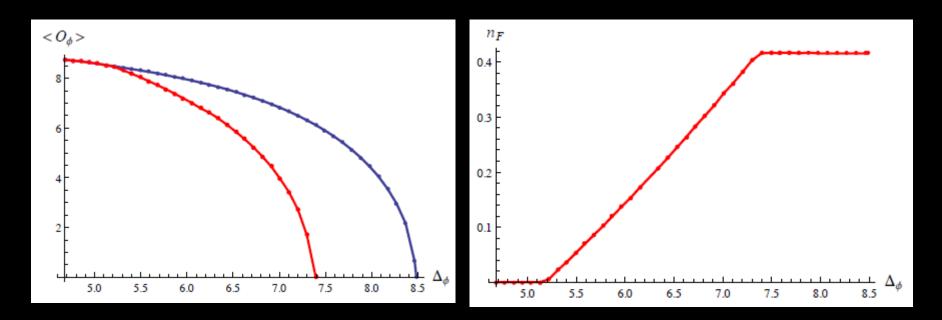
$$\phi'(z_w) = 0$$
, $A'_0(z_w) = 0$
 $\alpha_1(z_w) = \alpha_4(z_w) = 0$

Numerical scheme

- We deal with a system of coupled integrodifferential equations
- We split it in two parts: bosonic (scalar + gauge fields) and fermionic
- Fermionic subsystem standard shooting scheme;
 Bosonic subsystem – Newton relaxation
 - scheme

Bose-Fermi competition

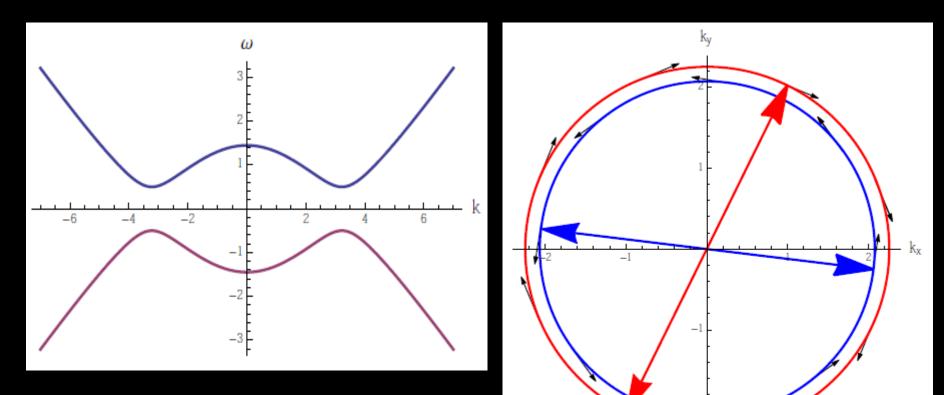
 Scalar order parameter and fermionic charge density at zero Majorana coupling



Superconducting gap

• Gap opening

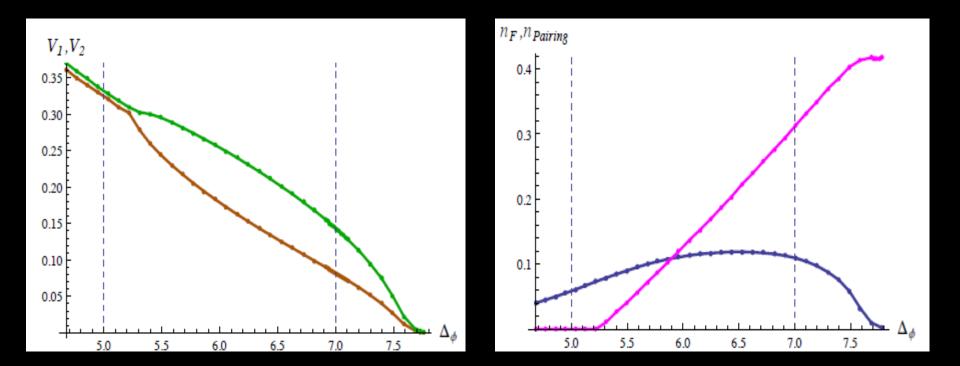
• Spin splitting



Fully interacting system

Two gaps

Charge densities



- In absence of fermions:
 - $$\begin{split} \phi(z) &= A z^{3-\Delta_{\phi}} \cdot \left(1 + a_1 z + a_2 z^2 + \ldots\right) + B z^{\Delta_{\phi}} \cdot \left(1 + b_1 z + b_2 z^2 + \ldots\right),\\ \Delta_{\phi} &= \frac{3}{2} + \frac{1}{2} \sqrt{9 + 4m_{\phi}^2}, \end{split}$$
- In presence of fermions:

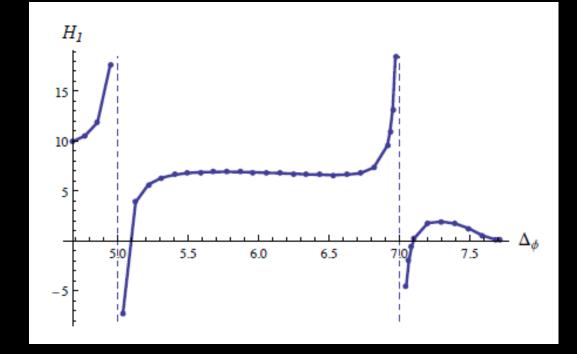
$$z^{2}\phi''(z) - 2z\phi'(z) + q_{\phi}^{2}z^{2}A_{0}^{2}(z)\phi(z) - m_{\phi}^{2}\phi(z) = -i\eta_{5}z^{3}\langle\overline{\psi}^{c}\Gamma^{5}\psi\rangle$$

$$\phi(z) = \phi_{hom}(z) + \phi_{part}(z)$$

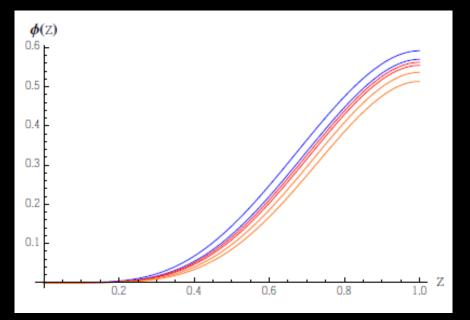
 $\phi_{part}(z) \ = \ \mathcal{P}_1 z^{2\Delta_\Psi} + \mathcal{P}_2 z^{2\Delta_\Psi + 1} + \mathcal{P}_3 z^{2\Delta_\Psi + 2} + \dots$

Does the standard AdS/CFT prescription work?

$$\langle \mathcal{O}_{\phi} \rangle = \lim_{z \to 0} z^{-d+1} \partial_z \left(z^{d-\Delta_{\phi}} \phi(z) \right)$$



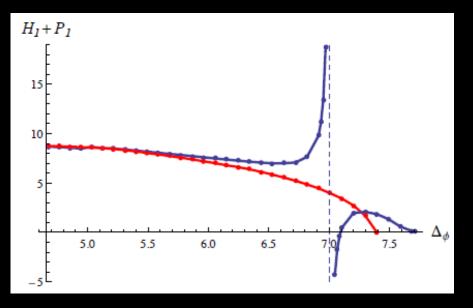
• Everything is regular in the bulk:

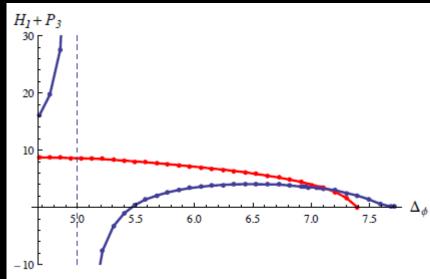


• At the critical point:

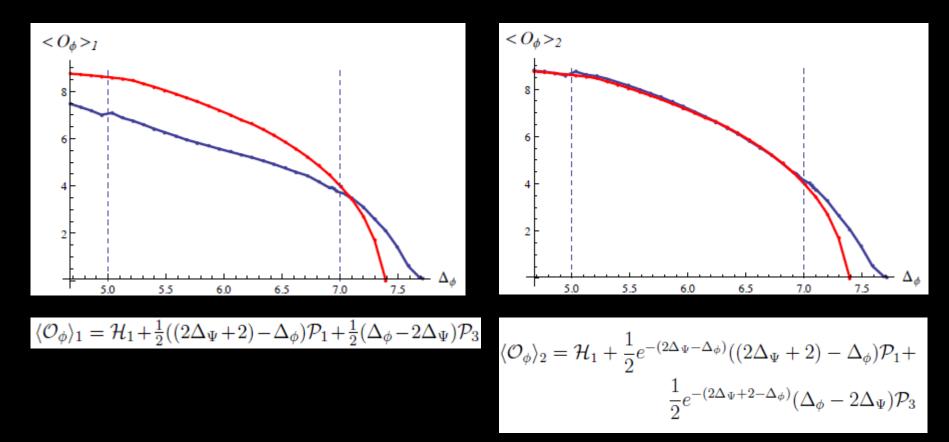
 $\phi(z) = \mathcal{H}_1 z^{2\Delta_{\Psi} + n} + \dots + \mathcal{P}_1 z^{2\Delta_{\Psi}} + \dots + \mathcal{P}_{n+1} z^{2\Delta_{\Psi} + n} \ln(z) + \dots$

- Is it possible to regulate these resonances?
- Yes, if we take into account higher normalizable terms





Two possible linear combinations



Mixing of double trace operators

- Infinite tower of operators $\mathcal{O}_{(0)} = \mathcal{O}_{\overline{\Psi^{C}}} \mathcal{O}_{\Psi}$ $\mathcal{O}_{(1)} = \mathcal{O}_{\overline{\Psi^{C}}} (\overleftarrow{\partial}_{\mu} - \overrightarrow{\partial}_{\mu}) (\overleftarrow{\partial}^{\mu} - \overrightarrow{\partial}^{\mu}) \mathcal{O}_{\Psi}$ $\mathcal{O}_{(2)} = \mathcal{O}_{\overline{\Psi^{C}}} (\overleftarrow{\partial}_{\mu} - \overrightarrow{\partial}_{\mu}) (\overleftarrow{\partial}^{\mu} - \overrightarrow{\partial}^{\mu}) (\overleftarrow{\partial}_{\nu} - \overrightarrow{\partial}_{\nu}) (\overleftarrow{\partial}^{\nu} - \overrightarrow{\partial}^{\nu}) \mathcal{O}_{\Psi}$ \vdots
- Extra boundary terms

$$S_{counter} \sim \int_{z=\epsilon} d^3x \left(-\phi^2 - \phi \bar{\Psi}_+^C \Psi_- - \phi \bar{\Psi}_+^C \overleftrightarrow{\partial}_\mu \overleftrightarrow{\partial}^\mu \Psi_- - \dots \right)$$

BCS/BEC crossover

- At small scalar conformal dimensions we have the Klein-Gordon equation for bosons
- At higher conformal dimensions its kinetic term can be neglected, and we enter the BCS regime
- Instead of a sharp 2nd order phase transition we have an exponential tail

Conclusions

- Holographic fermions compete with bosons and suppress the scalar condensation
- Yukawa-like interaction enhances condensation of the order parameter and opens a superconducting gap
- Infinite tower of double trace operators mixes in, so modification of the standard AdS/CFT dictionary for vev's is required

Outlook

- Formulate a proper prescription for the boundary condensates in the case of operator mixing (in progress)
- Release the hard wall and consider a deconfined state
- Include backreaction of fermions on the metric