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Holography gives us the possibility of exploring 
new possible (at least theoretically) phases of 
matter 

At finite density, relatively easy to obtain exotic 
states with attractive features  also from a 
phenomenological point of view 

It has confirmed ideas proposed before in the 
CM community but in a more controlled (though 
less realistic) setting 



Landau’s theory of Fermi liquids is remarkably robust, 
accounting for the properties of most metals in terms of 
weakly interacting quasiparticles 

Cv � T � � T 2

However many examples are now known of “strange metals” 
that do not fall into this class

Cv � T log T � � T



This behavior is often associated with the vicinity to 
a quantum critical point, and generically points to a 
short lifetime of excitations 



Holography gives many ways of constructing 
metallic phases with abnormal properties 
[Sachdev, Hartnoll, Liu, McGreevy, Vegh, 
Charmousis, Kiritsis, Gouteraux, ...]

The gravitational solution does not show a Fermi 
surface, so the nature of the charge carriers is 
obscure

The Fermi surface is exhibited by models that 
include fermions populating the bulk and 
backreacting on the geometry but they have FL-like 
physics [Sachdev, Hartnoll, Tavanfar, Hofman,... 
Schalm, Zaanen,..., Nitti, Policastro, Vanel...]  



[Liu, McGreevy, Vegh ’09]  showed that probe 
fermions in the background of an extremal 
AdS-RN black hole exhibits a Fermi surface in 
the spectral function 

They can be understood as “domain-wall” 

fermions between the asymptotic AdS4 and 
AdS2 x R2 regions

The spectral functions has a non-FL character 
due to the interaction with the critical degrees of 
freedom of the bulk CFT, similar to Hertz-Millis



The Faulkner-Polchinski model  [F-P, 10] 
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Almost-solvable model of a non-Fermi liquid

Very broad quasiparticles 

Zero residue at the Fermi surface

Lifshitz-like dispersion relation 

Similar models: marginal or singular FL (Varma)           
                           hidden FL    (Anderson)

[Varma, Nussinov, 
van Zaarlos, 01]



We generalized this model to extract 
“universal” predictions, i.e. that can be fitted with
a finite number of parameters

Most studies focused on single-particle properties, 
that can be directly measured via ARPES etc. 

We want to consider also multiparticle properties 
and collective excitations



The interacting F-P model
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The N counting is chosen to reproduce the FP 
propagator at O(1) and suppress corrections to the 
vertex functions



Renormalization group [Polchinski, Sarkar]
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The RG argument needs refinement for special 
configurations (BCS instability)



Self-energy corrections  [Lee, 2009: breakdown of large N]
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SUPPLEMENTARY MATERIAL

Diagonalization of the kinetic term

If we consider only the quadratic terms, calling G�1
0 the

kinetic operator of ⌥ and A�1 that of �, the fermionic la-
grangian in the main text is diagonalised by the change of
basis
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with propagators respectively A/N2 and (G�1
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Up to higher order corrections the relation is inverted by

⌥ = ⇥2 +
g⇥A

N
⇥1

� = ⇥1 �
gA

N
⇥2

Using these relations we immediately find the resummed
propagators
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which gives the result of the table in the main text.

Self-energy corrections near the Fermi surface

In the large N limit, the diagrams contributing to the self-
energy are such that the connected pieces in the bulk in-
volves only bulk propagators, because bulk loops and bulk
vertices are suppressed. Still one can integrate out the bulk
degrees of freedom only perturbatively in our generic model.

The first few self-energy corrections are as in Fig. 1. In a
neutral fluid where long-range interactions are absent, only
diagrams A and E contribute.

Let us evaluate diagram A first. It will be convenient to
define the fermion polarizability � first as below:
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where for simplicity we have assumed that ⌅ is independent
of k and q.

It is useful to consider a local patch around a point on the
Fermi surface where we can establish Cartesian coordinates.
Let x be the coordinate along the Fermi surface and y be
the coordinate perpendicular to it. Near the chosen point
|k⇤| ⇥ ky , and we have

G�1(k, = 0) = vF kx +
⇤

2
k2y .

In order to understand the infrared behavior of the self-
energy we can consider the Fermi surface to be flat, or in
other words push kF to infinity [2] and thus simplify the
integrals considerably. Furthermore, we can also integrate
over loop momenta and then over the loop frequency in any
order as it does not affect the infrared behavior of the inte-
grated result [2].
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FIG. 1: Self-energy corrections. The solid lines denote the � � �
propagator, the wavy lines denote long range interaction mediated
by bosonic bulk lines/ Coulomb force and the dashed line is the
⇥ � ⇥ propagator.

Let us first evaluate �(q, ). After appropriate Euclidean
continuation of the frequencies, it is given explicitly by:
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Note the specific order of integration chosen in order to sim-
plify the integration. The kx integral can be performed using
residues, with the result
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where h = |g|2 c, and we have used the fact that for a neutral
liquid, c is real.

Then considering that
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2PI part: 
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The analysis justifies a description in 
terms of Landau parameters

f(k�,k
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that enter in the phenomenological description 
of a Fermi liquid
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The response is encoded in the 
Landau-Silin equations

non-diagonal structure: hAB�� �= 0

fQ = 1

Zero sound corresponds to a solution of 
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The equations can be solved explicitly for 



The FL zero sound can be a sharp resonance or can be 

embedded in the particle-hole continuum and be 

highly damped 



Im(polarization function) integrated over frequency 
is peaked around 

�1/� = �1/�p + �1/�h

consistent with contour integral argument, but how
sharp is the peak? 

� = 0.7



Finite temperature

Optical conductivity �(⇥) � ⇥�� � >> T

Entropy density



The semiholographic approach offers a viable 
framework for phenomenological model building

The generalization of Landau theory can be 
developed and justified from first principles

Testable predictions depending on few parameters

Multiple directions for further generalizations, 
e.g. lattice, different IR sectors



Work in progress

BCS instability

Open issues

Particle-hole asymmetry

The coupling     is dimensionful, is it a new 

scale different from       ? 

g

EF

Finite N breakdown [Lee, Mross et al.] 

Dynamically determined scaling exponent

Detailed study of the response function

Self-energy corrections


