Lifshitz Space-Times for Schrödinger**Holography**

Jelle Hartong

Niels Bohr Institute

Holographic Methods and ApplicationsReykjavík, August 19, 2014

Based on collaborations withElias Kiritsis and Niels Obersand withEric Bergshoeff and Jan Rosseel

Introduction

• Many systems in nature exhibit critical points withnon-relativistic scale invariance. Such systemstypically have Lifshitz symmetries:

> D_z : $\vec{x} \rightarrow \lambda \vec{x} \qquad t \rightarrow \lambda^z t$, H : t \rightarrow $t + a$, P_i : x^i \rightarrow $x^i + a^i$, J_{ij} : $x^i \rightarrow R^i{}_j x^j$.

• Lifshitz algebra (only nonzero commutators shown, left out J_{ij} and $z\neq 1$):

$$
[D_z, H] = -zH, \qquad [D_z, P_i] = -P_i.
$$

- An example of ^a symmetry group that also displaysnon-relativistic scale invariance but which is larger thanLifshitz is the Schrödinger group.
- Additional symmetries are Galilean boosts G_i $(x^i \rightarrow x^i + v^i t)$ and a particle number symmetry $M.$
- Schrödinger algebra (only nonzero commutatorsshown, left out J_{ij} and $z\neq 1, 2$):

 $[D_z, H] = -zH$, $[D_z, P_i] = -P_i$, $[D_z, M] = (z - 2)M$ $[D_z, G_i] = (z - 1)G_i, \quad [H, G_i] = P_i, \quad [P_i, G_j] = M\delta_{ij}$

• When $z = 2$ there is an additional special conformal symmetry K_\ast

- Aim: to construct holographic techniques for (stronglycoupled) systems with NR symmetries.
- Lifshitz holography initiated by: [Kachru, Liu, Mulligan, ²⁰⁰⁸].

$$
ds^{2} = -\frac{dt^{2}}{r^{2z}} + \frac{1}{r^{2}}\left(dr^{2} + d\vec{x}^{2}\right)
$$

- From ^a different perspective, Lifshitz space-times form interesting examples of non-AdS space-times for whichit appears to be possible to construct explicit holographic techniques.
- Punch line of this talk:

Field theories dual to Lifshitz space-times areSchrödinger invariant!

Outline Talk

- Newton–Cartan geometry
- Asymptotically locally Lifshitz space-times
- Two arguments why the dual field theory isSchrödinger invariant:
	- ◦ Schrödinger 1: sources (torsional NC geometry), vevs and Ward identities [JH, Kiritsis, Obers, to appear], Bergshoeff, JH, Rosseel, to appear.
	- Schrödinger 2: bulk vs boundary Killing symmetries[JH, Kiritsis, Obers, to appear].

Newton–Cartan Geometry I

- GR is ^a diff invariant theory whose tangent spaceinvariance group is the Poincaré group.
- Newtonian gravity is ^a diff invariant theory known asNewton–Cartan gravity whose tangent spaceinvariance group is the Bargmann algebra [Andringa, Bergshoeff, Panda, de Roo, 2011]: $\, J_{ij},\, P_i,\, G_i,\, H,\, M \,$ With $\, M \,$ central and

$$
[H, G_i] = P_i, \qquad [P_i, G_j] = M \delta_{ij}
$$

• We are not interested in the equations of motion, onlyin the geometrical framework. The geometry on theboundary in our holographic setup is not dynamical.

From Poincaré to GR

• Local Poincaré: $P_a, \, M_{ab}$ (gauging): $A_\mu \;\;=\;\; P_a e^a_\mu + \frac{1}{2} M_{ab} \omega_\mu{}^{ab}$ $F_{\mu\nu} \;\; = \;\; \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu \, , A_\nu] = P_a R_{\mu\nu}^{a}(P) + \frac{1}{2} M_{ab} R_{\mu\nu}^{ab}(M)$ $\delta A_\mu \;\; = \;\; \partial_\mu \Lambda + [A_\mu \, , \Lambda] \, , \hspace{1cm} \Lambda = \xi^\mu A_\mu + \frac{1}{2} M_{ab} \lambda^{ab}$

•GR follows from the curvature constraint:

 $R_{\mu\nu}^{\quad a}(P)=0$ $\left\{\begin{array}{l} \omega_{\mu}{}^{ab}=\textrm{spin connection: expr. in terms of e^{a}_{μ}}\ \delta A_{\mu}=\mathcal{L}_{\xi}A_{\mu}+\frac{1}{2}M_{ab}\partial_{\mu}\lambda^{ab}+\frac{1}{2}[A_{\mu},M_{ab}]\lambda^{ab}\ R_{\mu\nu}{}^{ab}(M)=\textrm{Riemann curvature 2-form}\ \nabla_{\mu}$ defined via vielbein postulate

Newton–Cartan Geometry II

• Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] H , $P_a,\,M,\,J_{ab},\,G_a$ (a is a spatial index):

$$
A_{\mu} = H\tau_{\mu} + P_{a}e_{\mu}^{a} + Mm_{\mu} + \frac{1}{2}J_{ab}\omega_{\mu}^{ab} + G_{a}\omega_{\mu}^{a}
$$

$$
F_{\mu\nu} = HR_{\mu\nu}(H) + P_{a}R_{\mu\nu}^{a}(P) + MR_{\mu\nu}(M) + \dots
$$

$$
F_{\mu\nu} = HR_{\mu\nu}(H) + P_a R_{\mu\nu}{}^a(P) + MR_{\mu\nu}(M) + \dots
$$

$$
\delta A_{\mu} = \partial_{\mu} \Lambda + [A_{\mu}, \Lambda], \qquad \Lambda = \xi^{\mu} A_{\mu} + M\sigma + \frac{1}{2} J_{ab} \lambda^{ab} + G_a \lambda^a
$$

• Curv. constraints: $R_{\mu\nu}(H) = R_{\mu\nu}{}^a$ Independent fields: τ_μ , e^a_μ , m_μ transfor $^{a}(P) = R_{\mu\nu}(M) = 0.$ $_{\mu}^a, \, m_{\mu}$ transforming as:

$$
\delta \tau_{\mu} = \mathcal{L}_{\xi} \tau_{\mu}
$$

\n
$$
\delta e_{\mu}^{a} = \mathcal{L}_{\xi} e_{\mu}^{a} + \lambda^{a} \tau_{\mu} + \lambda^{a}{}_{b} e_{\mu}^{b}
$$

\n
$$
\delta m_{\mu} = \mathcal{L}_{\xi} m_{\mu} + \partial_{\mu} \sigma + \lambda_{a} e_{\mu}^{a}
$$

 \angle

Asymptotically Locally Lifshitz Space-Times

• For ^a bulk theory of the form

$$
S = \int d^4x \sqrt{-g} \left(R - \frac{1}{4} Z(\Phi) F^2 - \frac{1}{2} (\partial \Phi)^2 - \frac{1}{2} W(\Phi) B^2 - V(\Phi) \right)
$$

$$
ds^2 = \frac{dr^2}{R(\Phi)r^2} - E^0 E^0 + \delta_{ab} E^a E^b, \qquad B_M = A_M - \partial_M \Xi
$$

the AlLif boundary conditions are [Ross, ²⁰¹¹], [Christensen, JH, Obers, Rollier, 2013, [JH, Kiritsis, Obers, to appear]:

$$
E_{\mu}^{0} \propto r^{-z}\tau_{\mu} + \dots \qquad E_{\mu}^{a} \propto r^{-1}e_{\mu}^{a} + \dots
$$

\n
$$
A_{\mu} - \alpha(\Phi)E_{\mu}^{0} \propto r^{z-2}\tilde{m}_{\mu} + \dots \qquad A_{r} = (z-2)r^{z-3}\chi + \dots
$$

\n
$$
\Xi = r^{z-2}\chi + \dots \qquad \Phi = r^{\Delta}\phi + \dots
$$

Transformations of the sources

- The local bulk symmetries are: local Lorentztransformations, gauge transformations acting on A_M and Ξ and diffs preserving the metric gauge.
- The way these symmetries act on the sources $\tau_\mu,\,e^a_\mu$ μ , $\tilde{m}_{\mu},\,\chi$ is the same as the action of the Bargmann algebra plus local dilatations, i.e. the Sch algebra.
- There is thus ^a Schrödinger Lie algebra valuedconnection given by ($\tilde{m}_\mu=m_\mu (z-\,$ $(-2)\chi b_\mu$):

$$
A_{\mu} = H\tau_{\mu} + P_a e_{\mu}^a + Mm_{\mu} + \frac{1}{2} J_{ab} \omega_{\mu}^{ab} + G_a \omega_{\mu}^a + Db_{\mu}
$$

with appropriate curvature constraints whose transformations reproduce those of the sources. Torsional Newton–Cartan (TNC) Geometry

• Inverse vielbeins v^μ and e^μ_a $\frac{\mu}{a}$.

$$
v^{\mu}\tau_{\mu} = -1\,, \qquad v^{\mu}e^a_{\mu} = 0\,, \qquad e^{\mu}_a\tau_{\mu} = 0\,, \qquad e^{\mu}_a e^b_{\mu} = \delta^b_a
$$

• From the vielbeins, their inverses and $M_\mu = \tilde{m}_\mu \partial_\mu \chi$ we can build the following invariants: τ_{μ} and

$$
h^{\mu\nu} = \delta^{ab} e^{\mu}_a e^{\nu}_b, \qquad \hat{v}^{\mu} = v^{\mu} - h^{\mu\nu} M_{\nu}
$$

 $\bar{h}_{\mu\nu}$ $= \delta_{ab}e^a_\mu$ μ eb $_{\nu}^{\mathit{o}}-\tau_{\mu}M_{\nu}$ $\tau_\nu M_\mu\,,\,\,\,\,\,\Phi$ $_N~=~-v^\mu$ $^{\mu}M_{\mu}+\frac{1}{2}$ 2 $h^{\mu\nu}M_{\mu}M_{\nu}$

• The affine connection is

$$
\Gamma^{\rho}_{\mu\nu} = -\hat{v}^{\rho}\partial_{\mu}\tau_{\nu} + \frac{1}{2}h^{\rho\sigma}\left(\partial_{\mu}\bar{h}_{\nu\sigma} + \partial_{\nu}\bar{h}_{\mu\sigma} - \partial_{\sigma}\bar{h}_{\mu\nu}\right)
$$

with torsion: $\Gamma^\rho_{[\mu\nu]}=-\frac{1}{2}$ 2 $\hat v^\rho (\partial_\mu \tau_\nu - \partial_\nu \tau_\mu)$

Vevs and Ward identities I

• Assuming holographic renormalizability it can beshown that the general form of the variation of theon-shell action takes the form:

$$
\delta S_{\text{ren}}^{\text{os}} = \int d^3x e \left[-S_{\mu}^0 \delta v^{\mu} + S_{\mu}^a \delta e^{\mu}_a + T^0 \delta \tilde{m}_0 + T^a \delta \tilde{m}_a \right.
$$

$$
+ \langle O_{\chi} \rangle \delta \chi + \langle O_{\phi} \rangle \delta \phi - A \frac{\delta r}{r} \Big]
$$

• The vevs and sources can be used to define:

 ${\cal T}^\mu{}_\nu \;\;=\;\; -\left(S^0_\nu+T^0\partial_\nu\chi\right)v^\mu+\left(S^a_\nu+T^a\partial_\nu\chi\right)e^\mu_a\quad$ bdry EM tensor T^μ = $-T^0v^\mu+T^ae^\mu_a$ mass current

• Vielbein components of $\mathcal{T}^{\mu}{}_{\nu}$ provide the energy density, energy flux, momentum density and stress.

Vevs and Ward identities II

- The Ward identities are (ignoring the dilaton ϕ):
- $0 = -\hat{e}^a_\mu T^\mu + \tau_\mu e^{\nu a} \mathcal{T}^\mu_{\ \ \nu}$ boosts 0 = $\hat{e}^a_\mu e^{\nu b} \mathcal{T}^\mu{}_\nu - (a \leftrightarrow$ \leftrightarrow b) rotations $\mathcal{A} \;\; = \;\; -z \hat v^\nu \tau_\mu \mathcal{T}^\mu{}_\nu + \hat e^a_\mu e^\nu_a \mathcal{T}^\mu{}_\nu + 2(z-1) \Phi_N \tau_\mu T^\mu \qquad \mathsf{dilatations}$ $\langle O_\chi \rangle$ = $e^{-1}\partial_{\mu}\left(eT^{\mu}\right)$ gauge trafos $0 \;\; = \;\; \nabla_{\mu} {\cal T}^{\mu}{}_{\nu} + 2 \Gamma^{\rho}_{[\mu \rho]} {\cal T}^{\mu}{}_{\nu} - 2 \Gamma^{\mu}_{[\nu \rho]} {\cal T}^{\rho}{}_{\mu}$ $-T^{\mu}\hat{e}^{a}_{\mu}\mathcal{D}_{\nu}M_{a}+\tau_{\mu}T^{\mu}\partial_{\nu}\Phi_{N}$ diffs
	- We used Galilean boost invariant vielbeins τ_μ , \hat{e}^a_μ , \hat{v}^μ , e^{μ}_a and density $e = \mathsf{det}\,(\tau_{\mu},e^a_{\mu}).$
	- ∇_μ contains the affine TNC connection and \mathcal{D}_μ contains the Bargmann boost and rotation connections.

TNC Killing vectors and flat NC space-time

• Conserved currents: $\partial_\mu\, (eK^\nu)$ ^a TNC conformal Killing vector: $^{\nu}{\cal T}^{\mu}$ \mathbf{v}_{ν}) $=0$ whenever K^{μ} is

 $\mathcal{L}_{K}\tau_{\mu}~=~-z\Omega\tau_{\mu}\,,\,\,\,\,\,\mathcal{L}$ $K\hat{v}^\mu$ $^{\mu}$ = $z\Omega\hat{v}^{\mu}$ $^{\mu}$, $\qquad \qquad {\cal L}_K \bar{h}_{\mu\nu}$ $=\hspace{.3cm} -2 \Omega \bar{h}_{\mu\nu}$ \mathcal{L}_K $h^{\mu\nu}$ = 20 $h^{\mu\nu}$, $\mathcal{L}_K \Phi_N$ $N = 2(z -1)$ Ω Φ $\,N$ $N, \quad \mathcal{A}\Omega = 0$

- Flat NC space-time:
	- τ_μ = δ^t_μ $h^{\mu\nu} = \delta^{ij}\delta^{\mu}_i$ fixing diffs $\frac{\mu}{i}\delta^{\nu}_{j}$ $\frac{\partial \mathcal{V}}{\partial \mathcal{J}}$ fixing diffs and flat space v^{μ} $^{\mu}$ $=$ $-\delta^{\mu}_{t}$ $\frac{\mu}{t}$ fixing boosts $h_{\mu\nu}$ = $\delta_{ij}\delta^i_\mu$ δ_ν^j $\frac{1}{\nu}$ forced by other choices M_{μ} $=$ $\partial_\mu M$ *M* global inertial coordinates: $\Gamma^{\rho}_{\mu\nu} = 0$ Φ_N no Newton potential

Conformal Killing vectors of flat NC space-time

• The conformal Killing vectors are:

$$
K^{t} = a - z\lambda t - \alpha t^{z}
$$

\n
$$
K^{i} = a^{i} + v^{i}t + \lambda^{i}{}_{j}x^{j} - \lambda x^{i} - \alpha t^{z-1}x^{i}
$$

\n
$$
\Omega = \lambda + \alpha t^{z-1}
$$

provided we can solve

$$
\mathcal{L}_{K}M = v^{i}x^{i} - \frac{1}{2}(z-1)\alpha t^{z-2}x^{i}x^{i} + (z-2)\Omega M
$$

\n
$$
0 = \partial_{t}M + \frac{1}{2}\partial_{i}M\partial^{i}M \text{ due to } \Phi_{N} = 0 \text{ and } M_{\mu} = \partial_{\mu}M
$$

\nTwo solutions:
$$
\begin{cases}\nM = \text{cst} \to \text{conf. KVs: } H, D, P_{i}, J_{ij} \\
M = \frac{x^{i}x^{i}}{2t} \to \text{conf. KVs: } K, D, G_{i}, J_{ij}\n\end{cases}
$$

Field Theory on TNC Backgrounds

• Action for Schrödinger equation on ^a TNC background:

$$
S = \int d^{d+1}x e \left[-i\phi^* \hat{v}^\mu \partial_\mu \phi + i\phi \hat{v}^\mu \partial_\mu \phi^* - h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi^* + \phi \phi^* \Phi_N - V(\phi \phi^*) \right]
$$

• On ^a flat NC background this becomes:

$$
S = \int d^{d+1}x \left[i\phi^* \left(\partial_t \phi + i\phi \partial_t M \right) - i\phi \left(\partial_t \phi^* - i\phi^* \partial_t M \right) \right. \\ - \delta^{ij} \left(\partial_i \phi + i\phi \partial_i M \right) \left(\partial_j \phi^* - i\phi^* \partial_j M \right) - V \left(\phi \phi^* \right) \right]
$$

- Wavefunction ψ defined as ϕ $=e$ $-iM$ ψ .
- Space-time symmetries for $M=$ subalgebra of Sch given by $H,\,D,\,P_i$ and $J_{ij}.$ $=$ cst is the Lifshitz Space-time symmetries for $M=x$ subalgebra of Sch given by $K,\,D,\,G_i$ and $J_{ij}.$ ${}^{i}x$ i $/2t$ is the Lifshitz

• For $M = \textsf{cst}$ we get the Lifshitz algebra and dual bulk:

$$
H = \partial_t, \quad P_i = \partial_i, \quad D = zt\partial_t + x^i \partial_i + r\partial_r, \quad J_{ij} = x^i \partial_j - x^j \partial_i
$$

$$
ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dr^2}{r^2} + \frac{dx^i dx^i}{r^2}
$$

• For $M = \frac{x^i x^i}{2t}$ we get the Lifshitz algebra and dual bulk:

 $K = t^z \partial_t + t^{z-1}(x^i \partial_i + r \partial_r), \quad G_i = t \partial_i, \quad D = zt \partial_t + x^i \partial_i + r \partial_r, \quad J_{ij}$

$$
ds^{2} = \left(-\frac{1}{r^{2z}} + \frac{1}{t^{2}}\right)dt^{2} - \frac{2drdt}{rt} + \frac{dr^{2}}{r^{2}} + \frac{1}{r^{2}}\left(dx^{i} - \frac{x^{i}}{t}dt\right)^{2}
$$

• Large diff relating $M = \textsf{cst}$ and $M = \frac{x^i x^i}{2t}$ bulk solutions:

$$
\bar{t} = \frac{1}{1-z} t^{1-z}, \qquad \bar{x}^i = \frac{x^i}{t}, \qquad \bar{r} = \frac{r}{t}
$$

Conclusions and Outlook

- We have defined sources for AlLif space-times andshown that they:
	- Transform under the local Schrödinger group
	- \bigcirc Describe ^a torsional NC boundary geometry
	- ◦ Lead to Sch Ward identities for the boundary EMtensor and mass current
- TNC geometries are of growing interest in CMT: [Son, ²⁰¹³], [Geracie, Son, Wu, Wu, ²⁰¹⁴], [Gromov, Abanov, ²⁰¹⁴], [Brauner, Endlich, Monin, Penco, ²⁰¹⁴].
- Applications to hydrodynamics. Black branes dual tosystems with nonzero particle number density.