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Introduction

• Many systems in nature exhibit critical points with
non-relativistic scale invariance. Such systems
typically have Lifshitz symmetries:

Dz : ~x → λ~x t→ λzt ,

H : t → t+ a ,

Pi : xi → xi + ai ,

Jij : xi → Ri
jx

j .

• Lifshitz algebra (only nonzero commutators shown, left
out Jij and z 6= 1):

[Dz, H] = −zH , [Dz, Pi] = −Pi .
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• An example of a symmetry group that also displays
non-relativistic scale invariance but which is larger than
Lifshitz is the Schrödinger group.

• Additional symmetries are Galilean boosts Gi

(xi → xi + vit) and a particle number symmetry M .

• Schrödinger algebra (only nonzero commutators
shown, left out Jij and z 6= 1, 2):

[Dz, H] = −zH , [Dz, Pi] = −Pi , [Dz,M ] = (z − 2)M

[Dz, Gi] = (z − 1)Gi , [H,Gi] = Pi , [Pi, Gj ] = Mδij

• When z = 2 there is an additional special conformal
symmetry K.
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• Aim: to construct holographic techniques for (strongly
coupled) systems with NR symmetries.

• Lifshitz holography initiated by: [Kachru, Liu, Mulligan, 2008].

ds2 = −dt
2

r2z
+

1

r2
(

dr2 + d~x2
)

• From a different perspective, Lifshitz space-times form
interesting examples of non-AdS space-times for which
it appears to be possible to construct explicit
holographic techniques.

• Punch line of this talk:

Field theories dual to Lifshitz space-times are
Schrödinger invariant!
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Outline Talk

• Newton–Cartan geometry

• Asymptotically locally Lifshitz space-times

• Two arguments why the dual field theory is
Schrödinger invariant:

◦ Schrödinger 1: sources (torsional NC geometry),
vevs and Ward identities [JH, Kiritsis, Obers, to appear],
[Bergshoeff, JH, Rosseel, to appear].

◦ Schrödinger 2: bulk vs boundary Killing symmetries
[JH, Kiritsis, Obers, to appear].
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Newton–Cartan Geometry I

• GR is a diff invariant theory whose tangent space
invariance group is the Poincaré group.

• Newtonian gravity is a diff invariant theory known as
Newton–Cartan gravity whose tangent space
invariance group is the Bargmann algebra [Andringa,

Bergshoeff, Panda, de Roo, 2011]: Jij, Pi, Gi, H, M with M
central and

[H,Gi] = Pi , [Pi, Gj ] =Mδij

• We are not interested in the equations of motion, only
in the geometrical framework. The geometry on the
boundary in our holographic setup is not dynamical.

Lifshitz Space-Times for Schrödinger Holography – p. 6/18



From Poincaré to GR

• Local Poincaré: Pa, Mab (gauging):

Aµ = Pae
a
µ +

1

2
Mabωµ

ab

Fµν = ∂µAν − ∂νAµ + [Aµ , Aν ] = PaRµν
a(P ) +

1

2
MabRµν

ab(M)

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ +
1

2
Mabλ

ab

• GR follows from the curvature constraint:

Rµν
a(P ) = 0



























ωµ
ab = spin connection: expr. in terms of eaµ

δAµ = LξAµ +
1
2
Mab∂µλ

ab + 1
2
[Aµ ,Mab]λ

ab

Rµν
ab(M) = Riemann curvature 2-form

∇µ defined via vielbein postulate
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Newton–Cartan Geometry II

• Gauging Bargmann [Andringa, Bergshoeff, Panda, de Roo, 2011] H,
Pa, M , Jab, Ga (a is a spatial index):

Aµ = Hτµ + Pae
a
µ +Mmµ +

1

2
Jabωµ

ab +Gaωµ
a

Fµν = HRµν(H) + PaRµν
a(P ) +MRµν(M) + . . .

δAµ = ∂µΛ + [Aµ ,Λ] , Λ = ξµAµ +Mσ +
1

2
Jabλ

ab +Gaλ
a

• Curv. constraints: Rµν(H) = Rµν
a(P ) = Rµν(M) = 0.

Independent fields: τµ, eaµ, mµ transforming as:

δτµ = Lξτµ

δeaµ = Lξe
a
µ + λaτµ + λabe

b
µ

δmµ = Lξmµ + ∂µσ + λae
a
µ
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Asymptotically Locally Lifshitz Space-Times

• For a bulk theory of the form

S =

∫

d4x
√−g

(

R− 1

4
Z(Φ)F 2 − 1

2
(∂Φ)2 − 1

2
W (Φ)B2 − V (Φ)

)

ds2 =
dr2

R(Φ)r2
−E0E0 + δabE

aEb , BM = AM − ∂MΞ

the AlLif boundary conditions are [Ross, 2011], [Christensen,

JH, Obers, Rollier, 2013], [JH, Kiritsis, Obers, to appear]:

E0
µ ∝ r−zτµ + . . . Ea

µ ∝ r−1eaµ + . . .

Aµ − α(Φ)E0
µ ∝ rz−2m̃µ + . . . Ar = (z − 2)rz−3χ+ . . .

Ξ = rz−2χ+ . . . Φ = r∆φ+ . . .

Lifshitz Space-Times for Schrödinger Holography – p. 9/18



Transformations of the sources

• The local bulk symmetries are: local Lorentz
transformations, gauge transformations acting on AM

and Ξ and diffs preserving the metric gauge.

• The way these symmetries act on the sources τµ, eaµ,
m̃µ, χ is the same as the action of the Bargmann
algebra plus local dilatations, i.e. the Sch algebra.

• There is thus a Schrödinger Lie algebra valued
connection given by (m̃µ = mµ − (z − 2)χbµ):

Aµ = Hτµ + Pae
a
µ +Mmµ +

1

2
Jabωµ

ab +Gaωµ
a +Dbµ

with appropriate curvature constraints whose
transformations reproduce those of the sources.
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Torsional Newton–Cartan (TNC) Geometry

• Inverse vielbeins vµ and eµa :

vµτµ = −1 , vµeaµ = 0 , eµaτµ = 0 , eµae
b
µ = δba

• From the vielbeins, their inverses and Mµ = m̃µ − ∂µχ

we can build the following invariants: τµ and

hµν = δabeµae
ν
b , v̂µ = vµ − hµνMν

h̄µν = δabe
a
µe

b
ν − τµMν − τνMµ , ΦN = −vµMµ +

1
2
hµνMµMν

• The affine connection is

Γρ
µν = −v̂ρ∂µτν +

1

2
hρσ

(

∂µh̄νσ + ∂ν h̄µσ − ∂σh̄µν
)

with torsion: Γρ

[µν] = −1
2
v̂ρ(∂µτν − ∂ντµ)
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Vevs and Ward identities I

• Assuming holographic renormalizability it can be
shown that the general form of the variation of the
on-shell action takes the form:

δSos
ren =

∫

d3xe
[

−S0
µδv

µ + Sa
µδe

µ
a + T 0δm̃0 + T aδm̃a

+〈Oχ〉δχ+ 〈Oφ〉δφ−Aδr
r

]

• The vevs and sources can be used to define:

T µ
ν = −

(

S0
ν + T 0∂νχ

)

vµ + (Sa
ν + T a∂νχ) e

µ
a bdry EM tensor

T µ = −T 0vµ + T aeµa mass current

• Vielbein components of T µ
ν provide the energy

density, energy flux, momentum density and stress.
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Vevs and Ward identities II

• The Ward identities are (ignoring the dilaton φ):

0 = −êaµT µ + τµe
νaT µ

ν boosts

0 = êaµe
νbT µ

ν − (a↔ b) rotations

A = −zv̂ντµT µ
ν + êaµe

ν
aT µ

ν + 2(z − 1)ΦNτµT
µ dilatations

〈Oχ〉 = e−1∂µ (eT
µ) gauge trafos

0 = ∇µT µ
ν + 2Γρ

[µρ]T µ
ν − 2Γµ

[νρ]T ρ
µ

−T µêaµDνMa + τµT
µ∂νΦN diffs

• We used Galilean boost invariant vielbeins τµ, êaµ, v̂µ,
eµa and density e = det (τµ, eaµ).

• ∇µ contains the affine TNC connection and Dµ

contains the Bargmann boost and rotation connections.
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TNC Killing vectors and flat NC space-time

• Conserved currents: ∂µ (eKνT µ
ν) = 0 whenever Kµ is

a TNC conformal Killing vector:

LKτµ = −zΩτµ , LK v̂
µ = zΩv̂µ , LK h̄µν = −2Ωh̄µν

LKh
µν = 2Ωhµν , LKΦN = 2(z − 1)ΩΦN , AΩ = 0

• Flat NC space-time:

τµ = δtµ fixing diffs

hµν = δijδµi δ
ν
j fixing diffs and flat space

vµ = −δµt fixing boosts

hµν = δijδ
i
µδ

j
ν forced by other choices

Mµ = ∂µM global inertial coordinates: Γρ
µν = 0

ΦN = 0 no Newton potential
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Conformal Killing vectors of flat NC space-time

• The conformal Killing vectors are:

Kt = a− zλt− αtz

Ki = ai + vit+ λijx
j − λxi − αtz−1xi

Ω = λ+ αtz−1

provided we can solve

LKM = vixi − 1

2
(z − 1)αtz−2xixi + (z − 2)ΩM

0 = ∂tM +
1

2
∂iM∂iM due to ΦN = 0 and Mµ = ∂µM

Two solutions:







M = cst → conf. KVs: H, D, Pi, Jij

M = xixi

2t
→ conf. KVs: K, D, Gi, Jij
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Field Theory on TNC Backgrounds

• Action for Schrödinger equation on a TNC background:

S =

∫

dd+1xe [−iφ∗v̂µ∂µφ+ iφv̂µ∂µφ
∗ − hµν∂µφ∂νφ

∗ + φφ∗ΦN − V (φφ∗)]

• On a flat NC background this becomes:

S =

∫

dd+1x [iφ∗ (∂tφ+ iφ∂tM)− iφ (∂tφ
∗ − iφ∗∂tM)

−δij (∂iφ+ iφ∂iM) (∂jφ
∗ − iφ∗∂jM)− V (φφ∗)

]

• Wavefunction ψ defined as φ = e−iMψ.

• Space-time symmetries for M = cst is the Lifshitz
subalgebra of Sch given by H, D, Pi and Jij.
Space-time symmetries for M = xixi/2t is the Lifshitz
subalgebra of Sch given by K, D, Gi and Jij.
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• For M = cst we get the Lifshitz algebra and dual bulk:

H = ∂t , Pi = ∂i , D = zt∂t+x
i∂i+r∂r , Jij = xi∂j−xj∂i

ds2 = −dt
2

r2z
+
dr2

r2
+
dxidxi

r2

• For M = xixi

2t
we get the Lifshitz algebra and dual bulk:

K = tz∂t+t
z−1(xi∂i+r∂r) , Gi = t∂i , D = zt∂t+x

i∂i+r∂r , Jij

ds2 =

(

− 1

r2z
+

1

t2

)

dt2− 2drdt

rt
+
dr2

r2
+

1

r2

(

dxi − xi

t
dt

)2

• Large diff relating M = cst and M = xixi

2t
bulk solutions:

t̄ =
1

1− z
t1−z , x̄i =

xi

t
, r̄ =

r

t

Lifshitz Space-Times for Schrödinger Holography – p. 17/18



Conclusions and Outlook

• We have defined sources for AlLif space-times and
shown that they:

◦ Transform under the local Schrödinger group

◦ Describe a torsional NC boundary geometry

◦ Lead to Sch Ward identities for the boundary EM
tensor and mass current

• TNC geometries are of growing interest in CMT: [Son,

2013], [Geracie, Son, Wu, Wu, 2014], [Gromov, Abanov, 2014], [Brauner,

Endlich, Monin, Penco, 2014].

• Applications to hydrodynamics. Black branes dual to
systems with nonzero particle number density.
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