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• Atomic Bose Einstein Condensates Cornell, Wieman, Ketterle



• Atomic Bose Einstein Condensates

- Many technical breakthroughs since then



• BEC: spontaneously broken U(1)
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Far-from-equilibrium dynamics 

• A new window on (quantum) non-equilibrium 
physics



• Fractional Charge determination from noise

Shot Noise in the Quantum Hall Effect
Saminadayar et al, “Observation of the e/3 Fractionally Charged

Laughlin Quasiparticle”, PRL 79, 2526 (1997)

R. de-Picciotto et al, “Direct observation of a fractional charge”,

Nature 389, 162 (1997)

SI = 2QIB Q = e/3
Saminadayar et al ’97  de Picciotto et al ’97



Far-from-equilibrium dynamics 

• A new window on (quantum) non-equilibrium 
physics

• The theory of quantum non-equilibrium 
physics...





Maldacena; Witten; 
Gubser, Klebanov, Polyakov

AdS/CFT

• The AdS/CFT correspondence

pert QFT

AdS String Theory

N
matrix d.o.f.

g

ZCFT (J ; g,N) = exp iSon�shell

AdS (�(�@AdS = J))

Use AdS/CFT as a tool to generate strongly coupled critical theories



Herzog, Kovtun, Sachdev, Son

Real time responses

• A remarkable ability of AdS/CFT

- Direct crossover to hydrodynamics
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FIG. 3: Imaginary part of the retarded function Ctt(w, q)/q2, plotted in units of (−χ), as a

function of dimensionless frequency w ≡ 3ω/(4πT ), for several values of dimensionless momen-

tum q ≡ 3k/(4πT ). Curves from left to right correspond to q = 0.2, 0.5, 1.0 (left panel), and

q = 1.0, 2.0, 3.0, 4.0 (right panel). The dashed curves are plots of Eq. (3.37) divided by k2.

horizon u=1. Then, as described in Section IIIB, the retarded two-point function Cyy(ω, k)

is proportional to ψ′(0)/ψ(0), while Ctt(ω, k) is proportional to ψ(0)/ψ′(0).

Figure 2 shows the imaginary part of the transverse current-current correlation function,

plotted in units of (−χ). At zero momentum, Im Cyy is a linear function of w ≡ 3ω/(4πT )

for all w, as shown in the previous subsection. At large frequency, the spectral function

asymptotes to Im Cyy ∼ (−χ)w, regardless of the value of q ≡ 3k/(4πT ).

The longitudinal correlators are directly related to the conserved R-charge density, and

so are more direct probes of hydrodynamic behavior, and the hydrodynamic-to-collisionless

crossover. Figure 3 shows the imaginary part of the density-density correlation function

divided by q2. At small momentum and frequency, one clearly sees the diffusive peak,

consistent with the hydrodynamic expression in Eq. (1.3)

Im Ctt(ω, k) = Dcχ
−ωk2

ω2 + (Dck2)2
, |ω| $ T and k $ T . (3.36)

At large frequency, the asymptotic form of the spectral function is expected to be determined

by the ‘collisionless’ ground state correlator. The latter was presented in Eq. (1.2), and here

has the form

Im Ctt(ω, k) =
1

g2
4D

sgn(ω)
(−k2)√
ω2 − k2

, |ω|− k & T. (3.37)

Fig. 3, right, shows that this form is indeed well obeyed. Indeed, Eqs. (3.36) and (3.37) are

exactly the correlators expected across a hydrodynamic-to-collisionless crossover in a generic

system [67]: the prefactor of k2 in Eq. (3.37) is required by charge conservation even at large

ω, while the factor of 1/
√
ω2 − k2 is set by the CFT current scaling dimension and Lorentz

invariance.

In Fig. 4, we illustrate the crossover from the hydrodynamic regime to the collisionless

regime. For each value of q we find the value wmax where the function Im Ctt(w, q) reaches

its maximal value, and plot the resulting function wmax(q). As we see on Fig. 4, at small

21

q = 3k/4⇡T

w = 3!/4⇡T
1

q2
ImhJ0J0iR
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                 -   Real-time dynamics:                                                                  
                                                 Combine analytical with numerical data
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                 -   Real-time dynamics
- Full non-equilibrium and transition to hydro                                       

                                 beyond linear response
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                 -   Real-time dynamics
- Full non-equilibrium and transition to hydro
- Strongly coupled systems, especially critical theories
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                 -   Real-time dynamics
- Full non-equilibrium and transition to hydro
- Strongly coupled systems, especially critical theories

New organizing principles out of equilibrium

Herzog, Son
Son, Starinets



Far-from-equilibrium dynamics 

• Driven Steady State?

- Non-thermal distributions

• Universality in Non-equilibrium dynamics?

- Kibble-Zurek scaling

- Kolmogorov scaling 

Chesler, Yaffe; de Boer, Kesko-Vakkuri +9; Bhaseen, Gauntlett, Simons, Sonner, Wiseman; Basu, Das, Nishioka 
Takanayagi; Albash, Johnson; Abajo-Arrastia, Aparicio, Lopez; Ebrahim, Headrick; Bhattacharyya, Minwalla;....
Buchel, Lehner, Myers, van Niekerk; Das, Galante, Myers, .....



Motivation: unique ability of holography

Actual: Combination of holography, hydrodynamics and QFT



• Thermal Quench in 1+1 CFTs Bernard, Doyon

TRTL

 x < 0 x > 0 !



• Thermal Quench in 1+1 CFTs Bernard, Doyon
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• Thermal Quench in 1+1 CFTs

- Intuitive expectation

Bernard, Doyon
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t = 0
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• Thermal Quench in 1+1 CFTs

- Instead

Bernard, Doyon

TR

t = 0

TL

TL steady state with Jheat 6= 0

x = �ct x = ct

TR



• Thermal Quench in 1+1 CFTs

- Instead

Bernard, Doyon
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TL steady state with Jheat 6= 0

x = �ct x = ct

TR

finite size effects at very late times.....



• Thermal Quench in 1+1 CFTs

- Instead

Bernard, Doyon
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• Thermal Quench in 1+1 CFTs

- Call                             with

TRTL steady state with Jheat 6= 0

x = �ct x = ct

Bernard, Doyon

hJi = c⇡

12
(T 2

L � T 2
R)

hJn+1i = dn

dµn
J(�L � µ,�R + µ)

����
µ=0

hJi = J(�L,�R) �L = 1/TL, �R = 1/TR



• What is this steady state?

- Not an obvious driven state



Karrasch, Ilan, Moore

• Time dependent DMRG (density matrix renormalization group)

- XXZ Hamiltonian                
Time-Dependent DMRG

Karrasch, Ilan and Moore, Non-equilibrium thermal transport and

its relation to linear response, arXiv:1211.2236
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Nonequilibrium thermal transport and its relation to linear response

C. Karrasch1,2, R. Ilan1, and J. E. Moore1,2
1Department of Physics, University of California, Berkeley, California 95720, USA and

2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial
temperature gradient TL != TR. We demonstrate that the nonequilibrium energy current saturates
fast to a finite value if the linear-response thermal conductivity is infinite, i.e. if the Drude weight D is
nonzero. Our data suggests that a nonintegrable dimerized chain might support such dissipationless
transport (D > 0). We show that the steady-state value of the current for arbitrary TL != TR is
completely determined by the linear conductance. Inhomogeneous systems exhibiting different bulk
parameters as well as Luttinger liquid boundary physics induced by single impurities are discussed
shortly.

PACS numbers: 75.10.Pq,71.27.+a,05.60.Gg

Introduction — One-dimensional (1d) electronic sys-
tems are realized in carbon nanotubes and individual
polymer molecules and provide an approximate descrip-
tion of strongly anisotropic 3d materials. It has been
known for many years that 1d systems can support un-
usual correlated electron phenomena such as Luttinger
liquid physics. However, electrical and thermal transport
in real materials are usually not governed by the free low-
energy Luttinger liquid fixed point but by an interplay
between dangerously irrelevant operators scattering the
currents and conserved quantities protecting them [1–3].

In order to connect to actual experiments, it is thus es-
sential to study generic microscopic models. Over the last
decades a significant number of works [2–11] investigated
equilibrium charge (or spin) transport properties. In par-
ticular, the question whether or not so-called integrable
models, which possess a complete set of local conserved
quantities, can support dissipationless currents at finite
temperature was addressed extensively. Less is known
about the quantitative effects of integrability-breaking
perturbations which are naturally present in any experi-
mental system, and even the qualitative question whether
the linear-response conductivity of a nonintegrable model
can still be infinite is not answered conclusively [12].
While experimental measurements of thermal transport
driven by a temperature gradient in quasi-1d spin sys-
tems already exist [13, 14], only a few works investigate
this theoretically [8, 9, 15–20]. Studying nonequilibrium
thermal (or charge) transport is complicated in general –
one reason being that is not even clear whether the long-
time dynamics can be described by a low-energy theory –
and constitutes one of the most active areas of research in
strongly correlated condensed matter physics [21–29, 32].

The primary goal of our work is to obtain quantita-
tive results on steady-state energy flow both near and
far from equilibrium and to understand the effects of in-
tegrability and correlations. This is motivated by the ex-
periments listed above and by recent technical advances
in dynamical simulations [11]. As a prototypical model
we consider a XXZ spin-1/2 chain in presence of two per-

turbations (dimerization and a staggered magnetic field)
which break integrability [30, 31]. We demonstrate that
the nonequilibrium energy current driven by a tempera-
ture gradient TL != TR relaxes fast to a finite steady-state
value if the linear-response thermal conductivity is infi-
nite, i.e. if the Drude weight D is nonzero. Our data
indicates that the dimerized chain might support such
dissipationless transport (D > 0) despite the fact that it
is nonintegrable (D can be extracted from the asymptote
of the equilibrium energy current correlation function [8],
and we cannot exclude that the latter decays on a hidden
large time scale). We show that for a large class of prob-
lems the steady-state current takes the functional form
f(TL) − f(TR). This implies that nonequilibrium ther-
mal transport is entirely determined by linear response
– f can simply be obtained by integration of the equi-
librium conductance ∂T f . We demonstrate that at low
temperatures the gapless integrable XXZ chain as well
as the quantum Ising model exhibit universal nonequi-
librium behavior conjectured by conformal field theory
[32, 33]. Finally, we study inhomogeneous systems fea-
turing different bulk interactions as well as Luttinger liq-
uid physics [34] induced by an impurity at the interface.

Thermal non-equilibrium setup — We aim at inves-
tigating the real-time dynamics of the energy current
〈JE(n, t)〉 through a one-dimensional infinite lattice sys-
tem driven out of equilibrium by an initial sharp tem-
perature gradient TL != TR. Our main focus is to study
the long-time behavior of 〈JE(n, t)〉 and specifically the
question how it relates to linear-response thermal trans-
port properties. As a prototypical model, we consider
a chain of interacting spin-1/2 degrees of freedom Sx,y,z

n

governed by local Hamiltonians

hn = Jn
(

Sx
nS

x
n+1+Sy

nS
y
n+1+∆nS

z
nS

z
n+1

)

+bn(S
z
n−Sz

n+1) ,
(1)

or equivalently spinless Fermions through a Jordan-
Wigner transformation. By choosing the couplings Jn,
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FIG. 1. Energy current flowing between two semi-infinite
spin-1/2 chains which are initially in thermal equilibrium at
different temperatures TL,R and coupled at time t = 0 and
position n = 0. (a) Integrable XXZ chain with z-anisotropy
∆. The behavior in the gapped phase ∆ > 1 is similar. (b)
Nonintegrable dimerized XXZ chain where the coupling on
every second bond is reduced by λ. The system is gapped.
(c) XXZ chain in presence of a staggered field b rendering
the model nonintegrable. A gap opens for b ≈ 0.3. Despite
the fact that the local energy density h(n, t) does not relax
(Inset), the current saturates fast to a unique finite value ex-
cept for b > 0. We attribute this to a finite linear-response
thermal Drude weight of both the pure XXZ chain and the
nonintegrable dimerized chain (see Figure 2). This indicates
an intricate relation between nonequilibrium and linear ther-
mal transport properties.

∆n, and bn appropriately:

Jn =

{

1 n odd

λ n even
, ∆n = ∆ , bn =

(−1)nb

2
, (2)

we can study systems which are gapless or gapped and
– as a key aspect of this work – investigate the role of
integrability. For λ = 1 and b = 0, Equation (1) can be
diagonalized via Bethe ansatz [35]; the model is nonin-
tegrable otherwise. The spectrum is gapless for |∆| ≤ 1
and gapped for ∆ > 1. A gap opens for λ < 1 or suffi-
ciently large b > bc; bc > 0 if −1 < ∆ < −1/

√
2 [31, 36].

Thermal nonequilibrium is introduced via the following
protocol: We initially consider two seperate semi-infinite
chains (N → ∞), H0 = HL + HR =

∑−1

n=−N/2+1
hn +

∑N/2−1

1
hn, each being in thermal (grand-canonical)

equilibrium at temperatures TL and TR. The corre-
sponding density matrix factorizes, ρ0 = ρL ⊗ ρR, ρi =
exp(−Hi/Ti)/Tr exp(−Hi/Ti). At time t = 0, the chains
are coupled through h0, and the time evolution of ρ0 is
computed w.r.t. H = H0 + h0. The energy current is
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FIG. 2. Linear-response energy current correlation func-
tion whose long-time asymptote determines the Drude weight
through Equation (5). For the integrable XXZ chain (λ = 1,
b = 0), the global energy current JE =

∑
n JE(n) is con-

served; thus, 〈JE(t)JE〉 = 〈JE(0)JE〉, and DMRG can be
compared with exact Bethe ansatz results (symbols). (a,b)
Nonintegrable dimerized chain. The current correlation func-
tion seems to saturate at a finite value (or decays on a hidden
large time scale), indicating a finite Drude weight D > 0. (c)
The data in presence of a staggered field b > 0 is consistent
with D = 0.

defined by a continuity equation [8],

∂thn = JE(n)−JE(n+1) ⇒ JE(n) = i[hn−1, hn] , (3)

and its time evolution is simply given by

〈JE(n, t)〉 = Tr
[

eiHtρ0e
−iHtJE(n)

]

. (4)

Equation (4) can be computed efficiently using the real-
time [37] finite-temperature [38] density matrix renormal-
ization group [39, 40] (DMRG) algorithm introduced in
[11]. DMRG is essentially controlled by the so-called dis-
carded weight ε. We ensure that ε is chosen small enough
and that N is chosen large enough to obtain numerically-
exact results in the thermodynamic limit.
Non-equilibrium energy current — We start by study-

ing a XXZ chain with two additional perturbations
(dimerization λ < 1 and a staggered field b > 0) which
both render the system nonintegrable [8, 30, 31]. At time
t = 0, two semi-infinite chains each being prepared in
thermal equilibrium at temperatures TL,R are coupled
by h0 to an overall translationally-invariant chain. Ex-
emplary results for 〈JE(n, t)〉 are shown in Figure 1. The
current at the interface n = 0 saturates on a scale t ∼ 1
[note the definition of units via Equation (2)] irrespec-
tive of the temperature difference TL − TR or the abso-
lute values of TL,R and regardless of the fact whether or
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Nonequilibrium thermal transport and its relation to linear response

C. Karrasch1,2, R. Ilan1, and J. E. Moore1,2
1Department of Physics, University of California, Berkeley, California 95720, USA and

2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial
temperature gradient TL != TR. We demonstrate that the nonequilibrium energy current saturates
fast to a finite value if the linear-response thermal conductivity is infinite, i.e. if the Drude weight D is
nonzero. Our data suggests that a nonintegrable dimerized chain might support such dissipationless
transport (D > 0). We show that the steady-state value of the current for arbitrary TL != TR is
completely determined by the linear conductance. Inhomogeneous systems exhibiting different bulk
parameters as well as Luttinger liquid boundary physics induced by single impurities are discussed
shortly.

PACS numbers: 75.10.Pq,71.27.+a,05.60.Gg

Introduction — One-dimensional (1d) electronic sys-
tems are realized in carbon nanotubes and individual
polymer molecules and provide an approximate descrip-
tion of strongly anisotropic 3d materials. It has been
known for many years that 1d systems can support un-
usual correlated electron phenomena such as Luttinger
liquid physics. However, electrical and thermal transport
in real materials are usually not governed by the free low-
energy Luttinger liquid fixed point but by an interplay
between dangerously irrelevant operators scattering the
currents and conserved quantities protecting them [1–3].

In order to connect to actual experiments, it is thus es-
sential to study generic microscopic models. Over the last
decades a significant number of works [2–11] investigated
equilibrium charge (or spin) transport properties. In par-
ticular, the question whether or not so-called integrable
models, which possess a complete set of local conserved
quantities, can support dissipationless currents at finite
temperature was addressed extensively. Less is known
about the quantitative effects of integrability-breaking
perturbations which are naturally present in any experi-
mental system, and even the qualitative question whether
the linear-response conductivity of a nonintegrable model
can still be infinite is not answered conclusively [12].
While experimental measurements of thermal transport
driven by a temperature gradient in quasi-1d spin sys-
tems already exist [13, 14], only a few works investigate
this theoretically [8, 9, 15–20]. Studying nonequilibrium
thermal (or charge) transport is complicated in general –
one reason being that is not even clear whether the long-
time dynamics can be described by a low-energy theory –
and constitutes one of the most active areas of research in
strongly correlated condensed matter physics [21–29, 32].

The primary goal of our work is to obtain quantita-
tive results on steady-state energy flow both near and
far from equilibrium and to understand the effects of in-
tegrability and correlations. This is motivated by the ex-
periments listed above and by recent technical advances
in dynamical simulations [11]. As a prototypical model
we consider a XXZ spin-1/2 chain in presence of two per-

turbations (dimerization and a staggered magnetic field)
which break integrability [30, 31]. We demonstrate that
the nonequilibrium energy current driven by a tempera-
ture gradient TL != TR relaxes fast to a finite steady-state
value if the linear-response thermal conductivity is infi-
nite, i.e. if the Drude weight D is nonzero. Our data
indicates that the dimerized chain might support such
dissipationless transport (D > 0) despite the fact that it
is nonintegrable (D can be extracted from the asymptote
of the equilibrium energy current correlation function [8],
and we cannot exclude that the latter decays on a hidden
large time scale). We show that for a large class of prob-
lems the steady-state current takes the functional form
f(TL) − f(TR). This implies that nonequilibrium ther-
mal transport is entirely determined by linear response
– f can simply be obtained by integration of the equi-
librium conductance ∂T f . We demonstrate that at low
temperatures the gapless integrable XXZ chain as well
as the quantum Ising model exhibit universal nonequi-
librium behavior conjectured by conformal field theory
[32, 33]. Finally, we study inhomogeneous systems fea-
turing different bulk interactions as well as Luttinger liq-
uid physics [34] induced by an impurity at the interface.

Thermal non-equilibrium setup — We aim at inves-
tigating the real-time dynamics of the energy current
〈JE(n, t)〉 through a one-dimensional infinite lattice sys-
tem driven out of equilibrium by an initial sharp tem-
perature gradient TL != TR. Our main focus is to study
the long-time behavior of 〈JE(n, t)〉 and specifically the
question how it relates to linear-response thermal trans-
port properties. As a prototypical model, we consider
a chain of interacting spin-1/2 degrees of freedom Sx,y,z

n

governed by local Hamiltonians

hn = Jn
(

Sx
nS

x
n+1+Sy

nS
y
n+1+∆nS

z
nS

z
n+1

)

+bn(S
z
n−Sz

n+1) ,
(1)

or equivalently spinless Fermions through a Jordan-
Wigner transformation. By choosing the couplings Jn,
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FIG. 1. Energy current flowing between two semi-infinite
spin-1/2 chains which are initially in thermal equilibrium at
different temperatures TL,R and coupled at time t = 0 and
position n = 0. (a) Integrable XXZ chain with z-anisotropy
∆. The behavior in the gapped phase ∆ > 1 is similar. (b)
Nonintegrable dimerized XXZ chain where the coupling on
every second bond is reduced by λ. The system is gapped.
(c) XXZ chain in presence of a staggered field b rendering
the model nonintegrable. A gap opens for b ≈ 0.3. Despite
the fact that the local energy density h(n, t) does not relax
(Inset), the current saturates fast to a unique finite value ex-
cept for b > 0. We attribute this to a finite linear-response
thermal Drude weight of both the pure XXZ chain and the
nonintegrable dimerized chain (see Figure 2). This indicates
an intricate relation between nonequilibrium and linear ther-
mal transport properties.

∆n, and bn appropriately:

Jn =

{

1 n odd

λ n even
, ∆n = ∆ , bn =

(−1)nb

2
, (2)

we can study systems which are gapless or gapped and
– as a key aspect of this work – investigate the role of
integrability. For λ = 1 and b = 0, Equation (1) can be
diagonalized via Bethe ansatz [35]; the model is nonin-
tegrable otherwise. The spectrum is gapless for |∆| ≤ 1
and gapped for ∆ > 1. A gap opens for λ < 1 or suffi-
ciently large b > bc; bc > 0 if −1 < ∆ < −1/

√
2 [31, 36].

Thermal nonequilibrium is introduced via the following
protocol: We initially consider two seperate semi-infinite
chains (N → ∞), H0 = HL + HR =

∑−1

n=−N/2+1
hn +

∑N/2−1

1
hn, each being in thermal (grand-canonical)

equilibrium at temperatures TL and TR. The corre-
sponding density matrix factorizes, ρ0 = ρL ⊗ ρR, ρi =
exp(−Hi/Ti)/Tr exp(−Hi/Ti). At time t = 0, the chains
are coupled through h0, and the time evolution of ρ0 is
computed w.r.t. H = H0 + h0. The energy current is
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FIG. 2. Linear-response energy current correlation func-
tion whose long-time asymptote determines the Drude weight
through Equation (5). For the integrable XXZ chain (λ = 1,
b = 0), the global energy current JE =

∑
n JE(n) is con-

served; thus, 〈JE(t)JE〉 = 〈JE(0)JE〉, and DMRG can be
compared with exact Bethe ansatz results (symbols). (a,b)
Nonintegrable dimerized chain. The current correlation func-
tion seems to saturate at a finite value (or decays on a hidden
large time scale), indicating a finite Drude weight D > 0. (c)
The data in presence of a staggered field b > 0 is consistent
with D = 0.

defined by a continuity equation [8],

∂thn = JE(n)−JE(n+1) ⇒ JE(n) = i[hn−1, hn] , (3)

and its time evolution is simply given by

〈JE(n, t)〉 = Tr
[

eiHtρ0e
−iHtJE(n)

]

. (4)

Equation (4) can be computed efficiently using the real-
time [37] finite-temperature [38] density matrix renormal-
ization group [39, 40] (DMRG) algorithm introduced in
[11]. DMRG is essentially controlled by the so-called dis-
carded weight ε. We ensure that ε is chosen small enough
and that N is chosen large enough to obtain numerically-
exact results in the thermodynamic limit.
Non-equilibrium energy current — We start by study-

ing a XXZ chain with two additional perturbations
(dimerization λ < 1 and a staggered field b > 0) which
both render the system nonintegrable [8, 30, 31]. At time
t = 0, two semi-infinite chains each being prepared in
thermal equilibrium at temperatures TL,R are coupled
by h0 to an overall translationally-invariant chain. Ex-
emplary results for 〈JE(n, t)〉 are shown in Figure 1. The
current at the interface n = 0 saturates on a scale t ∼ 1
[note the definition of units via Equation (2)] irrespec-
tive of the temperature difference TL − TR or the abso-
lute values of TL,R and regardless of the fact whether or

homogeneous constant heat flow

Karrasch, Ilan, Moore



• Time dependent DMRG
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• How to understand this state?

- Constant Heat flow vs Temperature relaxation

Intuitive expectation

EM Conservation plus CFT equation of state. 
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• How to understand this state?

- holomorphic factorization (integrability)

- In a 1+1 dim CFT left and right movers do not interact

 Left of the interface

Right of the interface

At the interface

Jp>0 ⇠ T 2
L , Jp<0 ⇠ T 2

L

Jp>0 ⇠ T 2
R , Jp<0 ⇠ T 2

R

Jp>0 ⇠ T 2
L , Jp<0 ⇠ T 2

R

t = 0

very special to 1+1 D



• How to understand this state?

- Constant and homogeneous

- Scaling plus linear response

Odd under 

Linear response fixes 

[J ] = 2

J = a(TL � TR)(TL + TR)

TL $ TR

a =
c⇡

12
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• Holography

- Only Heat, i.e. pure AdS-gravity

- aAdS Solution to Einstein with a constant unsourced Heat 
current
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• Holography

- Unique solution: boosted BTZ black hole 

- This is dual to a state with constant heat current
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• Holography

- Unique solution: boosted BTZ black hole 

- This is dual to a state with constant heat current
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The novel steady state coincides with the boosted equilibrium state
identifying

TL = Te⌘,

TR = Te�⌘

Bhaseen, Doyon, Lucas, KS
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• “Boosts” to understand real transport

- Classical Hall effect
Bhaseen, Green, Sondhi;

Hartnoll, Kovtun
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• Checking with a free  boson

- Boost

Eequilibrium =
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• Cumulants of density of states

H =

Z
dxT 00 , P =

Z
dxT 0x

hJn+1i = dn

dµn
J(�L � µ,�R + µ)

����
µ=0

Z(�, µ) = Tre��H�µP

� + µ = 1/TR , � � µ = 1/TL



Bhaseen, Doyon, Lucas, KS

Exact Dual Solution

• 1+1 CFT/AdS3 is special

- Factorization: can solve the full quench exactly
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• Is there an equivalent phenomenon in d+1 
dimensional systems?

CFT1+1Free QFT1+1

Free QFTd+1 CFTd+1
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?

Bhaseen, Doyon, Lucas, KS
Collura, Martelloni

Int. QFT1+1

Many papers...
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• Is there an equivalent phenomenon in d+1 
dimensional systems?

CFT1+1Free QFT1+1

Free QFTd+1 CFTd+1

=

?

Bhaseen, Doyon, Lucas, KS
Collura, Martelloni

Int. QFT1+1
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Final stage quench:
Hydrod+1

?
AdS/CFT



• Is there an equivalent phenomenon in d+1 
dimensional systems (CFTs)?



Greiner, Mandel, Esslinger, Haensch, Bloch

• 2+1d quantum critical system in cold atoms



• Is there an equivalent phenomenon in d+1 
dimensional systems (CFTs)?



• Is there an equivalent phenomenon in d+1 
dimensional systems (CFTs)?

- If such a steady state exists, what does it look like

(no holomorphic factorization in higher d; no integrability)

- This state is the boosted equilibrium state

- Does this state in fact occur after a thermal quench?

AdS/CFT:  The unique non-singular stationary gravity solution dual to a state 
with homogeneous constant heat flow is the boosted black brane.



From holography to hydrodynamics



• Boosted equilibrium suggests hydro applies

- 1+1 Conformal Hydro

- 1+1 Conformal = Integrable = no dissipation
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• Boosted equilibrium suggests hydro applies

- 1+1 Conformal Hydro

- 1+1 Conformal = Integrable = no dissipation
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• Boosted equilibrium suggests hydro applies

- 1+1 Conformal Hydro

- 1+1 Conformal = Integrable = no dissipation
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instantaneous thermalization



• Boosted equilibrium suggests hydro applies

- d+1 Conformal Hydro for a thermal quench

Effective dimensional reduction to 1+1 dimension

d+1 Conformal       Integrable = dissipation

J(x, t) = ✓(t+ x) + ✓(t� x)� 1

J(x, t)

⇢(x, t)

6=

sound fronts
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• Boosted equilibrium suggests hydro applies

- d+1 Conformal Hydro for a thermal quench

Effective dimensional reduction to 1+1 dimension

d+1 Conformal       Integrable = dissipation

J(x, t) = ✓(t+ x) + ✓(t� x)� 1

J(x, t)

⇢(x, t)

6=
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d+1 dim Thermal Quench 

• Assume intermediate homogeneous steady 
state exists

- Holography: the state must be boosted thermal state

- Two-shock solution (Riemann problem)

knowns

unknowns

TL, TR

Tss, ⌘ss, uL, uR

x = �uLt x = uRt

boosted state: otherwise 4 parameters
⇢, pL, pT , J



d+1 dim Thermal Quench 

• Matching across shocks

4 equations for 4 unknowns

x = �uLt x = uRt

Tµ⌫ = Tµ⌫(x+ uLt) + Tµ⌫(x� uRt)
Z

shock

@
µ

Tµ⌫ =

Z

shock

@
x

T xµ + u
shock

@
x

T 0µ = 0



d+1 dim Thermal Quench 

• Matching across shocks

4 equations for 4 unknowns

x = �uLt x = uRt

Tµ⌫ = Tµ⌫(x+ uLt) + Tµ⌫(x� uRt)
Z

shock

@
µ

Tµ⌫ =

Z

shock

@
x

T xµ + u
shock

@
x

T 0µ = 0

uL =
1

d

s
�+ d

�+ d�1
uR =

s
�+ d�1

�+ d

� =

✓
TL

TR

◆ d+1
2

Tss =
p

TLTR
⌘ss =

�� 1p
(�+ d�1)(�+ d)

hT txi = a
d

 
T d+1
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d+1

u
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!



• Shocks are non-linear sound waves

uL =
1

d

s
�+ d

�+ d�1
uR =

s
�+ d�1

�+ d
asymmetric

� =

✓
TL

TR

◆ d+1
2

uLuR = c2s =
1

d
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0.0

0.2

0.4

0.6

0.8

1.0

TL êTR
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c2s/c uL
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• Confirming with numerical (ideal) hydro

T tx

T txs

0
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0.6

0.8

-6-4-20246

uL =
1

d

s
�+ d

�+ d�1
uR =

s
�+ d�1

�+ d
asymmetric

formation of 
steady state

This is not 
input!



• Dissipative corrections should not change this

- Small shocks can be traced in linear response

Numerically confirmed by Chang, Karch, Yarom

T (x, t) = TL +
TR � TL

4

"
2 + erf

x� t/

p
d

4Dkt
+ erf

x+ t/

p
d

4Dkt

#

width          is smaller than the distance
q
Dkt t/

p
d



• Dissipative corrections should not change this

- Small shocks can be traced in linear response

Numerically confirmed by Chang, Karch, Yarom

• Turbulence?

- Assumption: completely smooth T discontinuity

- Allows reduction to eff 1+1 dim system

T (x, t) = TL +
TR � TL

4

"
2 + erf

x� t/

p
d

4Dkt
+ erf

x+ t/

p
d

4Dkt

#

width          is smaller than the distance
q
Dkt t/

p
d



From holography and hydrodynamics to QFT/CFT



Non-Thermal distributions

• The Fluctuation Spectrum

- So far we have looked at xpv

- Cumulants of the current at the interface  

Extended Fluctuation Relation

hTµ⌫i

cn ⌘ hJn(x = 0)i

hJn+1i = dn

dµn
J(�L � µ,�R + µ)

����
µ=0



Non-Thermal distributions

• The Fluctuation Spectrum

- So far we have looked at xpv                        (=hydro)

- Cumulants of the current at the interface  

Extended Fluctuation Relation

hTµ⌫i

cn ⌘ hJn(x = 0)i

F (z) =
X 1

n!
zncn

dF (z)

dz
= J(�L � z,�R + z)

holds in any d !



Non-Thermal distributions

• Proof of the Extended Fluctuation Relation 
For any operator

At late times, in the steady state

Energy conservation                                         and PT reversal

EFR follows
✓

@

@�L
� @

@�R

◆
hO(t)iss =

Z t

�t
dt0hJ(t0)O(t)iss

HL(t)�HR(t)�HL(�t) +HR(�t) = 2

Z t

�t
dt0J(t0)

dHR(t)

dt
= �dHL(t)

dt
= J(t)

✓
@

@�L
� @

@�R

◆
hOiss ' h(HL(�t)�HR(�t))Oiss

✓
@

@�L
� @

@�R

◆
hO(t)⇢t=0i = h(HL �HR)O(t)⇢t=0i

O(t) ⌘ eiHtOe�iHt

⇢t=0 ⌘ e��LHL��RHRwhere



• Summary

- 1+1 dim CFTs show novel steady states with 
homogeneous heat flow after a thermal quench.

- This steady state can be identified as a boosted thermal 
equilibrium state.

- The same happens in d+1 CFTs. An intermediate steady state 
appears. Holography determines that is a boosted equilibrium 
state.

Warning!

This is a collective effect. This cannot be seen in free field theory.

(Many 1+1 CFTs have a free field representation, but this is not so in d+1 CFTs.)



• Summary

- 1+1 dim CFTs show novel steady states with 
homogeneous heat flow after a thermal quench.

- This steady state can be identified as a boosted thermal 
equilibrium state.

- The same happens in d+1 CFTs. An intermediate steady state 
appears. Holography determines that is a boosted equilibrium 
state.

- Knowing this, hydrodynamics applies. Two non-linear 
sound shock Riemann problem can be solved analytically 
(ideal). 

- All higher order moments follow from energy conservation. 
This is QFT information beyond hydrodynamics.



• Outlook

- Direct Momentum relaxation vs dissipation.

- Effects of turbulence.
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asymmetric

• Outlook

- Direct Momentum relaxation vs dissipation.

- Effects of turbulence.

- Including charge discontinuity in the quench.

- Include superfluid component

- Direct connection to cold atom experimental set-ups 

J(x, t)

⇢(x, t)

nq(x, t)



Thank you


