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proposals. It may be that I am taking too ‘generous’ a line on this, and
more theoreticians than I imagine are actually thinking that such a ‘warp
drive’ is to be taken seriously!)

30.7 Energy outflow from negative-energy orbits

I have digressed much too far from the task at hand, which was to consider
the implications of the Hawking temperature of a black hole. Can we see
from more physical reasons why, in the context of quantum mechanics, a
black hole ought to emit radiation in accordance with it having a non-zero
temperature? In fact, Hawking also provided an ‘intuitive’ derivation of
the presence of this Hawking radiation. This is illustrated in Fig. 30.11. In
the vicinity of the hole’s horizon, virtual particle–antiparticle pairs are
continually being produced out of the vacuum, only to annihilate each
other in a very short period of time. (This is the process considered in
§26.9, and illustrated in Figs. 26.9 and 26.10). However, the presence of a
black hole modiWes this activity because, from time to time, one of the
particles of the pair falls into the hole, the other one escaping. This can
only happen when the escaping particle becomes a real particle (i.e. ‘on
shell’, as opposed to the virtual ‘oV shell’ particle it started out as, see §26.8
and Fig. 26.6), and therefore the escaping particle must have positive
energy, so that (from energy conservation) the particle falling into the
hole has to become a real particle with negative energy (these energies
being assessed from inWnity). In fact, negative energies can occur for real

Fig. 30.11 Hawking’s ‘intuitive’
derivation of Hawking radiation. (a)
Far from the hole, virtual particle-
anti-particle pairs are continually
produced out of vacuum, but then
annihilated in a very short time (see
Fig. 26.9a). (b) Very close to the hole’s
horizon, we can envisage one of the
pair falling into the hole, the other
escaping to external inWnity. For this,
the virtual particles both become real,
and energy conservation demands that
the ingoing particles have negative
energy. This it can do, because the
Killing vector k becomes spacelike
inside the horizon. (If ka is spacelike,
the conserved energy paka can be
negative, where pa is the particle’s
4-momentum.)
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Black hole horizons in gravity
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Experimental Black-Hole Evaporation?
%. G. Unruh

DePartment of Physics, University of British Columbia, Uancouver, British Columbia VGTZA6, Canada
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It is shown that the same arguments which lead to black-hole evaporation also predict
that a thermal spectrum of sound waves should be given out from the sonic horizon in
transsonic fluid flow.

PACS numbers: 04.60.+n, 04.80.+z, 47.90.+a, 97.60.Lf

Black-hole evaporation" is one of the most
surprising discoveries of the past ten years.
Black holes emit thermal radiation with a tem-
perature given by ltc'/Snk GM, and thus seem to
combine quantum mechanics and gravitation to
produce thermodynamics. This theoretical re-
sult suffers, however, from certain difficulties.
In particular, the result is derived under the
assumptions that the quantum fields in question
do not affect the gravitational field in which they
propagate, that the gravitational field itself is
unquantized, and that the wave equation for the
quantum field is valid on al~ scales. Any break-
down of these assumptions would seem to imply
the breakdown of the evaporation process. A
further difficulty is that the experimental investi-
gation of the phenomenon would seem to be vir-
tually impossible, and would depend on the highly
unlikely discovery of a small black hole (a relic
of the initial stages in the life of the universe
perhaps)' near the Earth.
However, a physical system exists which has
all of the properties of a black hole as far as the
quantum thermal radiation is concerned, but in
which all of the basic physics is completely under-
stood. In this system one can investigate the ef-
fect of the reaction of the quantum field on its
own mode of propagation, one can see what the
implications are of the breakdown of the wave

equation at small scales on the evaporation proc-
ess, and one might even contemplate the experi-
mental investigation of the thermal emission
process.
The model of the behavior of quantum field in a
classical gravitational field is the motion of sound
waves in a convergent fluid flow. The equations
of motion for an irrotation31 fluid are given by4

gx v=0
p[sv/Bt+ (v ~ V)v] = —Vp —pVC,
Sp/St+V. (pv) =0,

where p is the pressure which is assumed to be
a function of p, and 4 is an external force poten-
tial. Defining

g(() = f (p') '[e(p')«p'1&p',
$ = in p,
v=Vg,

we have

Bg/st+ —,'v ~ v+g($) + 4 =0

&$/Bt+v V)+V v =O.

Linearizing these equations about some solution
yo, vo = V/0, and (0, with

k=4+8, a=4. +0,
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Analogue gravity

fluid velocity

time

supersonic flowsubsonic flowzero flow

fluids can exhibit effective horizons !
as seen by small fluctuations !
(e.g. sound waves and surface waves)Bill Unruh



Analogue gravity a strong analogy

Bill Unruh

The equations of motion for linear 
perturbations in an analogue/effective/
emergent gravity system experience an 
effective/acoustic/emergent metric tensor (an 
effective gravitational field).



Semi-classical gravity ��(Q)FT in curved spaces 
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Simple example:

(i) waves propagating on flat spacetime (massless minimally coupled Klein-Gordon scalar field):
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(ii) “minimal substitution” curved spacetime :

gab =
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QFT in CS � Analogue/Effective Gravity

Broad class of systems with various 
dynamical equations, e.g. 
electromagnetic waveguide, fluids, ulatra-
cold gas of Bosons and Fermions.

Analogue gravity systems:
The equations of motion for linear perturbations 
in an analogue/effective/emergent gravity system 
can be simplified to

1p
�g

@a
�p

�ggab@b 
�
= 0

defining an effective/acoustic/emergent metric 
tensor:

Where do we expect such a behavior?

gab /


�
�
c2(x, t)� v2(x, t)

�
�~v T (x, t)

�~v(x, t) Id⇥d

�

Simple example:

@⇢

@t
+r · (⇢v) = 0

⇢
Dv

Dt
= �rp

Continuity equation

Euler equation

Small fluctuations in  
inviscid,  
irrotational, 
incompressible  
fluid flow

In example below: Fluid dynamics 
derived from conservation laws: 

fluid velocity

time

supersonic flowsubsonic flowzero flow

Effective horizons as seen by small fluctuations1981: W.G. Unruh



Analogue spacetimes do they exist in nature?

Figure 1.1: The circular hydraulic jump.

Figure 1.2: Basic setup of the circular hydraulic. A liquid is pumped through
a nozzle and the fluid jet impacts vertically onto a horizontal plate. At a
distance Rj , a sudden “jump” occurs in the fluid height.
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Figure 1.3: Wavefronts emitted in subsonic/subcritical regime (left) and
formation of Mach cone in supersonic/supercritical regime (right).

Figure 1.4: Circular hydraulic jump and Mach cone created by inserting a
sharp object in the fluid flow.

Our experiment to demonstrate the presence of a hydrodynamic horizon
is described in detail in [14]. Essentially, we have pumped silicon oil through
a steel nozzle onto a horizontal PVC plate. A needle was placed such as
to penetrate the flow surface at varying distances r from the centre of the
circular jump, where the oil jet impacts on the PVC plate. For each position
of the needle, we haved photographed the setup with a high-speed camera
and measured the corresponding Mach angle ✓, see Fig. 1.5. The resulting
angles and the derived ratio vsr/c are shown in Fig. 1.6. Inside the jet impact
zone (r < a, where a is the nozzle radius, see also Fig. 1.2 above), we expect
vsr ⌧ c followed by a steep increase for r & a until a certain value vs,max
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Analogue gravity applications

?

These three alternatives are

loss: information is lost when the hole evaporates away
store: information is stored in Wnal nugget
return: information all returned in Wnal explosion.

The reader might wonder why people feel the need to go the lengths
required for store or return, when the most obvious alternative would
appear to be loss. The reason is that loss seems to imply a violation of
unitarity, i.e. of the operation of U. If one’s philosophy of quantum
mechanics demands that unitarity is immutable, then one is in diYculty
with loss. Hence we have the popularity, among many (and apparently
most) particle physicists of the possibilities of store or return, despite the
seemingly contrived appearance of these alternatives.
My own view is that information loss is certainly the most probable. An

examination of Fig. 30.14 conveys the clear picture that the collapsing
physical material simply falls across the horizon, taking all its ‘informa-
tion’ with it, to be Wnally destroyed at the singularity. Nothing particular,
of local physical importance, should happen at the horizon. The matter
does not even ‘know’ when it crosses the horizon. We should bear in mind

(a) (b)

I +

I −

Fig. 30.14 Hawking black-
hole evaporation. (a) A black
hole forms through classical
gravitational collapse. Then
over an extremely long period it
loses mass–energy at a very slow
rate, through Hawking radi-
ation, very gradually heating up
as it loses mass. Finally, it
appears to have an explosive
disappearance (in an explosion
that is small by astrophysical
standards, and independent of
the hole’s original mass). (b) A
strict conformal diagram of this
process (spherically symmet-
rical case). This would seem to
convey a clear picture in ac-
cordance with loss where col-
lapsing material simply
falls across the horizon,
taking all its ‘information’
with it, to be destroyed at the
singularity.
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2.4 Rotating black holes 37

black hole cannot exhibit an ergoregion.)
While from an astrophysical point of view the Kerr black hole is of immense interest as the rem-

nant of a collapsed star, the acoustic analogue focuses on the classical and quantum effects in the
vicinity of the ergoregion.

2.4.2 | The ergosphere
The ergosphere represents a spacetime region where the angular velocity of the rotating black hole
is high enough to “drag the surrounding space along with the velocity of light”. Any observer or parti-
cle entering this region can no longer remain in a non-rotating orbit — regardless of how much force
is applied. It will be dragged along with the rotating spacetime. However, as the observer / object is
still outside the event horizon r ≥ r+, it is in principle possible to escape to infinity.

In 1969 Roger Penrose [148] discovered that it is possible to extract energy from rotating black
holes. This mechanism is referred to as the Penrose effect (its field theory analogue is referred to
as superradiant scattering) and can be understood as follows [196].

E2

E0

E1

Figure 2.4: Illustration of the superradiance scattering in the ergoregion of a rotating black hole. (The
figure shows a projection of the black hole onto some θ = constant plane, for θ = π/2.)

Consider a particle — starting far away from the rotating black hole — that is freely falling into the
ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
field ξa. It is possible to establish a relationship between time translation in the Kerr geometry, and a
conserved and well-defined energy far away (due to asymptotic flatness) from the black hole, such
that E0 = −paξa; see Noether’s theorem for example in [150] . Here pa is the 4-momentum of the
test particle. As pointed out in the introduction, there are no forces acting on a freely falling particle,
so that the energy remains constant when the particle is approaching the black hole. The particle
has been prepared such that it will be broken up into two fragments (e.g., employing explosives and
a timing device), once it enters the ergoregion. Conservation of energy-momentum pa

0 = pa
1 + pa

2 ,

!
Superradiant scattering 
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2 W. G. Unruh

Fig. 1. Two fish from the Underwater University on Discworld experimenting at
the Rimfall. The graduate student has fallen over the horizon, where the velocity of
the water exceeds the velocity of sound in the water. Realising what was happening
he calls out Help, but with the “p” emitted just as he crosses the horizon. The sound
is stretched out, with part slowly escaping (but bass shifted) and part falling over
the horizon with the student. Exactly the same happens for someone falling into
a black hole, where it is light rather than sound which is trapped, and where the
light emitted just before horizon crossing is exponentially red shifted as seen by the
external observer

began to communicate with the world above, and in particular with visitors
from far distant worlds (since their worldview differences with the aboveworld
inhabitants of Discworld made communication essentially impossible), they
immediately recognised that, what those visitors called black holes, were in
many ways analogues in light of their experiences with Rimfall.

One of the fish in particular, playing with that strange new theory called
Quantum Mechanics realised that this Rimfall horizon was not simply a one
way street. Instead the theory predicted that even if the water flowing over
the Rimfall was absolutely cold, that horizon would produce thermal sonic
radiation, radiation with a temperature far far below any they had ever ex-
perienced, but with a non-zero temperature non-the-less. Again, in the con-
versations with those visitors from distant planets, they discovered that the
same effect for black holes had been found by a physicist (as those materi-
alist philosophers on the distant planets were called) and was known as the
Hawking Effect. Many of the fish began to see that they could use these phe-
nomena associated with light and gravity, as an analogue to the effect they
had discovered. In fact the equations of the motion of light in the gravitation
fields of the black holes were exactly the same, in both the classical and the
quantum regime, as the equations which governed the sound waves travelling
near the horizon of Rimfall.
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These three alternatives are

loss: information is lost when the hole evaporates away
store: information is stored in Wnal nugget
return: information all returned in Wnal explosion.

The reader might wonder why people feel the need to go the lengths
required for store or return, when the most obvious alternative would
appear to be loss. The reason is that loss seems to imply a violation of
unitarity, i.e. of the operation of U. If one’s philosophy of quantum
mechanics demands that unitarity is immutable, then one is in diYculty
with loss. Hence we have the popularity, among many (and apparently
most) particle physicists of the possibilities of store or return, despite the
seemingly contrived appearance of these alternatives.
My own view is that information loss is certainly the most probable. An

examination of Fig. 30.14 conveys the clear picture that the collapsing
physical material simply falls across the horizon, taking all its ‘informa-
tion’ with it, to be Wnally destroyed at the singularity. Nothing particular,
of local physical importance, should happen at the horizon. The matter
does not even ‘know’ when it crosses the horizon. We should bear in mind

(a) (b)

I +

I −

Fig. 30.14 Hawking black-
hole evaporation. (a) A black
hole forms through classical
gravitational collapse. Then
over an extremely long period it
loses mass–energy at a very slow
rate, through Hawking radi-
ation, very gradually heating up
as it loses mass. Finally, it
appears to have an explosive
disappearance (in an explosion
that is small by astrophysical
standards, and independent of
the hole’s original mass). (b) A
strict conformal diagram of this
process (spherically symmet-
rical case). This would seem to
convey a clear picture in ac-
cordance with loss where col-
lapsing material simply
falls across the horizon,
taking all its ‘information’
with it, to be destroyed at the
singularity.

840

§30.8 CHAPTER 30

T
H
⇠

10
�
7
K

??
??

?

?
?

?

 Experimental Black 
Hole Evaporation

1981: Experimental black 
hole evaporation? 

Black hole evaporation in the laboratory

Illustration by David Simonds 

The Economist, Dumb insolence



Black hole evaporation in a nutshell

?

These three alternatives are

loss: information is lost when the hole evaporates away
store: information is stored in Wnal nugget
return: information all returned in Wnal explosion.

The reader might wonder why people feel the need to go the lengths
required for store or return, when the most obvious alternative would
appear to be loss. The reason is that loss seems to imply a violation of
unitarity, i.e. of the operation of U. If one’s philosophy of quantum
mechanics demands that unitarity is immutable, then one is in diYculty
with loss. Hence we have the popularity, among many (and apparently
most) particle physicists of the possibilities of store or return, despite the
seemingly contrived appearance of these alternatives.
My own view is that information loss is certainly the most probable. An

examination of Fig. 30.14 conveys the clear picture that the collapsing
physical material simply falls across the horizon, taking all its ‘informa-
tion’ with it, to be Wnally destroyed at the singularity. Nothing particular,
of local physical importance, should happen at the horizon. The matter
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Fig. 30.14 Hawking black-
hole evaporation. (a) A black
hole forms through classical
gravitational collapse. Then
over an extremely long period it
loses mass–energy at a very slow
rate, through Hawking radi-
ation, very gradually heating up
as it loses mass. Finally, it
appears to have an explosive
disappearance (in an explosion
that is small by astrophysical
standards, and independent of
the hole’s original mass). (b) A
strict conformal diagram of this
process (spherically symmet-
rical case). This would seem to
convey a clear picture in ac-
cordance with loss where col-
lapsing material simply
falls across the horizon,
taking all its ‘information’
with it, to be destroyed at the
singularity.
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(1) What is Hawking radiation? 
!
(2) How can we set up a table-top 
experiments to “conclusively” test 
Hawking/Unruh’s prediction? 
!
(3) Why is of scientific interest to carry 
out analogue simulations of Hawking 
radiation?
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loses mass–energy at a very slow
rate, through Hawking radi-
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Classically NOTHING can escape 
a black hole, but including 
quantum effects it can evaporate 
away!

Hawking radiation: how 
black holes lose their mass

Illustration by Roger Penrose



Black hole evaporation how does it work

proposals. It may be that I am taking too ‘generous’ a line on this, and
more theoreticians than I imagine are actually thinking that such a ‘warp
drive’ is to be taken seriously!)

30.7 Energy outflow from negative-energy orbits

I have digressed much too far from the task at hand, which was to consider
the implications of the Hawking temperature of a black hole. Can we see
from more physical reasons why, in the context of quantum mechanics, a
black hole ought to emit radiation in accordance with it having a non-zero
temperature? In fact, Hawking also provided an ‘intuitive’ derivation of
the presence of this Hawking radiation. This is illustrated in Fig. 30.11. In
the vicinity of the hole’s horizon, virtual particle–antiparticle pairs are
continually being produced out of the vacuum, only to annihilate each
other in a very short period of time. (This is the process considered in
§26.9, and illustrated in Figs. 26.9 and 26.10). However, the presence of a
black hole modiWes this activity because, from time to time, one of the
particles of the pair falls into the hole, the other one escaping. This can
only happen when the escaping particle becomes a real particle (i.e. ‘on
shell’, as opposed to the virtual ‘oV shell’ particle it started out as, see §26.8
and Fig. 26.6), and therefore the escaping particle must have positive
energy, so that (from energy conservation) the particle falling into the
hole has to become a real particle with negative energy (these energies
being assessed from inWnity). In fact, negative energies can occur for real

Fig. 30.11 Hawking’s ‘intuitive’
derivation of Hawking radiation. (a)
Far from the hole, virtual particle-
anti-particle pairs are continually
produced out of vacuum, but then
annihilated in a very short time (see
Fig. 26.9a). (b) Very close to the hole’s
horizon, we can envisage one of the
pair falling into the hole, the other
escaping to external inWnity. For this,
the virtual particles both become real,
and energy conservation demands that
the ingoing particles have negative
energy. This it can do, because the
Killing vector k becomes spacelike
inside the horizon. (If ka is spacelike,
the conserved energy paka can be
negative, where pa is the particle’s
4-momentum.)
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Far from the hole, virtual particle-
anti-particle pairs are continually
produced out of vacuum, but then
annihilated in a very short time (see
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hole has to become a real particle with negative energy (these energies
being assessed from inWnity). In fact, negative energies can occur for real

Fig. 30.11 Hawking’s ‘intuitive’
derivation of Hawking radiation. (a)
Far from the hole, virtual particle-
anti-particle pairs are continually
produced out of vacuum, but then
annihilated in a very short time (see
Fig. 26.9a). (b) Very close to the hole’s
horizon, we can envisage one of the
pair falling into the hole, the other
escaping to external inWnity. For this,
the virtual particles both become real,
and energy conservation demands that
the ingoing particles have negative
energy. This it can do, because the
Killing vector k becomes spacelike
inside the horizon. (If ka is spacelike,
the conserved energy paka can be
negative, where pa is the particle’s
4-momentum.)
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proposals. It may be that I am taking too ‘generous’ a line on this, and
more theoreticians than I imagine are actually thinking that such a ‘warp
drive’ is to be taken seriously!)

30.7 Energy outflow from negative-energy orbits

I have digressed much too far from the task at hand, which was to consider
the implications of the Hawking temperature of a black hole. Can we see
from more physical reasons why, in the context of quantum mechanics, a
black hole ought to emit radiation in accordance with it having a non-zero
temperature? In fact, Hawking also provided an ‘intuitive’ derivation of
the presence of this Hawking radiation. This is illustrated in Fig. 30.11. In
the vicinity of the hole’s horizon, virtual particle–antiparticle pairs are
continually being produced out of the vacuum, only to annihilate each
other in a very short period of time. (This is the process considered in
§26.9, and illustrated in Figs. 26.9 and 26.10). However, the presence of a
black hole modiWes this activity because, from time to time, one of the
particles of the pair falls into the hole, the other one escaping. This can
only happen when the escaping particle becomes a real particle (i.e. ‘on
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These three alternatives are

loss: information is lost when the hole evaporates away
store: information is stored in Wnal nugget
return: information all returned in Wnal explosion.

The reader might wonder why people feel the need to go the lengths
required for store or return, when the most obvious alternative would
appear to be loss. The reason is that loss seems to imply a violation of
unitarity, i.e. of the operation of U. If one’s philosophy of quantum
mechanics demands that unitarity is immutable, then one is in diYculty
with loss. Hence we have the popularity, among many (and apparently
most) particle physicists of the possibilities of store or return, despite the
seemingly contrived appearance of these alternatives.
My own view is that information loss is certainly the most probable. An

examination of Fig. 30.14 conveys the clear picture that the collapsing
physical material simply falls across the horizon, taking all its ‘informa-
tion’ with it, to be Wnally destroyed at the singularity. Nothing particular,
of local physical importance, should happen at the horizon. The matter
does not even ‘know’ when it crosses the horizon. We should bear in mind

(a) (b)

I +

I −

Fig. 30.14 Hawking black-
hole evaporation. (a) A black
hole forms through classical
gravitational collapse. Then
over an extremely long period it
loses mass–energy at a very slow
rate, through Hawking radi-
ation, very gradually heating up
as it loses mass. Finally, it
appears to have an explosive
disappearance (in an explosion
that is small by astrophysical
standards, and independent of
the hole’s original mass). (b) A
strict conformal diagram of this
process (spherically symmet-
rical case). This would seem to
convey a clear picture in ac-
cordance with loss where col-
lapsing material simply
falls across the horizon,
taking all its ‘information’
with it, to be destroyed at the
singularity.
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Hawking argued that black holes emit thermal radiation via a quantum spontaneous emission. To

address this issue experimentally, we utilize the analogy between the propagation of fields around black

holes and surface waves on moving water. By placing a streamlined obstacle into an open channel flow we

create a region of high velocity over the obstacle that can include surface wave horizons. Long waves

propagating upstream towards this region are blocked and converted into short (deep-water) waves. This is

the analogue of the stimulated emission by a white hole (the time inverse of a black hole), and our

measurements of the amplitudes of the converted waves demonstrate the thermal nature of the conversion

process for this system. Given the close relationship between stimulated and spontaneous emission, our

findings attest to the generality of the Hawking process.

DOI: 10.1103/PhysRevLett.106.021302 PACS numbers: 04.70.Dy, 04.60.!m, 04.62.+v, 47.35.Bb

One of the most striking findings of general relativity is
the prediction of black holes, accessible regions of no
escape surrounded by an event horizon. In the early
1970s, Hawking suggested that black holes evaporate via
a quantum instability [1]. The study of classical and quan-
tum fields around black holes shows that a pair of field
excitations at temporal frequency f are created, with posi-
tive and negative norm amplitudes !f, "f (Bugoliubov
coefficients) related by,

j"fj2
j!fj2

¼ exp
!!4#2f

gH

"
(1)

where gH ¼ 1035 ½kg=s$=M is the surface gravity of the
black hole with mass M [1,2]. Positive norm modes are
emitted, while negative ones are absorbed by the black
hole, effectively reducing its mass. A comparison of (1)
with the Boltzmann-distribution allows one to associate a
temperature T with the black hole, T ¼ 6% 10!8 M&

M ½K$,
where M& is a solar mass, the smallest mass for an astro-
physical black hole. Thus black hole evaporation is clearly
difficult to observe directly [3].

In 1981 Unruh showed [4] (see also [3,5]), that there is a
mathematical analogy between the behavior of classical
and quantum fields in the vicinity of black hole horizons
and sound waves in trans-sonic fluid flows and raised the
possibility of doing experiments with these analogues. In
2002 Schützhold and Unruh argued that surface waves on
an open channel flow with varying depth are a possible toy
model for black hole experiments [6]. A difficulty with
Hawking’s derivation is its apparent reliance on arbitrarily
high frequencies (the trans-Planckian problem [7–10]).
The dispersion relation of gravity waves creates a natural
physical short-wavelength cutoff, which obviates this dif-
ficulty. Thus the dependence of the Hawking effect on the
high-frequency behavior of the theory can be tested in such

analogue experiments [9]. While numerical studies indi-
cate that the effect is independent of short-wavelength
physics, experimental verification of this would strengthen
our faith in the process. The presence of thermal emission
in our physical system, which exhibits turbulence, viscos-
ity, and nonlinearities, would indicate the generic nature of
the Hawking thermal process.
The excitation spectrum of gravity waves on a slowly

varying background flow is well understood and, neglect-
ing surface tension and viscosity, has a dispersion relation
given by f2 ¼ ðgk=2#Þ tanhð2#khÞ, with the frequency
f ¼ 1=$, where $ is the wave period, the wave number k ¼
1=%, where % is the wavelength, g is the gravitational
acceleration, and h the depth of the fluid. For 2#kh < 1
the dispersion relation can be approximated by f ¼ ffiffiffiffiffiffi

gh
p

k.
These shallow water waves have both group and phase
speed approximately equal to

ffiffiffiffiffiffi
gh

p
. For 2#kh > 1, the

dispersion relation is approximated by f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gk=2#

p
. The

group speed of these deep-water waves is approximately
half the phase speed, both vary as the square root of the
wavelength, and, for a given water depth, both are less than
the speed of shallow water waves.
In [6] it was argued that the equation of motion of

shallow water waves can be cast into a wave equation on
a curved spacetime background if the speed of the back-
ground flow varies. Assuming a steady, incompressible
flow, the velocity is vðxÞ ¼ q=hðxÞ, where the two-
dimensional flow rate per unit width q is fixed. The dis-
persion relation in the presence of a nonzero background
velocity becomes ðfþ vkÞ2 ¼ ðgk2#Þ tanhð2#khÞ. In Fig. 1,
the dispersion relation is plotted for a flow typical of our
experiments. Only the branch corresponding to waves
propagating against the flow is plotted. For any linear field,
where # is the conjugate momentum to &, there is a
conserved norm for complex solutions, h&1;&2i ¼ i

2 %Rð#*
1&2 !&*

1#2Þdx, which has an indefinite sign. The
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Our experiment setup

Figure 2.1: The experimental apparatus used in our experiments. The differ-
ent pieces in the setup are numbered: 1 is the intake reservoir, 2 is the
flume, 3 is our obstacle cut into 2 pieces, 4 is the interchangeable plates,
5 is an aluminum plate cut to match the slope of the obstacle, 6 is the
wave generator, 7 is the weir, 8 is the holding reservoir, and 9 is the
pump.

is a suppressed rectangular weir (item 7 in Figure: 2.1). Using the weir the depth
of the water can be controlled and the average flow rate can be calculated. The
flume is constructed out of plexiglass and is hence transparent. It is supported by
one stand under the initial section and one stand near the holding tank. The stand
nearest the holding tank can be adjusted using two electronically controlled screw
jacks, so as to change the slope of the tank. A wooden frame has been constructed
over the center section of the flume. The frame extends out in front of the flume
to create a working area and has been covered with tarps and black cloth to block
out as much of the interior lighting as possible. This was necessary because not
all the lighting within the laboratory would shut off in order to conform to safety

12

Our flume (7.47m long and 15.4cm wide): 



Basic Idea
Set-up: Surface waves on open 
channel flow with varying depth.

c = c(x) ⇡
p
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ent pieces in the setup are numbered: 1 is the intake reservoir, 2 is the
flume, 3 is our obstacle cut into 2 pieces, 4 is the interchangeable plates,
5 is an aluminum plate cut to match the slope of the obstacle, 6 is the
wave generator, 7 is the weir, 8 is the holding reservoir, and 9 is the
pump.
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of the water can be controlled and the average flow rate can be calculated. The
flume is constructed out of plexiglass and is hence transparent. It is supported by
one stand under the initial section and one stand near the holding tank. The stand
nearest the holding tank can be adjusted using two electronically controlled screw
jacks, so as to change the slope of the tank. A wooden frame has been constructed
over the center section of the flume. The frame extends out in front of the flume
to create a working area and has been covered with tarps and black cloth to block
out as much of the interior lighting as possible. This was necessary because not
all the lighting within the laboratory would shut off in order to conform to safety
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FIG. 1: — Conversion process. Dispersion relation for
waves propagating against a flow typical of our experiments.
A shallow water wave, k+

in

, sent upstream, is blocked by the
flow and converted to a pair of deep water waves (k+

out

and
k�
out

) that are swept downstream.

experiments. Only the branch corresponding to waves
propagating against the flow is plotted. For low frequen-
cies, there are three possible waves, which we denote ac-
cording to wavenumber. The first, k+in, is a shallow water
wave with both positive phase and group velocities, and
corresponds to the wave that we generate in our experi-
ments. The second, k+out, has positive phase velocity, but
negative group velocity. Both waves, k+in and k+out, are
on the positive norm branch of the dispersion relation.
The third, k�out, has both negative phase and group ve-
locities, and it lies on the negative norm branch. In our
experiment, generated shallow water waves move into a
region where they are blocked by a counter-current, and
converted into the other two waves. The goals of our
experiment were to observe pair-wave creation, and to
measure the relative amplitudes of the outgoing positive
and negative norm modes to test the validity of equation
(1).[24]

The conversion from shallow water to deep water waves
occurs where a counter-current become su⇥ciently strong
to block the upstream propagation of shallow water waves
[13–16]. It is this that creates the analogy with the white
hole horizon in general relativity. That is, there is a
region that the shallow water waves cannot access, just
as light cannot enter a white hole horizon. Note that
while our experiment is on white hole horizon analogues,
it is because they are equivalent to the time inverse of
black hole analogues that we can apply our results to the
black hole situation.

Our experiments were performed in a 6.2 m long, 0.15
m wide and 0.48 m deep flume, and were partly motivated
by experiments in similar flumes [12–17]. We created a
spatially varying background flow by placing a 1.55 m
long and 0.106 m high obstacle in the flume. This ob-
stacle was modelled after an airplane wing with a flat

top and a maximum downstream slope of 5.2 degrees de-
signed to prevent flow separation. We used particle image
velocimetry [18] to determine q, and to verify the absence
of flow separation. Shallow water waves of approximately
2 mm amplitude were generated 2 m downstream of the
obstacle, by a vertically oscillating mesh, which partially
blocked the flow as it moved in and out of the water. The
intake reservoir had flow straighteners and conditioners
to dissipate surface waves produced by the ingoing flow.
We measured and analysed the variations in water

surface height using essentially the same techniques as
in [19]. The water surface was illuminated using laser-
induced fluorescence, and photographed with a high-
resolution (1080p) monochrome camera. The camera was
set up such that the pixel size was 1.3 mm, the imaged
area was 2 m wide and 0.3 m high, and the sampling rate
was 20 Hz. The green (532 nm) 0.5 W laser light passed
through a Powell lens to create a thin (� 2 mm) light
sheet. Rhodamine-WT dye was dissolved in the water,
which fluoresced to create a sharp (< 0.2 mm) surface
maximum in the light intensity. We interpolated the in-
tensity of light between neighbouring pixels to determine
the height of the water surface to subpixel accuracy.
To detect the stimulated Hawking process, we sent

shallow water waves toward the e�ective white hole hori-
zon, which sits on the lee side of the obstacle. We con-
ducted a series of experiments, with q = 0.045 m2/s and
h = 0.194 m, and examined 9 di�erent ingoing frequen-
cies between 0.02 and 0.67 Hz, with corresponding still
water wavelengths between 69 and 2.1 meters. This sur-
face was imaged at 20 frames per second, for about 200
s. In all cases we analysed a period of time which was an
exact multiple of the period of the ingoing wave, allowing
us to carry out sharp temporal frequency filtering of the
signals (i.e., eliminating spectral leakage).
The analysis of the surface wave data was facili-

tated by introducing the convective derivative operator
⇤t + v(x)⇤x. We redefine the spatial coordinate using,
⇥ =

�
0

dx
v(x) where x is the distance downstream from the

right hand edge of the flat portion of the obstacle. The
⇥ coordinate has dimensions of time, and its associated
wave number � has units of Hz. The convective deriva-
tive becomes ⇤t+⇤�, or, in Fourier transform space, f+�.
This is the term that enters the conserved norm. From
equations (35), (36) and (87) of reference [7] we find that
the conserved norm has the form

⇥ |A(f,�)|2

f + �
d� (2)

where A(f,�) is the t, ⇥ Fourier transform of the vertical
displacement of the wave. In using this coordinate system
the outgoing waves have an almost uniform wavelength
even over the obstacle slope.
We will illustrate the pair-wave creation process by

presenting the results for fin = 0.185 Hz. In this case,
we analyzed images from exactly 18 cycles, measuring

✔    Boltzmann distribution
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ent pieces in the setup are numbered: 1 is the intake reservoir, 2 is the
flume, 3 is our obstacle cut into 2 pieces, 4 is the interchangeable plates,
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wave generator, 7 is the weir, 8 is the holding reservoir, and 9 is the
pump.

is a suppressed rectangular weir (item 7 in Figure: 2.1). Using the weir the depth
of the water can be controlled and the average flow rate can be calculated. The
flume is constructed out of plexiglass and is hence transparent. It is supported by
one stand under the initial section and one stand near the holding tank. The stand
nearest the holding tank can be adjusted using two electronically controlled screw
jacks, so as to change the slope of the tank. A wooden frame has been constructed
over the center section of the flume. The frame extends out in front of the flume
to create a working area and has been covered with tarps and black cloth to block
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experiments. Only the branch corresponding to waves
propagating against the flow is plotted. For low frequen-
cies, there are three possible waves, which we denote ac-
cording to wavenumber. The first, k+in, is a shallow water
wave with both positive phase and group velocities, and
corresponds to the wave that we generate in our experi-
ments. The second, k+out, has positive phase velocity, but
negative group velocity. Both waves, k+in and k+out, are
on the positive norm branch of the dispersion relation.
The third, k�out, has both negative phase and group ve-
locities, and it lies on the negative norm branch. In our
experiment, generated shallow water waves move into a
region where they are blocked by a counter-current, and
converted into the other two waves. The goals of our
experiment were to observe pair-wave creation, and to
measure the relative amplitudes of the outgoing positive
and negative norm modes to test the validity of equation
(1).[24]

The conversion from shallow water to deep water waves
occurs where a counter-current become su⇥ciently strong
to block the upstream propagation of shallow water waves
[13–16]. It is this that creates the analogy with the white
hole horizon in general relativity. That is, there is a
region that the shallow water waves cannot access, just
as light cannot enter a white hole horizon. Note that
while our experiment is on white hole horizon analogues,
it is because they are equivalent to the time inverse of
black hole analogues that we can apply our results to the
black hole situation.

Our experiments were performed in a 6.2 m long, 0.15
m wide and 0.48 m deep flume, and were partly motivated
by experiments in similar flumes [12–17]. We created a
spatially varying background flow by placing a 1.55 m
long and 0.106 m high obstacle in the flume. This ob-
stacle was modelled after an airplane wing with a flat

top and a maximum downstream slope of 5.2 degrees de-
signed to prevent flow separation. We used particle image
velocimetry [18] to determine q, and to verify the absence
of flow separation. Shallow water waves of approximately
2 mm amplitude were generated 2 m downstream of the
obstacle, by a vertically oscillating mesh, which partially
blocked the flow as it moved in and out of the water. The
intake reservoir had flow straighteners and conditioners
to dissipate surface waves produced by the ingoing flow.
We measured and analysed the variations in water

surface height using essentially the same techniques as
in [19]. The water surface was illuminated using laser-
induced fluorescence, and photographed with a high-
resolution (1080p) monochrome camera. The camera was
set up such that the pixel size was 1.3 mm, the imaged
area was 2 m wide and 0.3 m high, and the sampling rate
was 20 Hz. The green (532 nm) 0.5 W laser light passed
through a Powell lens to create a thin (� 2 mm) light
sheet. Rhodamine-WT dye was dissolved in the water,
which fluoresced to create a sharp (< 0.2 mm) surface
maximum in the light intensity. We interpolated the in-
tensity of light between neighbouring pixels to determine
the height of the water surface to subpixel accuracy.
To detect the stimulated Hawking process, we sent

shallow water waves toward the e�ective white hole hori-
zon, which sits on the lee side of the obstacle. We con-
ducted a series of experiments, with q = 0.045 m2/s and
h = 0.194 m, and examined 9 di�erent ingoing frequen-
cies between 0.02 and 0.67 Hz, with corresponding still
water wavelengths between 69 and 2.1 meters. This sur-
face was imaged at 20 frames per second, for about 200
s. In all cases we analysed a period of time which was an
exact multiple of the period of the ingoing wave, allowing
us to carry out sharp temporal frequency filtering of the
signals (i.e., eliminating spectral leakage).
The analysis of the surface wave data was facili-

tated by introducing the convective derivative operator
⇤t + v(x)⇤x. We redefine the spatial coordinate using,
⇥ =

�
0

dx
v(x) where x is the distance downstream from the

right hand edge of the flat portion of the obstacle. The
⇥ coordinate has dimensions of time, and its associated
wave number � has units of Hz. The convective deriva-
tive becomes ⇤t+⇤�, or, in Fourier transform space, f+�.
This is the term that enters the conserved norm. From
equations (35), (36) and (87) of reference [7] we find that
the conserved norm has the form

⇥ |A(f,�)|2

f + �
d� (2)

where A(f,�) is the t, ⇥ Fourier transform of the vertical
displacement of the wave. In using this coordinate system
the outgoing waves have an almost uniform wavelength
even over the obstacle slope.
We will illustrate the pair-wave creation process by

presenting the results for fin = 0.185 Hz. In this case,
we analyzed images from exactly 18 cycles, measuring

✔    Boltzmann distribution
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Figure 2.1: The experimental apparatus used in our experiments. The differ-
ent pieces in the setup are numbered: 1 is the intake reservoir, 2 is the
flume, 3 is our obstacle cut into 2 pieces, 4 is the interchangeable plates,
5 is an aluminum plate cut to match the slope of the obstacle, 6 is the
wave generator, 7 is the weir, 8 is the holding reservoir, and 9 is the
pump.

is a suppressed rectangular weir (item 7 in Figure: 2.1). Using the weir the depth
of the water can be controlled and the average flow rate can be calculated. The
flume is constructed out of plexiglass and is hence transparent. It is supported by
one stand under the initial section and one stand near the holding tank. The stand
nearest the holding tank can be adjusted using two electronically controlled screw
jacks, so as to change the slope of the tank. A wooden frame has been constructed
over the center section of the flume. The frame extends out in front of the flume
to create a working area and has been covered with tarps and black cloth to block
out as much of the interior lighting as possible. This was necessary because not
all the lighting within the laboratory would shut off in order to conform to safety
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experiments. Only the branch corresponding to waves
propagating against the flow is plotted. For low frequen-
cies, there are three possible waves, which we denote ac-
cording to wavenumber. The first, k+in, is a shallow water
wave with both positive phase and group velocities, and
corresponds to the wave that we generate in our experi-
ments. The second, k+out, has positive phase velocity, but
negative group velocity. Both waves, k+in and k+out, are
on the positive norm branch of the dispersion relation.
The third, k�out, has both negative phase and group ve-
locities, and it lies on the negative norm branch. In our
experiment, generated shallow water waves move into a
region where they are blocked by a counter-current, and
converted into the other two waves. The goals of our
experiment were to observe pair-wave creation, and to
measure the relative amplitudes of the outgoing positive
and negative norm modes to test the validity of equation
(1).[24]

The conversion from shallow water to deep water waves
occurs where a counter-current become su⇥ciently strong
to block the upstream propagation of shallow water waves
[13–16]. It is this that creates the analogy with the white
hole horizon in general relativity. That is, there is a
region that the shallow water waves cannot access, just
as light cannot enter a white hole horizon. Note that
while our experiment is on white hole horizon analogues,
it is because they are equivalent to the time inverse of
black hole analogues that we can apply our results to the
black hole situation.

Our experiments were performed in a 6.2 m long, 0.15
m wide and 0.48 m deep flume, and were partly motivated
by experiments in similar flumes [12–17]. We created a
spatially varying background flow by placing a 1.55 m
long and 0.106 m high obstacle in the flume. This ob-
stacle was modelled after an airplane wing with a flat

top and a maximum downstream slope of 5.2 degrees de-
signed to prevent flow separation. We used particle image
velocimetry [18] to determine q, and to verify the absence
of flow separation. Shallow water waves of approximately
2 mm amplitude were generated 2 m downstream of the
obstacle, by a vertically oscillating mesh, which partially
blocked the flow as it moved in and out of the water. The
intake reservoir had flow straighteners and conditioners
to dissipate surface waves produced by the ingoing flow.
We measured and analysed the variations in water

surface height using essentially the same techniques as
in [19]. The water surface was illuminated using laser-
induced fluorescence, and photographed with a high-
resolution (1080p) monochrome camera. The camera was
set up such that the pixel size was 1.3 mm, the imaged
area was 2 m wide and 0.3 m high, and the sampling rate
was 20 Hz. The green (532 nm) 0.5 W laser light passed
through a Powell lens to create a thin (� 2 mm) light
sheet. Rhodamine-WT dye was dissolved in the water,
which fluoresced to create a sharp (< 0.2 mm) surface
maximum in the light intensity. We interpolated the in-
tensity of light between neighbouring pixels to determine
the height of the water surface to subpixel accuracy.
To detect the stimulated Hawking process, we sent

shallow water waves toward the e�ective white hole hori-
zon, which sits on the lee side of the obstacle. We con-
ducted a series of experiments, with q = 0.045 m2/s and
h = 0.194 m, and examined 9 di�erent ingoing frequen-
cies between 0.02 and 0.67 Hz, with corresponding still
water wavelengths between 69 and 2.1 meters. This sur-
face was imaged at 20 frames per second, for about 200
s. In all cases we analysed a period of time which was an
exact multiple of the period of the ingoing wave, allowing
us to carry out sharp temporal frequency filtering of the
signals (i.e., eliminating spectral leakage).
The analysis of the surface wave data was facili-

tated by introducing the convective derivative operator
⇤t + v(x)⇤x. We redefine the spatial coordinate using,
⇥ =

�
0

dx
v(x) where x is the distance downstream from the

right hand edge of the flat portion of the obstacle. The
⇥ coordinate has dimensions of time, and its associated
wave number � has units of Hz. The convective deriva-
tive becomes ⇤t+⇤�, or, in Fourier transform space, f+�.
This is the term that enters the conserved norm. From
equations (35), (36) and (87) of reference [7] we find that
the conserved norm has the form

⇥ |A(f,�)|2

f + �
d� (2)

where A(f,�) is the t, ⇥ Fourier transform of the vertical
displacement of the wave. In using this coordinate system
the outgoing waves have an almost uniform wavelength
even over the obstacle slope.
We will illustrate the pair-wave creation process by

presenting the results for fin = 0.185 Hz. In this case,
we analyzed images from exactly 18 cycles, measuring
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Our experiment surface gravity
Assumption:  
Linear amplifier over a huge 
range!
✔    pair-creation process   
(classical correlations) 

✔    Boltzmann distribution

✔    surface gravity

Lesson: The thermal emission is a 
universal phenomenon, surviving fluid-
dynamic deviations (viscosity, vorticity) 
and vastly altered dispersion relations, 
and linear over an amazing input range!!!        



Our experiment surface gravity
Assumption:  
Linear amplifier over a huge 
range!
✔    pair-creation process   
(classical correlations) 

✔    Boltzmann distribution

✔    surface gravity

However: Spontaneous emission 
straightforward, but undetectable 
(6x10^-12 K);  
NO QUANTUM EFFECT 
superfluid experiments necessary...

Lesson: The thermal emission is a 
universal phenomenon, surviving fluid-
dynamic deviations (viscosity, vorticity) 
and vastly altered dispersion relations, 
and linear over an amazing input range!!!        
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medium with refractive index 
to reduce the speed of light in 
vacuum drastically…
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Analogue gravity from optical media

Sound waves/surface wave light 

the equivalent of 
the river flow 
needs to exceed 
the speed of 
light in medium!! 

every pulse adds a slight contribution to 
the refractive index of the fibre (prop. to 
the refractive index of intensity profile)



Analogue gravity from optical media

Sound waves/surface wave light 

the pulse is 
establishing a moving 
media (Kerr effect in 
ninliear fibre optics)

medium naturally moves with the speed of sound
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Hawking radiation subtitle

uniform, dispersive background refractive index n0, i.e.
nðz; t; !Þ ¼ n0ð!Þ þ !nfðz% vtÞ, where ! is the optical
frequency, fðz% vtÞ is a function bounded by 0 and 1, that
describes the shape of the laser pulse. In the reference
frame comoving at velocity v with the RIP, the event
horizon in a 2D geometry is defined by c=v ¼ n which
admits solutions only for RIP velocities satisfying the
inequality [19]

1

n0ð!Þ þ !n
<

v

c
<

1

n0ð!Þ (1)

Therefore, Eq. (1) predicts an emission spectrum with
well-defined boundaries and it is precisely this feature of
the spectral emission that we consider to be peculiar to
analogue Hawking radiation in the present settings.

We note that two horizons may be associated with
each RIP: the leading edge is the analogue of a black hole
horizon while the trailing edge has time reversed features
and is the analogue of a white hole horizon [9,10]. The
experimental layout is shown in Fig. 1. The laser pulses are
provided by a regeneratively amplified, 10 Hz repetition
rate Nd:glass laser. The pulse duration is 1 ps and maxi-
mum energy is 6 mJ. The Bessel pulse filament with a cone
angle " ¼ 7 deg is generated by a 20& fused silica axicon
(conical lens), F, placed directly in front of the 2 cm fused
silica Kerr sample where the RIP is generated. The input
energy is varied in the 100–1200 #J range.

Radiation from the filament is then collected at 90& with
respect to the laser pulse propagation axis using a lens that
images the filament on to the input slit of an imaging
spectrometer. The spectrum is then recorded with a
16 bit, cooled CCD camera. This arrangement, in particu-
lar, detection at 90&, was chosen in order to strongly
suppress or eliminate any spurious effects. More specifi-
cally: (i) Cerenkov-like radiation, i.e., in this context,
radiation from a superluminal perturbation: spontaneous
emission from a strictly superluminal perturbation has
been considered in detail in Ref. [20]. The most relevant
difference with respect to the present measurements is that
Cerenkov-like emission occurs with no upper bound in the

spectral emission window, in contrast to the limited
Hawing spectrum given by Eq. (1). (ii) Four wave mixing
(FWM) and self phase modulation (SPM) will not occur at
90& due to phase-matching constraints which imply that
any newly generated frequencies will be generated at small
angles with respect to the propagation axis [21]. In any
case, we directly verified that for the relatively large " ¼
7 deg Bessel cone angle used in our experiments, no
FWM, SPM, or spectral broadening was observed at any
angle, even in the forward direction. (iii) Rayleigh scatter-
ing will occur at 90& only for vertically polarized light and
the scattering process will maintain the polarization state.
In our experiments we used horizontally polarized light
and in any case, in virtue of point (i), there is no input or
generated light at the frequencies relevant for the present
experiment. (iv) Fluorescence is certainly the main
problem in these experiments. It bears many features in
common with Hawking radiation yet, it may still be clearly
distinguished from the latter. Figure 2(a) shows the overall
spectrum measured at 90& and integrated over 30 laser
pulse shots. In the figure, R, F1, and F2 indicate the laser
pulse induced spontaneous Raman, nonbridging oxygen
hole center (NBOHC) and oxygen deficient center (ODC)
fluorescences, respectively. These fluorescence peaks are
well documented features of fused silica [22,23]. This
therefore allows us to fit the peaks with Gaussian functions
(in the frequency domain) and subsequently subtract out
the fluorescence signals, thus leading to greatly improved
contrast and cleaner spectra.
Nevertheless, looking at the fluorescence spectrum it

is clear that, given the possibility to tune the Hawking
emission window by tuning the group velocity of the
laser pulse, the most advantageous situation is that in
which the window is located between 800 and 900 nm
where there is no known fluorescence emission and
moreover the CCD response is maximum. In fused silica,
n2 ' 3( 10%16 cm2=W and typical intensities of I '
1012–1013 W=cm2 may be obtained, thus leading to a !n'
10%2–10%4. Therefore, if we take, for example, a Gaussian
pulse centered at 1055 nm, with !n ¼ 0:001 and group
velocity, vG ¼ d!=dk, determined solely by material

FIG. 1 (color online). Experimental layout used for detecting
analogue Hawking radiation. The input laser pulse is focused
into a sample of fused silica (FS) using an axicon or lens (F). An
imaging lens (I) collects the photons emitted at 90& and sends
them to an imaging spectrometer coupled to a cooled CCD
camera.

FIG. 2 (color online). (a) Measured CCD photo-electron (p-e)
counts generated by the fused silica fluorescence spectrum.
(b) Prediction of the Hawking emission spectral range for the
case of fused silica: n0 (blue solid line) and n0 þ !n (green
dashed line) with !n ¼ 0:001. The shaded area indicates the
spectral emission region predicted for a Bessel filament.
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Event horizons of astrophysical black holes and gravitational analogues have been predicted to excite

the quantum vacuum and give rise to the emission of quanta, known as Hawking radiation. We

experimentally create such a gravitational analogue using ultrashort laser pulse filaments and our

measurements demonstrate a spontaneous emission of photons that confirms theoretical predictions.
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In 1974 Hawking predicted that the space-time curva-
ture at the event horizon of a black hole is sufficient to
excite photons out of the vacuum and induce a continuous
flux, referred to as Hawking radiation [1,2]. In a simplified
description of the process, vacuum fluctuation pairs close
to the horizon are split so that the inner photon falls in
and the outside photon escapes away from the black hole.
As the outgoing photon cannot return to the vacuum,
it necessarily becomes a real entity, gaining energy at
the expense of the black hole. It was soon realized that
the essential ingredient of Hawking radiation was not the
astrophysical black hole itself but rather the space-time
curvature associated with the event horizon [3–7]. There
are a wealth of physical systems that may exhibit event
horizons ranging from flowing water or Bose-Einstein-
Condensates to a moving refractive index perturbation
(RIP) in a dielectric medium [3,4,8–10]. In a few words,
referring to the case of optical pulses in a dielectric me-
dium proposed by Philbin et al. [9], a laser pulse with large
intensity, I, propagating in a nonlinear Kerr medium will
excite a RIP given by !n ¼ n2I where n2 is the so-called
nonlinear Kerr index [11]. Light experiences an increase in
the local refractive index as it approaches the RIP and is
thus slowed down. By choosing appropriate conditions
(frequency of the light and velocity of the RIP) it is
possible to bring the light waves to a standstill in the
reference frame comoving with the RIP, thus forming a
so-called white hole event horizon, i.e., a point beyond
which light is unable to penetrate. A similar mechanism
may be observed with water waves or with any kind of
waves in a flowing medium, so that the formation of an
analogue event horizon is a rather universal phenomenon
that may be studied in accessible laboratory conditions.
What remains to be established, is whether Hawking ra-
diation is actually emitted in the presence of an event
horizon of any kind, be it analogue or astrophysical.

Recently, an alternative approach was proposed for
generating controllable RIPs, namely, ultrashort laser pulse
filamentation [10].
Ultrashort laser pulse filaments are intense laser pulses

in a transparent Kerr medium (i.e., with a third order
optical nonlinearity) characterized by a high-intensity
spike that propagates apparently without diffraction over
distances much longer than the Rayleigh length associated
with the spike dimensions and have been proposed for
many applications ranging from white light generation to
the control of atmospheric conditions [12–16]. Filaments
may either occur spontaneously when a powerful Gaussian
shaped beam is loosely focused into the Kerr medium
[12,13] or, alternatively, they may be induced by preshap-
ing the laser pulse into a Bessel beam [17,18].
In this Letter we use ultrashort laser pulse filaments to

create a traveling RIP in a transparent dielectric medium
(fused silica glass) and we report experimental evidence of
photon emission that on the one hand bears the character-
istics of Hawking radiation and on the other is distinguish-
able and thus separate from other known photon emission
mechanisms. We therefore interpret the observed photon
emission as an indication of Hawking radiation induced by
the analogue event horizon.
Neglecting any dependence on the transverse coordi-

nates and dispersion it is possible to give a complete
description of the event horizon associated with the RIP
and calculate a blackbody temperature of the emitted
photons in the laboratory reference frame [9,19]. However,
we point out that the dielectric medium in which the RIP is
created will always be dominated by optical dispersion and
this in turn implies that in real settings the spectrum will
not be that of a perfect blackbody and that in any case only
a limited spectral portion of the full spectrum will be
observable. To show this last point we describe the RIP
as a perturbation induced by the laser pulse on top of a
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dispersion, then according to Eq. (1) we would expect
emission in the region between 500 and 510 nm. This
would clearly fall in between the F1 and F2 fluorescence
peaks and leads to noisy results even after subtraction of
the fluorescence signal. By using Bessel pulses we were
able to solve this problem. Figure 2(b) shows the Hawking
spectral window predicted from Eq. (1), where the dashed
line shows the value c=vB with ! ¼ 7" and the Bessel
pulse velocity is vB ¼ vG= cos!. This line intersects the
refractive index curves n and nþ "n with "n ¼ 0:001
delimiting a window (shaded area) which now lies in the
desired region, i.e., between 800 and 875 nm. Figure 3(a)
shows the resulting spectra, integrated over 3600 laser
shots. The black line shows a reference spectrum obtained
from a Gaussian pulse, that clearly shows the absence of
any signal notwithstanding the same peak intensity of the
Bessel pulses and thus underlining the absence of any
fluorescence or other possible emission signals when the
RIP v does not satisfy Eq. (1). The other four curves show
the emitted spectra for four different input energies of the
Bessel filament, as indicated in the figure. A clear photon
emission is registered in the wavelength window predicted
by Eq. (1). Moreover we verified that the emitted radiation
was unpolarized (data not shown) thus further supporting
the interpretation of a spontaneous emission. In addition,
the measurements clearly show that the bandwidth of the
emission is increasing with the input energy. The Bessel

pulse intensity evolution along the propagation direction z
may be estimated analytically from the input energy using
the formula IðzÞ ¼ 2#I0kztan

2ð!Þ exp½'ðz2tan2!Þ=w2
0(

[24] where k ¼ !=c and I0 and
ffiffiffi
2

p
w0 are the input

Gaussian peak intensity and radius at 1=e2, respectively.
By fitting the measured spectra with Gaussian functions
[dashed curves in Fig. 3(a)] we may therefore estimate the
bandwidth as a function of input energy and Bessel inten-
sity. Moreover, using the fused silica dispersion relation
shown in Fig. 2(b) it is possible to map the bandwidth into
values of "n so that we finally obtain Fig. 3(b) that shows
the bandwidth and the "n as a function of input energy and
Bessel pulse peak intensity (at z ¼ 1 cm where measure-
ments were performed). There is a clear linear dependence
which is in qualitative agreement with the fact that, accord-
ing to our interpretation, the emission bandwidth is pre-
dicted to depend on "n which in turn is a linear function
"n ¼ n2I of the pulse intensity. The slope of the linear
fit gives n2 ¼ 2:8) 0:5* 10'16 cm2=W which is in
good agreement with the tabulated value of n2 + 3*
10'16 cm2=W [12,25]. Therefore this shows that there is
also an agreement at the quantitative level between the
measurements and the model based on Hawking-like
radiation emission.
In Fig. 4 we present additional data regarding Hawking

emission from a spontaneous filament obtained by replac-
ing the axicon with a 20 cm focal length lens and thus
loosely focusing a 50 $J Gaussian pulse into the fused
silica sample. The spontaneous nonlinear Kerr dynamics
lead to the formation of a filament [12] that is very similar
to the Bessel filament in the sense that it is characterized
by a very high-intensity peak that propagates over long
distances, thus creating a strong RIP in the medium that
may be expected to excite Hawking radiation in a similar
fashion to that illustrated above. We underline some

FIG. 3 (color online). (a) Spectra generated by a Bessel fila-
ment. Five different curves are shown corresponding to a refer-
ence spectrum obtained with a Gaussian pulse (black line) and
indicated Bessel energies (in $J). Dashed lines are guides for
the eye. The solid line connects the spectral peaks, highlighting
the +40 nm shift with increasing energy, in close agreement
with the predicted 45 nm shift. (b) Bandwidths at FWHM and
RIP "n versus input energy and intensity. Solid line: linear fit
"n ¼ n2I with n2 ¼ 2:8* 10'16 cm2=W.

FIG. 4 (color online). Spectra generated by the spontaneous
filament. (a)–(b) shaded areas: spectra measured for two differ-
ent positions of the imaging spectrometer input slit. The light
gray curves in both figures show the spectrum measured with the
input split fully open. The filament, imaged from the side at 90",
is shown in (c) and (d). The vertical white lines show the position
of the input slit.
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‘’we report experimental evidence of photon 
emission that on the one hand bears the character- 

istics of Hawking radiation and on the other is 
distinguishable and thus separate from other known 

photon emission mechanisms. We therefore 
interpret the observed photon emission as an 
indication of Hawking radiation induced by the 

analogue event horizon.’’!
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Optical solitons or solitonlike states shed light to blueshifted frequencies through a resonant emission

process. We predict a mechanism by which a second propagating mode is generated. This mode, called

negative resonant radiation, originates from the coupling of the soliton mode to the negative-frequency

branch of the dispersion relation. Measurements in both bulk media and photonic-crystal fibers confirm

our predictions.
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Introduction.—Resonant radiation (RR), often also re-
ferred to as dispersive-wave or Cherenkov radiation, is a
nonlinear optical process by which a soliton propagating in
an optical fiber in the presence of higher-order dispersion
sheds light through a resonantlike process to a shifted
frequency [1–5]. This process and the precise frequency
of the RR is determined by a wave vector-matching con-
dition between the dispersive resonant radiation and the
soliton, i.e.,

kð!RRÞ ¼ kð!INÞ þ ð!RR %!INÞ=vþ KNLð!INÞ; (1)

where k ¼ !nð!Þ=c is the wave vector at frequency !,
!IN and!RR are the soliton (or input) and RR frequencies,
v is the soliton velocity, and KNL ¼ !INn2I=c is a non-
linear correction term (n2 is the nonlinear Kerr coefficient)
that may be small or even negligible at low intensities, I
[5]. A very similar process occurs also in bulk media. The
stationary 1D fiber soliton is now replaced by the station-
ary three-dimensional X wave [6]. X waves may form
spontaneously in Kerr media at high enough powers in
much the same way that solitons form spontaneously in a
fiber [7,8]. A blueshifted peak will also be observed that
will form one of the two X wave tails: the whole X wave,
including the RR, is therefore described by Eq. (1) [9],
which indeed reflects the nondispersive nature of the wave
packet considered, i.e., the soliton in one dimension and
the X wave in three dimensions. A simple interpretation of
Eq. (1) is derived by noting that RR generation in both one
and three dimensions can be interpreted within a Born-
approximation scattering event, whereby the input pump
pulse creates a scattering potential through the Kerr effect
and then the pump light is self-scattered from this potential
[10–12]. Equation (1) therefore reads as the momentum
conservation relation that governs this scattering process.

Resonant-radiation frequency conversion describes an
energy transfer between specific modes identified by
Eq. (1) and the dispersion curve [4,5,9]. In 1D geometry,

the soliton lies in the anomalous dispersion region and
transfers energy to RR in the normal dispersion region,
while in three dimensions it is possible to excite RR within
the same dispersion region due to the intrinsic spatiotem-
poral dispersion of the X-wave states. However, to date
only the positive frequency branch of the dispersion has
been considered when it actually also has a branch at
negative frequencies. This branch is usually neglected or
even considered meaningless when in reality, as we show
here, it may be of physical relevance and may host mode
conversion to a new frequency. The fact that a mode on the
negative branch of the dispersion relation may be excited
has a number of important implications beyond the simple
curiosity of the effect in itself. Indeed, light always oscil-
lates with both positive and negative frequencies, but the
negative-frequency part is directly related to its positive
counterpart and seems redundant [13]. On the other hand,
light particles (photons) have positive energies and are
associated with positive frequencies only [14]. A process
such as that highlighted here, which mixes positive and
negative frequencies, will therefore change the number of
photons, leading to amplification or even particle creation
from the quantum vacuum [15,16].
In this Letter, we show how, alongside the usual

resonant-radiation spectral peak observed in many experi-
ments, a second, further blueshifted peak is also predicted.
This new peak may be explained as the result of the
excitation of radiation that lies on the negative-frequency
branch of the dispersion relation. We first explain why this
radiation should be observed and then provide experimen-
tal evidence of what we call ‘‘negative-frequency resonant
radiation’’ in both bulk media and photonic-crystal fibers.
Theory.—In order to show how the negative-frequency

RR arises, we consider without any loss of generality a
basic dispersion relation that contains higher-order terms
such as in fused silica glass, shown in Fig. 1(a) (red
curves). The dashed curves indicate the negative-frequency
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Introduction.—Resonant radiation (RR), often also re-
ferred to as dispersive-wave or Cherenkov radiation, is a
nonlinear optical process by which a soliton propagating in
an optical fiber in the presence of higher-order dispersion
sheds light through a resonantlike process to a shifted
frequency [1–5]. This process and the precise frequency
of the RR is determined by a wave vector-matching con-
dition between the dispersive resonant radiation and the
soliton, i.e.,

kð!RRÞ ¼ kð!INÞ þ ð!RR %!INÞ=vþ KNLð!INÞ; (1)

where k ¼ !nð!Þ=c is the wave vector at frequency !,
!IN and!RR are the soliton (or input) and RR frequencies,
v is the soliton velocity, and KNL ¼ !INn2I=c is a non-
linear correction term (n2 is the nonlinear Kerr coefficient)
that may be small or even negligible at low intensities, I
[5]. A very similar process occurs also in bulk media. The
stationary 1D fiber soliton is now replaced by the station-
ary three-dimensional X wave [6]. X waves may form
spontaneously in Kerr media at high enough powers in
much the same way that solitons form spontaneously in a
fiber [7,8]. A blueshifted peak will also be observed that
will form one of the two X wave tails: the whole X wave,
including the RR, is therefore described by Eq. (1) [9],
which indeed reflects the nondispersive nature of the wave
packet considered, i.e., the soliton in one dimension and
the X wave in three dimensions. A simple interpretation of
Eq. (1) is derived by noting that RR generation in both one
and three dimensions can be interpreted within a Born-
approximation scattering event, whereby the input pump
pulse creates a scattering potential through the Kerr effect
and then the pump light is self-scattered from this potential
[10–12]. Equation (1) therefore reads as the momentum
conservation relation that governs this scattering process.

Resonant-radiation frequency conversion describes an
energy transfer between specific modes identified by
Eq. (1) and the dispersion curve [4,5,9]. In 1D geometry,

the soliton lies in the anomalous dispersion region and
transfers energy to RR in the normal dispersion region,
while in three dimensions it is possible to excite RR within
the same dispersion region due to the intrinsic spatiotem-
poral dispersion of the X-wave states. However, to date
only the positive frequency branch of the dispersion has
been considered when it actually also has a branch at
negative frequencies. This branch is usually neglected or
even considered meaningless when in reality, as we show
here, it may be of physical relevance and may host mode
conversion to a new frequency. The fact that a mode on the
negative branch of the dispersion relation may be excited
has a number of important implications beyond the simple
curiosity of the effect in itself. Indeed, light always oscil-
lates with both positive and negative frequencies, but the
negative-frequency part is directly related to its positive
counterpart and seems redundant [13]. On the other hand,
light particles (photons) have positive energies and are
associated with positive frequencies only [14]. A process
such as that highlighted here, which mixes positive and
negative frequencies, will therefore change the number of
photons, leading to amplification or even particle creation
from the quantum vacuum [15,16].
In this Letter, we show how, alongside the usual

resonant-radiation spectral peak observed in many experi-
ments, a second, further blueshifted peak is also predicted.
This new peak may be explained as the result of the
excitation of radiation that lies on the negative-frequency
branch of the dispersion relation. We first explain why this
radiation should be observed and then provide experimen-
tal evidence of what we call ‘‘negative-frequency resonant
radiation’’ in both bulk media and photonic-crystal fibers.
Theory.—In order to show how the negative-frequency

RR arises, we consider without any loss of generality a
basic dispersion relation that contains higher-order terms
such as in fused silica glass, shown in Fig. 1(a) (red
curves). The dashed curves indicate the negative-frequency
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branches. The phase-matching relation (1) (with KNL ¼ 0)
can be solved graphically: the soliton term is a straight line
(in blue in the figure) that intersects the dispersion relation
in a number of points that define the allowed modes. We
note that around ! ¼ 0 both Eq. (1) and the dispersion
relation should be expected to pass through kð0Þ ¼ 0. This
is not of any concern for what follows as we always work at
high frequencies, well within the region such that our
equations describe the light propagation in the medium
very precisely. Moreover, in the following we shall also
neglect the top-left and bottom-right regions in the (k, !)
plot as these correspond to backward (‘‘bwd’’) propagating
modes that are not excited by the forward propagating
input mode. The point indicated with IN is simply the
input mode, or soliton mode. There is a second positive-
frequency mode, RR, that indicates the resonant-radiation
mode. However, in the derivation of Eq. (1), no assump-
tions are made regarding the value of !, i.e., ! may run
over both positive and negative values. We then see that
there is also a negative-frequency mode (NRR) predicted
by Eq. (1) yet always neglected. The object of this Letter is
precisely this negative-frequency branch mode. All these
various modes are easier to visualize in the comoving

reference frame coordinates, as shown in Fig. 1(b). These
curves are obtained from the original dispersion relation by
transforming via a Doppler shift to the input pump or
soliton comoving coordinate system !0 ¼ !ð!$ vkÞ,
with ! ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ v2=c2

p
, and v ¼ vg is the soliton group

velocity. Transforming also Eq. (1) to the comoving frame
using the same relations gives !0 ¼ !0

IN. In other words,
momentum conservation in the laboratory reference frame
corresponds to constant energy (in the sense that all modes
have the same frequency) in the comoving reference frame.
The allowed modes are therefore now found by simply
tracing a horizontal line through the input soliton mode
(that by definition, has zero group velocity in the comoving
frame and thus lies at a local minimum) and, as before,
looking for the intersections with the dispersion relation.
The main point here is that the dispersion curves tell us that
it should be possible, starting from two positive modes, IN
and RR, to excite a third negative mode. Finally, in
Fig. 1(c) we present the same relations in a format that
has been used when describing optical solitons (e.g.,
Ref. [17]). By Taylor expanding the output wave vector
kð!RRÞ around!IN, the first two lowest-order terms cancel
out in Eq. (1), which therefore reduces to Dð!Þ$KNL¼0,
where the dispersion Dð!Þ ¼ Pðkn=n!Þ, with n % 2 and
kn as the dispersion coefficients associated with the Taylor-
series expansion [4,5]. (In Fig. 1, for simplicity, we are
assuming KNL & 0.) In this case, we see that by including
the negative-dispersion branch, as in the preceding figures,
an additional intersection with the ! axis denotes the
existence of the NRR mode.
When trying to assign a physicalmeaning to the negative-

frequency mode, we should recall that in reality any elec-
tromagnetic field is a real-valued quantity that can be
written as a sum of a complex term with its complex
conjugate (both propagating in the same forward
direction): E&cos!t/ exp½þiðkz$!tÞ)þexp½$iðkz$
!tÞ). However, considering only the modes obtained from
the intersections with Eq. (1) (or equivalently, with !0 ¼
þ!0

IN in the comoving frame) amounts to considering only
the first complex term and neglecting the complex conju-
gate. In order to recover the full field, we obviously also
need to sum the modes obtained from the intersections with
the complex conjugate of Eq. (1) (or equivalently, !0 ¼
$!0

IN): these curves physically represent the momentum
conservation condition, Eq. (1), for a scattering potential
created by the complex-conjugate input pulse (IN*) and are
shown as dashed lines in Fig. 1. The sum of NRR andNRR*

in Fig. 1, therefore, will give a real-valued field with a
positive frequency in the laboratory reference frame.
Nevertheless, as explained above, the origin of this mode
lies in the coupling of one or more modes on the positive-
frequency branch of the dispersion relation to a mode that
lies on the negative-frequency branch.We also note that the
negative mode has a truly distinct frequency from all the
other modes in Fig. 1 and, if it is generated, it should appear
as a clearly distinct peak in the spectrum with a higher

FIG. 1 (color online). Typical dispersion relation k ¼ kð!Þ,
e.g., for fused silica glass with second- and third-order disper-
sion, (a) in the laboratory reference frame and (b) in the
reference frame comoving at the soliton velocity. (c) The dis-
persion D ¼ Dð!Þ, as described in the text. Dashed curves
indicate the (laboratory frame) negative frequency branches of
the dispersion relation. For simplicity, we take KNL ¼ 0.
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frequency than the RR mode. In analogy with the usual
positive-frequency RR, we call this new mode ‘‘negative-
frequency resonant radiation’’ (NRR).

We note that the fact that the negative RR mode is a
solution to Eq. (1) does not, alone, imply that it will
actually be excited. Similarly to the RR mode, the negative
mode will only be excited if a sufficiently steep shock front
is formed within the pump pulse. Indeed, this condition
guarantees that the pulse contains spectral components at
sufficiently blueshifted frequencies to actually seed both
RR and NRR generation. The main difference with respect
to the RR mode is that the NRR mode is even further
blueshifted, thus requiring even steeper shock fronts.
This requirement may also be loosely understood in terms
of the excitation of a mode that in the frequency domain is
shifted far from the input mode. Therefore, in order for the
IN mode energy to be scattered to the NRR mode, a
sufficiently fast variation, i.e., a shock front, is required
in the time domain. Indeed, preliminary numerical simu-
lations, albeit in simplified setting (e.g., Ref. [18]), do
indicate that the actual intensity of the negative mode
depends critically on the steepness of the refractive index
variation induced by the nonlinear Kerr effect.

Finally, we note that in the comoving frame both the RR
mode and the NRR mode propagate with negative group
velocities (as can be deduced from the slope of the disper-
sion curve at these frequencies), i.e., in the backward
direction. The phase velocities of the two modes are how-
ever opposite to each other. Conversely, in the laboratory
frame both the RR and the NRRmodes have positive phase
and group velocities, i.e., they both propagate in the for-
ward direction (at slower group velocities with respect to
the input mode).

Experiments.—We performed two sets of experiments in
order to capture the formation of the negative RR mode:
(i) in a bulk medium and (ii) in a few-millimeter-long
photonic-crystal fiber. In the first experiment, we chose a
2-cm-long bulk calcium flouride sample (CaF2) as host
material. Light pulses of 60-fs duration and 800-nm carrier
wavelength are provided by an amplified Ti:sapphire laser
system of 1-kHz repetition rate. Under these conditions (3D
geometry), we do not excite a soliton, but the nonlinearity
will nevertheless excite a resonant instability that is gov-
erned by the same physics—and by Eq. (1)—as RR in
optical fiber solitons [10–12]. We reshape the pulses into
Bessel beams with a cone angle (in the medium) of
! ¼ 0:6", using a conical lens of fused silica with 2" base
angle. The Bessel pulse in the sample moves with uniform
speed v ¼ vg= cos!, where vg denotes the group velocity

of a Gaussian pulse of carrier wavelength 800 nm.
Moreover, the Bessel-beam geometry plays an important
role in the sense that it creates a localized and extended
high-intensity interaction region [19]. The spectrum at the
output of the sample is collected with a lens and a fiber-
based spectrometer. A filter with a flat response in the
visible-near-UV region is placed before the spectrometer

in order to reduce the input pump intensitywithout affecting
the shape of the spectrum between 300–720 nm. The input
pulse energy is varied from 10–50 "J, at which point the
input pulse is in a strongly nonlinear regime and develops a
complex and structured spectrum. Generation of negative
RR modes is observed at intermediate energies #15 "J.
Examples of the resulting spectra for varying input energies
are shown in Fig. 2(a). The spectra are vertically displaced
in order to render them visible. At lower energies
(12–14 "J) the output spectrum shows a distinct single
peak that shifts to shorter wavelengths with increasing input
energy. This process has been described in detail [20] in
similar conditions and is a direct manifestation of the
formation of a steep shock front on the trailing edge
of the pump pulse. As energy is increased, the shock
front steepens and the spectral peak shifts toward shorter
wavelengths. Between 15 and #20 "J input energy, a

FIG. 2 (color online). Experimental results for negative RR
generation in bulk CaF2. (a) Measured spectra for increasing
input energies (indicated next to each curve). The spectra are
vertically displaced to increase visibility. The inset shows a
sample spectrum (16 "J input energy) corrected for the filter
response. (b) CaF2 dispersion relation in the comoving fre-
quency versus laboratory-frame wavelength coordinates, # ¼
2$c=j!j. Positions of the predicted RR and negative RR spectral
peaks are indicated. The inset is a 20$ enlargement of the curve
around the #RR wavelength.
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We have created an analog of a black hole in a Bose-Einstein condensate. In this sonic black hole, sound

waves, rather than light waves, cannot escape the event horizon. A steplike potential accelerates the flow

of the condensate to velocities which cross and exceed the speed of sound by an order of magnitude. The

Landau critical velocity is therefore surpassed. The point where the flow velocity equals the speed of

sound is the sonic event horizon. The effective gravity is determined from the profiles of the velocity and

speed of sound. A simulation finds negative energy excitations, by means of Bragg spectroscopy.
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The event horizon is a boundary around the black hole,
enclosing the region from which even light cannot escape.
It has been suggested that an analog of a black hole could
be created in a variety of quantum mechanical [1–6] or
classical [7–9] systems. In the case of a quantum fluid such
as the Bose-Einstein condensate studied here [3], it is
sound waves, rather than light waves, which cannot escape.
This sonic black hole contains regions of subsonic flow, as
well as regions of supersonic flow. Since a phonon cannot
propagate against the supersonic flow, the boundary be-
tween the subsonic and supersonic regions marks the event
horizon of the sonic black hole. The analogy was later
extended to include excitations with a nonlinear dispersion
relation, in addition to phonons [10–12].

The experimental challenge is to create a steady flow
which exceeds the speed of sound [1,3,13,14]. Consider a
phonon with momentum @k. In the reference frame of the
moving fluid, the phonon has energy E ¼ @kc, where c is
the speed of sound. In the laboratory frame, by a Galilean
transformation [15], this energy becomes E0 ¼ Eþ @k # v,
where v is the flow velocity. For the case of supersonic flow
(v > c), E0 can be zero, resulting in the unstable produc-
tion of phonons. This instability is thought to prevent the
supersonic flow required to realize a sonic black hole, a
phenomenon referred to as the Landau critical velocity
[3,13,15]. By momentum conservation, however, the pro-
duction of such phonons requires an additional body such
as an impurity particle [16] or a container with a rough wall
[15]. This body provides momentum in the opposite direc-
tion to the flow. Thus, we have arranged an experimental
apparatus which does not supply much momentum in this
direction, allowing for supersonic flow during the time
scale of the experiment [3]. The free flow required to
overcome the Landau critical velocity also helps prevent
the production of quantized vortices, which usually limit
the flow to speeds much lower than the speed of sound [17].

Suggested schemes for forming a sonic black hole in a
condensate include a Laval nozzle [18,19], flow along a
ring or a long, thin condensate [3,20], a gradient in the
coupling constant [21,22], a soliton [2,23], an expanding

condensate [24], and repulsive potential maxima [5,25].
We achieve the black hole horizon by a steplike potential
combined with a harmonic potential, as shown in Fig. 1.
We translate the harmonic potential to the left as indicated
by the horizontal arrow, moving the condensate towards
the stationary step. While crossing the step, the condensate
accelerates to supersonic speeds. Thus, the region to the
left of the step is supersonic, and the region to the right is
subsonic. There is therefore a black hole horizon at the
location of the step.
The condensate consists of 1$ 105 87Rb atoms in the

F ¼ 2, mF ¼ 2 state and is initially prepared in the har-
monic part of the potential, a magnetic trap with oscillation
frequencies of 26 and 10 Hz in the radial and axial (y)
directions, respectively. The x coordinate of the minimum
of the harmonic trap is controlled by adjusting the trap
frequencies, which adjusts the sag due to gravity. The
steplike potential is created by a large diameter, red-
detuned laser beam with a Gaussian profile (1=e2 radius
of 56 !m, wavelength 812 nm). Half of this beam is
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FIG. 1. The profile of the potential, shown at a time before the
harmonic potential (a) has reached the steplike potential (b). The
horizontal arrow indicates the motion of the harmonic potential
relative to the stationary steplike potential. The dashed line
indicates the chemical potential of the condensate. Gravity is in
the%x direction. The profile of the potential step is derived from
an image of the laser beam. The harmonic potential is derived
from the measured frequency of the harmonic magnetic trap.
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there must be a sink that takes atoms out of the con-
densate. Otherwise, the continuity equation ∇(ρv) = 0,
which must hold for stationary configurations will be vi-
olated. From the physical point of view, such a sink can
be accomplished by means of an outcoupler laser beam at
the origin. (Such outcouplers are the basic mechanisms
for making trapped condensates into “atom lasers,” and
they have already been demonstrated experimentally by
several groups. A tightly focused laser pulse changes the
internal state of the atoms at a particular point in the
trap, and can also be made to give them a large momen-
tum impulse. This ejects them so rapidly through the
always dilute condensate cloud that they do not signifi-
cantly disturb it; effectively, they simply disappear.)

We have analyzed several specific systems which may
be suitable theoretical models for future experiments,
and have found that the qualitative behavior is analo-
gous in all of them. Black holes which require atom sinks
are both theoretically and experimentally more involved,
however; moreover, maintaining a steady transonic flow
into a sink may require either a very large condensate
or some means of replenishment. We will therefore first
discuss an alternative configuration which may be exper-
imentally more accessible and whose description is par-
ticularly simple: a condensate in a very thin ring that
effectively behaves as a periodic one-dimensional system
(Fig. 1). Under conditions that we will discuss, the super-
sonic region in a ring may be bounded by two horizons:
a black hole horizon through which phonons cannot exit,
and a ‘white hole’ horizon through which they cannot en-
ter. Then we will analyze another simple one-dimensional
model, of a long, straight condensate with an atom sink
at the center (Fig. 2).

FIG. 1. The tight ring-shaped configuration, with both
black and white horizons, and no singularity. Arrows indi-
cate condensate flow velocity, with longer arrows for faster
flow.

The existence of instabilities that do not show up in the
one-dimensional approximation is an important question
in condensate physics, which is under active theoretical
and experimental investigation. The essential principles

have long been clear, inasmuch as the current dilute con-
densates really are the weakly interacting Bose gases that
have been used as toy models for superfluidity for several
decades. The fact that actual critical velocities in liquid
helium are generally far below the Landau critical veloc-
ity is understood to be due partly to the roton feature of
the helium dispersion relation, but this is not present in
the dilute condensates. Viscosity also arises due to sur-
face effects, however, and these may indeed afflict dilute
condensates as well. The point here is that in addition to
the bulk phonon modes considered by Landau, and quite
adequately represented in our one-dimensional analysis,
there may in principle be surface modes, with a different
(and generally lower) dispersion curve. If such modes
exist and are unstable, it is very often the case that, as
they grow beyond the perturbative regime, they turn into
quantized vortices, which can cut through the supercur-
rent and so lower it.

FIG. 2. The tight cigar-shaped configuration, with two
black hole horizons and a ‘singularity’ where condensate is
outcoupled. Arrows indicate condensate flow velocity, with
longer arrows for faster flow.

Whether or not such unstable surface modes actually
exist in the Bogoliubov spectrum of a dilute condensate is
an issue that has recently been analyzed both numerically
and analytically, and it is quite clear that such surface
modes exist only if the confining potential is quite rough
(which is not only easy to avoid with a magnetic or opti-
cal trapping field, but very hard to achieve) [19], or if the
condensate dynamics in the directions perpendicular to
the flow is hydrodynamic. That is, the condensate must
be at least a few healing lengths thick, so that surface
modes decaying on the healing length scale can satisfy
all the required boundary conditions [20]. By saying that
we are considering an effectively one-dimensional conden-
sate, we mean precisely that this is not the case. For
instance, for the tight-ring model, in this regime, the ra-
dial trap scale is the shortest length scale in the problem,
and the radial trap frequency is the highest frequency;
this effectively means that excitations of nontrivial radial
modes, including surface modes, are energetically frozen
out. (In the limit of radial confinement within the scat-
tering length, our model breaks down for other reasons
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The sonic analog of a gravitational black hole in dilute-gas Bose-Einstein condensates is investigated.
It is shown that there exist both dynamically stable and unstable configurations which, in the
hydrodynamic limit, exhibit a behavior completely analogous to that of gravitational black holes.
The dynamical instabilities involve creation of quasiparticle pairs in positive and negative energy
states. We illustrate these features in two qualitatively different one-dimensional models, namely,
a long, thin condensate with an outcoupler laser beam providing an “atom sink,” and a tight ring-
shaped condensate. We have also simulated the creation of a stable sonic black hole by solving
the Gross-Pitaevskii equation numerically for a condensate subject to a trapping potential which
is adiabatically deformed. A sonic black hole could in this way be created experimentally with
state-of-the-art or planned technology.
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I. INTRODUCTION

Many investigations of dilute gas Bose-Einstein con-
densates are directed towards experimentally creating
nontrivial configurations of the semiclassical mean field,
or to predicting the properties of such configurations in
the presence of quantum fluctuations. Such problems are
hardly peculiar to condensates: the quantum neighbor-
hoods of interesting classical backgrounds are important
areas of research in most fields of physics. But ultracold
dilute gases are so easy to manipulate and control, both
experimentally [1] and theoretically [2], that they may
allow us to decipher less amenable systems by analogy.
As an essay in such an application of condensates, in this
paper we discuss the theoretical framework and propose
an experiment to create the analog of a black hole in the
laboratory and simulate its radiative instabilities.

It is now commonly believed that, even in the con-
text of elementary particle physics, quantum field the-
ory arises from a still unknown underlying structure: it
is an effective dynamical theory, describing the low en-
ergy limit of collective phenomena of the underlying mi-
croscopic theory. From this viewpoint, our description
of (more) fundamental phenomena, such as gravity or
electromagnetism, is actually similar to the theoretical
descriptions of many phenomena of condensed matter.
To understand superfluidity, superconductivity or dilute
Bose-Einstein condensation, we describe the dynamics
of the system in terms of collective modes (quasipar-
ticles) whose typical size is much larger than the dis-
tances between the particles that constitute the under-
lying medium; but even electrons and photons must be
considered as the quasiparticles of the deeper theory we
do not yet know. In this sense we may say that the
major difference between our fundamental theories and

those we use in condensed matter is that in the latter
case the next microscopic level of description is actually
well understood.

With this fundamental background in mind, it is not
so surprising that condensed matter analogs of nontriv-
ial configurations appearing in relativistic quantum field
theories and gravitation can be constructed. For ex-
ample, 3He has been proposed as a laboratory counter-
part of high-energy particle physics. It has been argued
that, under appropriate conditions, excitations around
the ground state of the system may resemble the particle-
spectrum of gauge theories of high energy physics [3].
These condensed matter systems have also been used to
simulate topological defects characteristic of gauge theo-
ries and which are considered to have played a cosmologi-
cal role in the early stages of the evolution of the universe
such as monopoles and cosmic strings [3].

The past decade has witnessed an increasing interest
in simulating gravitational configurations and processes
in condensed matter systems in the laboratory. The key
observation was originally made by Unruh [4,5] and fur-
ther analyzed by Visser [6,7]: phononic propagation in a
fluid is described by a wave equation which, under ap-
propriate conditions, can be interpreted as propagation
in an effective relativistic curved spacetime background,
the spacetime metric being entirely determined by the
physical properties of the fluid under study, namely, its
density and flow velocity. Unruh urged a specific moti-
vation [4] for examining the hydrodynamic analogue of
an event horizon [8], namely that as an experimentally
and theoretically accessible phenomenon it might shed
some light on the Hawking effect [9] (thermal radiation
from black holes, stationary insofar as the back reaction
is negligible). In particular, one would like to gain in-
sight into the role in the Hawking process of ultrahigh
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Superfluids as an effective expanding universe 
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Abstract
We present the results of an experimental investigation of the acoustics and fluid
dynamics of Tibetan singing bowls. Their acoustic behaviour is rationalized in
terms of the related dynamics of standing bells and wine glasses. Striking or
rubbing a fluid-filled bowl excites wall vibrations, and concomitant waves at the
fluid surface. Acoustic excitation of the bowl’s natural vibrational modes allows
for a controlled study in which the evolution of the surface waves with increasing
forcing amplitude is detailed. Particular attention is given to rationalizing the
observed criteria for the onset of edge-induced Faraday waves and droplet
generation via surface fracture. Our study indicates that drops may be levitated
on the fluid surface, induced to bounce on or skip across the vibrating fluid
surface.

Mathematics Subject Classification: 74-05, 76-05

S Online supplementary data available from stacks.iop.org/Non/24/R51/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tibetan singing bowls are thought to have originated from Himalayan fire cults of the 5th
century BC and have since been used in various religious ceremonies, including shamanic
journeying and meditation. The Tibetan singing bowl (see figure 1 and the supplementary data
(movie 1) available at stacks.iop.org/Non/24/R51/mmedia) is a type of standing bell played
by striking or rubbing its rim with a wooden or leather-wrapped mallet. This excitation causes
the sides and rim of the bowl to vibrate and produces a rich sound. Tibetan bowls are hand
made and their precise composition is unknown, but generally they are made of a bronze alloy
that can include copper, tin, zinc, iron, silver, gold and nickel. When the bowl is filled with
water, excitation can cause ripples on the water surface. More vigorous forcing generates
progressively more complex surface wave patterns and ultimately the creation of droplets via
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Figure 2. (a) Schematic illustration of a vibrating vessel filled with liquid. Relevant parameters
are the height H0 and the radius R of the vessel, the thickness of the rim a, the liquid level H , the
frequency f and the amplitude ! of the oscillating rim. (b) Top view of a vibrating vessel in its
fundamental mode (2,0), characterized by its 4 nodes and 4 antinodes.

A leather mallet can excite bowl vibrations via a stick-slip process, as does a finger moving
on a wine glass. The moving mallet forces the rim to follow the mallet during the stick phase;
during the slip phase, the bowl rim relaxes to its equilibrium position. This rubbing results in a
sound composed of a fundamental frequency plus a number of harmonics. While the mallet is
in contact with the bowl, one of the nodes follows the point of contact [11], imparting angular
momentum to the bound liquid.

To simplify the acoustic analysis, one can approximate the glass or bowl by a cylindrical
shell with a rigid base and an open top (figure 2(a)). The system can then be described in
terms of 7 physical variables, the radius R, height H0, thickness a, Young’s modulus Y and
density ρs of the cylindrical shell, and the frequency f and amplitude ! of its oscillating rim.
The system can thus be described in terms of 4 independent dimensionless groups, which we
take to be R/H , !/a, !/R and a Cauchy number Ca = ρsf

2!2/Y that indicates the relative
magnitudes of the inertial and the elastic forces experienced by the vibrating rim.

The sound is emitted by bending waves that deform the rim transversely as they propagate.
The speed Vb of bending waves on a two-dimensional plate of thickness a is given by [42]

Vb =
(

πVLf a√
3

)1/2

, (1)

where VL is the longitudinal wave speed in the solid (approximately 5200 m s−1 in glass). In
order for the bending wave to traverse the perimeter in an integer multiple of the period, we
require

1
f

∝ 2πR

Vb
. (2)

Thus, since Vb ∼
√

f a, we have f ∝ a/R2: the frequency increases with rim thickness, but
decreases with radius.

A more complete theoretical analysis of the wine glass acoustics [1] can be applied to
our Tibetan bowls. An ideal cylinder fixed at the bottom is considered (figure 2(a)), its wall
vibrating with largest amplitude at its free edge or rim. The rim’s kinetic energy and elastic
energy of bending in the mode (2,0) are calculated by assuming that the radial position is
proportional to cos 2θ , with θ being the azimuthal coordinate. By considering conservation
of total energy (kinetic plus elastic bending energy), an expression for the frequency of this
mode can be deduced:

f0 = 1
2π

(
3Y

5ρs

)1/2
a

R2

[

1 +
4
3

(
R

H0

)4
]1/2

. (3)
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are the height H0 and the radius R of the vessel, the thickness of the rim a, the liquid level H , the
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fundamental mode (2,0), characterized by its 4 nodes and 4 antinodes.

A leather mallet can excite bowl vibrations via a stick-slip process, as does a finger moving
on a wine glass. The moving mallet forces the rim to follow the mallet during the stick phase;
during the slip phase, the bowl rim relaxes to its equilibrium position. This rubbing results in a
sound composed of a fundamental frequency plus a number of harmonics. While the mallet is
in contact with the bowl, one of the nodes follows the point of contact [11], imparting angular
momentum to the bound liquid.

To simplify the acoustic analysis, one can approximate the glass or bowl by a cylindrical
shell with a rigid base and an open top (figure 2(a)). The system can then be described in
terms of 7 physical variables, the radius R, height H0, thickness a, Young’s modulus Y and
density ρs of the cylindrical shell, and the frequency f and amplitude ! of its oscillating rim.
The system can thus be described in terms of 4 independent dimensionless groups, which we
take to be R/H , !/a, !/R and a Cauchy number Ca = ρsf
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The sound is emitted by bending waves that deform the rim transversely as they propagate.
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f a, we have f ∝ a/R2: the frequency increases with rim thickness, but
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A more complete theoretical analysis of the wine glass acoustics [1] can be applied to
our Tibetan bowls. An ideal cylinder fixed at the bottom is considered (figure 2(a)), its wall
vibrating with largest amplitude at its free edge or rim. The rim’s kinetic energy and elastic
energy of bending in the mode (2,0) are calculated by assuming that the radial position is
proportional to cos 2θ , with θ being the azimuthal coordinate. By considering conservation
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FIG. 8: Schematic description of the freezing and melting of quan-
tum modes.

!out
k = !FP

k .

Here we are dealing with well-defined initial and final
vacua states. This kind of problem can be compared with the
tanh-expansion, studied for example in [28, 61]. In this case
the Bogoliubov coefficients are — after an infinitely long-
lasting expansion — time-independent. Please note that this
analytic calculation does not by itself give any details when
and how the mode functions change, since the Bogoliubov co-
efficients for a smooth scale function bk(t) for all t are given
by the globally defined time-dependent quantities

↵k(t) =
1
2i

W [uk, v⇤k] , (198)

�k(t) =
1
2i

W [v⇤k, u⇤k] , (199)

as compared with Eqs. (103) and (104). The Wronskian of
the mode function is time-independent, therefore it can be
evaluated at all times. (Note that the general mode functions
are not necessarily normalized.) Again, vk and v⇤k represent
the in, and uk and u⇤k the out mode functions. (Note that we
have changed our notation in respect to [1].)

By means of the numerical results shown in Figs. (9), it ap-
pears to be rapidly approaching a final asymptotic state. We
have plotted the final spectra in Fig. 10, so that we easily see
the relationship between the slope of the line and the inverse
scaling time t�1

s . However the temporal duration in our pre-
vious numerical simulation for ts = 1 ⇥ 10�5 has not been
sufficiently long, as it is not obvious that the particle produc-
tion process has yet came to an end. In Fig. 7 we can see that
at the end of the numerical simulation a good fraction of the
quantum field modes (i.e., roughly |k| < 40) are frozen. We
expect particle production in those modes to contribute sig-
nificantly to the infrared end of the final spectrum. We there-
fore repeated the numerical simulation for ts = 1⇥ 10�5 (so
that initially all modes are sub-Hubble horizon modes) with
two times the previous duration. In addition, the initial non-

linearity is now C = 2 ⇥ 105 instead of C = 1 ⇥ 105 so
that all modes are “phononic” at the start of the simulation.
We also increased our expansion rate from X = 2 ⇥ 103 to
X = 4 ⇥ 106. As shown in Fig. 11 and in greater detail
in Fig. 12, at the end of the simulation all modes are trans-
phononic, and the particle production process ceases. From
our numerical simulations the final particle spectrum does not
seem to nicely fit a straight line, but it seems conceivable to
employ standard line-fitting tools to study the final particle
spectrum as a function of ts and k. (We are currently investi-
gating this issue.)

V. CONCLUSIONS AND OUTLOOK

In this article we put the analogy between a parametri-
cally excited Bose–Einstein condensate and cosmological
particle production to the test. Knowing that the analogy
for mimicking a specific quantum effect in “conventional”
curved-spacetime quantum-field-theory hinges on the ro-
bustness of the effect against model-specific deviations, we
derived the “whole” model-dependent emergent rainbow
spacetime. Similar work on the acoustic Hawking effect in
subsonic and supersonic (super)-fluids has been carried out
in [15].

There were two main lessons learnt for the analogue model
community. First, the specific model we presented — a uni-
form gas of atoms with time-dependent atomic interactions
— is in general not robust against the non-perturbative ultra-
violet corrections. Secondly, we also showed that the anal-
ogy is sufficiently good for mimicking some aspects of cos-
mological particle production for finite changes in the size of
the effective universe. We said “some aspects”, because the
analogy only holds for the low-energy part of the spectrum,
and therefore the analogy is associated with a certain k-range.
These correspond to phononic excitations, bounded by a time-
dependent parameter |k| < 1/`Planck(t).

Given that we expect significant deviation from the de-
sired quantum effect, one might ask the question “Is the
analogue model we have presented a suitable candidate for
laboratory experiments?” Previously in [1], as well as briefly
in the current paper, we have presented numerical results
for cosmological particle production in a “realistic” Bose
gas. As a matter of fact, despite many possible sources of
difficulties, for example back-reaction-effects / mode-mixing,
the phononic regime shows excellent agreement with the
theoretical predictions[66]. The Bose–Einstein condensate
enables us to prepare and control a quantum field to such an
extent, that within a few years time the technology should
be able to drive “inflation” between two “natural” vacua
and — that is the outstanding problem [3, 9, 62] — directly
measure the resulting spectra. Of course, there are also other
models involving a freely expanding condensate cloud, but
we suspect similar problems — a growing “Planck-length”
and the lack of a (strict) cosmological horizon [4] — to
appear, and would like to stress that those models destroy the
condensate during the expansion process. We leave it as an
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As expected, within the limit of infinitely slow expansion, we
produce zero particles, and we recover adiabatic invariance.
Furthermore if we consider the asymptotic expansion where
1 ⌧ Rin

k ⌧ p
X , and employ the asymptotic limits of the

Hankel functions [58], we get at linear order:

nk ! 1
2⇡ Rout

k

=
H

2⇡ !out
k

. (174)

Of course, we cannot rely on our calculation in the case of
an infinitely long-lasting expansion, since it is based on the
validity of the hydrodynamic limit, which is completely inap-
propriate for t� ts. However, in our previous numerical sim-
ulation of a “realistic” Bose gas [1] we compared our theoreti-
cally obtained result with short-time expansion scenarios, and
were able to match them to the phononic part of the particle
production spectrum, see Figs. 3. (In [1] we applied the trun-
cated Wigner method to a Bose–Einstein condensate, where
we selected a nonlinearity and atom number such that most of
the modes were phononic at the start of the simulation, and
that for our choice of parameters the effects of back-reaction
and mode-mixing were minimal.)

In Figure 3, for ts = 5 ⇥ 10�5 we see an excellent agree-
ment between our theoretical predictions (dashed green line),
and the numerical data (blue dots) for the “quasi-particle” pro-
duction in the phononic regime (left of the vertical red line).
As shown in Fig. 3, at the end of the expansion we see that
almost all excitations are trans-phononic, hence the analogy
eventually breaks down. But, to answer the question stated at
the beginning of this section, where we asked about the appli-
cability of our specific model to mimic cosmological particle
production: Yes, the BEC can be used as an analogue model
for cosmological particle production within certain limits, as
our numerical results clearly confirm.

The calculations we have presented are somewhat tedious,
but they are more than worth the effort since there is a fun-
damental lesson to be learnt from Eq. (170): It establishes
our previous intuition (see Sec. IV B 3), that the characteristic
value controlling the particle production is the ratio, Rk(t) be-
tween the mode frequency, and the Hubble frequency. Com-
parison with Eq. (170) shows explicitly that the final quan-
tity of particle production — for truly phononic modes be-
fore, during, and after the expansion — only depends on the
initial Rin

k and final Rout
k frequency ratio. This motivated us

to extend the role of the frequency ratio beyond the hydrody-
namic limit, and compare our predictions with the data ob-
tained from our simulations, where the non-perturbative cor-
rections are included; see [1] for details of the numerics.

2. Qualitative behavior of quantum fluctuations

The process of cosmological particle production in an ex-
panding / collapsing universe can be qualitatively understood
in terms of a single parameter, the frequency ratio Rk(t) as
given in Eq. (138). First, we explain the connection between
the qualitative behavior of the particle production process and
this frequency ratio (139) in the hydrodynamic limit, then we
transfer these ideas to the emergent rainbow metrics we have

introduced in Sec. II B.

a. Qualitative behavior of particle production in the hy-
drodynamic limit. There is a relatively simple way to under-
stand the qualitative evolution of mode functions in an expo-
nentially changing universe, by considering out the effective
harmonic oscillator equation for the auxiliary field. Within the
hydrodynamic limit we get

¨̂�k(t) +
�

!k(t)2 �H2
�

�̂k(t) = 0 , (175)

where we used the equation of motion, see Eq. (66), for the
effective time-dependent harmonic oscillator frequency for
phononic modes given in Eq. (145).

Above we have shown that the general solution is a lin-
ear combination of first order Hankel functions of the first and
second kind, see Eqns. (151) and (152). These mode functions
are a function of Rk(t), and therefore in the limit of Rk !1
the mode functions approach positive and negative frequency
modes, while for Rk ! 0 the modes stop oscillating, and the
modes exhibit exponentially growing or exponentially decay-
ing kinematics.

A simpler way to come to the same answer is to investigate
Eq. (175) in its limits: These are !k(t) � H , and !k(t) ⌧
H , or equivalently in terms of the frequency ratio:

R

k

(t)� 1: It is then possible to write down an approximate
solutions for Eq. (175),

vdS
k =

exp(i
R t

t
0

!k(t0) dt0)p
!kt

, (176)

(v⇤k)dS =
exp(�i

R t

t
0

!k(t0) dt0)p
!kt

. (177)

These are approximately plane waves, but their ampli-
tude and frequency change as a function of time. This
ansatz is referred to as the WKB approximation, which
is valid within the adiabatic limit, when during one os-
cillation period T = 2⇡/!k(t) the relative change in
the frequency is small (see [42]),

�

�

�

�

!k(t + T )� !k(t)
!k(t)

�

�

�

�

⇡ 2⇡

�

�

�

�

!̇k

!2
k

�

�

�

�

⌧ 1 . (178)

For de Sitter spacetimes equates to
�

�

�

�

!̇dS
k

(!dS
k )2

�

�

�

�

=
�

�

�

�

1
Rk(t)

�

�

�

�

⌧ 1 , (179)

the condition that the ratio Rk(t) is much larger than
one, which verifies the consistency of adopting the
adiabatic approximation.

Hence, the particle production process in the infinite
past is negligibly small, as all modes oscillate rapidly
compared to the Hubble frequency.

R

k

(t)⌧ 1: Here the differential equation (175), reduces to

¨̂�k(t)�H2�̂k(t) = 0 . (180)

Rk = !k(t)
2

H2

H =
1

2 ts
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Acoustic Analog to the Dynamical Casimir Effect in a Bose-Einstein Condensate
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We have modulated the density of a trapped Bose-Einstein condensate by changing the trap stiffness,

thereby modulating the speed of sound. We observe the creation of correlated excitations with equal

and opposite momenta, and show that for a well-defined modulation frequency, the frequency of the

excitations is half that of the trap modulation frequency.

DOI: 10.1103/PhysRevLett.109.220401 PACS numbers: 03.75.Kk, 42.50.Lc, 67.10.Jn

Although we often picture the quantum vacuum as con-
taining virtual quanta whose observable effects are only
indirect, it is a remarkable prediction of quantum field
theory that the vacuum can generate real particles when
boundary conditions are suddenly changed [1–4]. Known
as the dynamical Casimir effect, a cavity with accelerating
boundaries generates photon pairs. Recent experiments
have demonstrated this effect in the microwave regime
using superconducting circuits [5,6]. Hawking radiation
[7] is another situation characterized by spontaneous pair
creation and work on sonic analogs to the Hawking
problem [8] has led to the realization that Bose-Einstein
condensates (BEC) are attractive candidates to study such
analog models [9–11], because their low temperatures
promise to reveal quantum effects. Here we exhibit an
acoustic analog to the dynamical Casimir effect by modu-
lating the speed of sound in a BEC. We show that corre-
lated pairs of elementary excitations, both phononlike and
particlelike, are produced, in a process that formally
resembles parametric down-conversion [4,12].

The first analyses of the dynamical Casimir effect
considered moving mirrors, but it has been suggested that
a changing index of refraction could mimic the effect
[13,14]. Our experiment is motivated by a suggestion in
Ref. [12] that one can realize an acoustic analog to the
dynamical Casimir effect by changing the scattering length
in an interacting Bose gas. The change in the interaction
strength is analogous to an optical index change: the speed
of sound (or light) changes. Seen in a more microscopic
way, the ground state of such a gas is the vacuum of
Bogoliubov quasiparticles whose makeup is interaction
dependent. Changing the interaction strength projects this
old vacuum onto a new state containing pairs of the new
quasiparticles [12], which appear as pairwise excitations.
Instead of changing the interaction strength, we have sim-
ply modified the confining potential, which in turn changes
the density. Sudden changes such as these have also been
suggested as analogs to cosmological phenomena [15–17].

We study two situations, in the first the confining poten-
tial is suddenly increased and in the second the potential
is modulated sinusoidally. The sinusoidal modulation of
the trapping potential was studied in Refs. [18–20] in the

context of the observation of Faraday waves. Our results
on sinusoidal modulation are similar to this work and we
have extended it to observe correlated pairs of Bogoliubov
excitations. We produce these excitations in both the
phonon and particle regimes, and observe correlations in
momentum space. Parametric excitation of a quantum gas
was also studied in optical lattices in which the optical
lattice depth was modulated [21,22], although in that
experiment, the excitation was observed as a broadening
of a momentum distribution.
The experimental apparatus is the same as that described

in Refs. [23,24] and is shown schematically in Fig. 1(a).
We start from a BEC of approximately 105 metastable
helium (He!) atoms evaporatively cooled in a vertical
optical trap to a temperature of about 200 nK. The trapped
cloud is cigar shaped with axial and radial frequencies of
7 and 1500 Hz. In the first experiment we raise the trapping
laser intensity by a factor of 2 with a time constant
of 50 !s using an acousto-optic modulator [see inset to
Fig. 1(b)]. The trap frequencies thus increase by

ffiffiffi
2

p
. The

compressed BEC is held for 30 ms before the trap laser is
switched off (in less than 10 !s). The cloud falls onto a
position sensitive, single atom detector which allows us to
measure the atom velocities [25]. After compression, the
gas is excited principally in the vertical direction: trans-
versely we only observe a slight heating (about 100 nK).
Figure 1(b) shows a single shot distribution of vertical
atom velocities relative to the center of mass and integrated
horizontally, while Fig. 1(c) shows the same distribution
averaged over 50 shots. These distributions are more than 1
order of magnitude wider than that of an unaffected BEC.
The individual shots show a complex structure which is not
reproduced from shot to shot, as is seen from the washing
out of the peaks upon averaging.
We consider the correlations between atoms with verti-

cal velocities vz and v0
z, by constructing a normalized

second-order correlation function, gð2Þðvz; v
0
zÞ [25], aver-

aged over the x-y plane and shown in Fig. 2(a). The plot
exhibits two noticeable features along the v0

z ¼ vz and
v0
z ¼ %vz diagonals. The former reflects the fluctuations

in the momentum distribution, as in the Hanbury Brown–
Twiss effect [26], except that this cloud is far from thermal

PRL 109, 220401 (2012)

Selected for a Viewpoint in Physics
PHY S I CA L R EV I EW LE T T E R S

week ending
30 NOVEMBER 2012

0031-9007=12=109(22)=220401(5) 220401-1 ! 2012 American Physical Society



Pair-particle process at half of the driving freq.

equilibrium. The v0
z ¼ "vz correlation is a clear signature

of a correlation between quasiparticles of opposite veloc-
ities. A projection of this off-diagonal correlation is shown
in Fig. 2(b). At low momentum, the excitations created by
the perturbation are density waves (phonons) which in
general consist of superpositions of several atoms traveling
in opposite directions. In the conditions of our clouds, a
phonon is adiabatically converted into a single atom of the
same momentum during the release by a process referred to
as ‘‘phonon evaporation’’ [27]. Therefore in the phonon
regime as well as in the particle regime, we interpret the
back-to-back correlation in Fig. 2(a) as the production of
pairs of Bogoliubov excitations with oppositely directed
momenta as predicted in the acoustic dynamical Casimir
effect analysis [12].

To further study this process, we replace the compres-
sion by a sinusoidal modulation of the laser intensity
IðtÞ ¼ I0ð1þ ! cos!mtÞ [inset of Fig. 1(d)]. We choose !
such that the trap frequencies are modulated peak to peak
by about 10%. The modulation is applied for 25 ms
before releasing the condensate. Figures 1(d) and 1(e)
show, respectively, single shot and averaged momentum
distributions resulting from the modulation. One sees that
the momentum distribution develops sidebands, approxi-
mately symmetrically placed about the center. Figure 3(a)
shows the normalized correlation function, plotted in the

same way as in Fig. 2(a), for a modulation frequency
!m=2" ¼ 2170 Hz. We again observe antidiagonal corre-
lations as for a sudden excitation except that the correla-
tions now appear at a well-defined velocity, which
coincides with that of the sidebands [see Fig. 3(b)].
We have examined sinusoidal modulation for frequen-

cies !m=2" between 900 and 5000 Hz and observed
excitations similar to those in Fig. 3. We summarize our
observations in Fig. 4(a) in which we plot the excitation
frequency as a function of the sideband velocity. We also
plot the locations of the peaks in the correlation functions
on the same graph. For modulation frequencies much
above 2 kHz, the antidiagonal correlation functions are
quite noisy preventing us from clearly identifying correla-
tion peaks. This noise may have to do with the proximity
of the parametric resonance with the transverse trap fre-
quency (& 3 kHz) [19].
Aweakly interacting quantum gas obeys the well-known

Bogoliubov–de Gennes dispersion relation between the
frequency !k and wave vector k:

!k ¼ #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2k2 þ

"@k2
2m

#
2

s
; (1)

with # ¼ 1 and c, the sound velocity. This relation
describes both phonons (long wavelength excitations)
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FIG. 1 (color online). Effects of time-varying potentials. (a) Schematic view of the experiment. Pairs of Bogoliubov quasiparticles
are created by varying the trap stiffness. After the flight to the detector these excitations appear as a broadening or sidebands on the
atom cloud in the vertical (z) direction. In the following plots we convert arrival times to relative velocities and average over the
transverse dimensions. (b) Single shot velocity distribution for a cloud which was subjected to a sudden increase in the trap stiffness.
The inset shows the time evolution of the trap stiffness. (c) As in (b) but averaged over 50 shots. (d) Single shot velocity distribution for
a cloud which was subjected to a weak, sinusoidal modulation of the trap stiffness at 2.17 kHz. The inset shows the time evolution of
the trap stiffness. (e) As in (d) but averaged over 780 shots.
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Correlations classical or quantum?

whose dispersion is linear and free particles, whose disper-
sion is quadratic. If our observation indeed corresponds to
the creation of pairs, we expect the total excitation energy
to be shared between the two excitations. Momentum con-
servation, on the other hand, requires that the two energies
be equal, implying !m ¼ 2!k. Therefore the relation
between the modulation frequency and the sideband veloc-
ity should also be given by Eq. (1) but with ! ¼ 2 and
k ¼ mvz=@. Fitting the points in Fig. 4(a) to (1) with ! and
c as free parameters, we obtain ! ¼ 2:2" 0:3. The fitted
sound velocity, 8" 3 mm=s, is consistent with the value
one can calculate from the trap parameters and the esti-
mated number of atoms [25].

We can further corroborate our interpretation of pairwise
excitations by a method more direct and robust than the 2

parameter fit to the data in Fig. 4(a). In Fig. 4(b), we
compare the dispersion relation resulting from modulation
with that obtained by Bragg scattering. Bragg scattering
produces single excitations of quasiparticles at a definite
energy and momentum [28]. We excited the BEC with
two lasers in the Bragg configuration to determine the
frequency for a given k vector [25]. Then, under the same
experimental conditions, using sinusoidal trap laser modu-
lation, we excited the BEC at various frequencies and
found the corresponding velocities. The lower curve in
Fig. 4(b) is a fit to the Bragg data in which we fix ! ¼ 1
and fit the speed of sound. The upper curve is a fit to the
trap modulation data in which we set the speed of sound
to that found in the first fit and we allowed ! to vary. This
second fit yields ! ¼ 2:07" 0:2. The fitted speed of
sound for this data set (about 13 mm=s) is higher than in
the data of Fig. 4(a), because during these runs the number
of atoms in the condensate was larger.
An even more dramatic confirmation of our interpreta-

tion would be the observation of sub-Poissonian intensity
differences in the two sidebands, as was observed in the
experiment of Ref. [5], as well as in Refs. [29]. The latter
experiment modulated the center of a trapped, one dimen-
sional gas producing transverse excitations which in turn

FIG. 3 (color online). Density correlations after a periodic
modulation. (a) Normalized correlation function gð2Þðvz; v

0
zÞ

measured after sinusoidal modulation of the trap frequency at
a frequency !m=2" ¼ 2:17 kHz, averaging over 243 experi-
mental shots. We observe a strong correlation between well-
defined, oppositely directed velocities. (b) Plot of the density
distribution (blue) and of the antidiagonal velocity correlation
function, gð2Þðvz; v

0
z ¼ %vzÞ (red).
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FIG. 2 (color online). Density correlations after a sudden
compression. (a) Normalized correlation function gð2Þðvz; v

0
zÞ of

the data in Fig. 1(c) (50 shot average). The signal on the diagonal
results from the density fluctuations in the cloud. The antidiag-
onal line indicates the creation of correlated quasiparticles with
opposite momenta, and is the signature of the dynamical Casimir
effect. (b) Antidiagonal correlation function gð2Þðvz; v

0
z ¼ %vzÞ.

The smooth line shows the result of smoothing the data over a
window of about 1 cm=s. The correlations apparently persist
over a scale comparable to that of the density distribution. (c)
Correlation function along the dashed line and integrated over a
region indicated by the dotted arrows, as a function of #vz ¼
v0
z % vz. The dips on either side of the peak may be related to the

effect reported in [32].
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Are these fluctuations described by classical 
or quantum statistics..?

One indicator of non-classical statistics is the 2-
mode variance / strength of correlations

Two mode statistics

• Two mode variance 
 
 

• Bogoliubov theory result: 
 
 

• Correlators: 

2

At the quench time we have the conditions âink (0) =
âoutk (0) and âin�k(0)

† = âout�k(0)
† [8], and consequently

we can express the out-operators in terms of the in-
operators,

b̂outk (0) = �k b̂
in
k (0) + ⇥k b̂

in
�k

†(0); (6)

b̂outk
†(0) = ⇥k b̂

in
�k(0) + �k b̂

in
k

†(0), (7)

where

�k,⇥k =
1

2

⇤
⌃out
k

⌃in
k

⌅1/2

± 1

2

⇤
⌃in
k

⌃out
k

⌅1/2

(8)

The Bogoliubov coe⇥cients are real as we have chosen the
quench to occur at t = 0, and �k ⇥ ��k and ⇥k ⇥ ⇥�k

due to the spatial symmetry of the plane-wave basis.
Here, we are primarily concerned with the momentum-

space observables, which are the expectation values of
products of time-dependent particle operators of the form
âoutk (t) or its conjugate, as these observables may be
directly observed using standard time-of-flight measure-
ments in experiments. Using equations (3,4,6,8) the par-
ticle operators following the quench take the form

âoutk (t) = uk b̂
out
k (0)e�i�out

k t + vk b̂
out
�k

†(0)ei�
out

k t

= ⇧k(t) b̂
in
k + ⇤k(t) b̂

in
�k

† (9)

âoutk
†(t) = vk b̂

out
�k(0)e

�i�out

k t + uk b̂
out
k

†(0)ei�
out

k t

= ⇤⇥
k(t) b̂

in
�k + ⇧⇥

k(t) b̂
in
k

† (10)

where

⇧k(t) = �ku
out
k e�i�out

k t + ⇥kv
out
k ei�

out

k t, (11)

⇤k(t) = ⇥ku
out
k e�i�out

k t + �kv
out
k ei�

out

k t. (12)

These coe⇥cients are in general complex, as they account
for the time-dependence of the modes, and ⇧k ⇥ ⇧�k and
⇤k ⇥ ⇤�k from spatial symmetry.

III. OBSERVABLES

Using Eqs. (9) and (10) we can calculate the expecta-
tion values of useful operator products. In particular, we
include finite-temperature e�ects by assuming the initial
state of the system prior to the quench (for t < 0) is that
of thermal equilibrium with

nth
k := ⌅b̂ink †b̂ink ⇧ = 1

exp(~⌃in
k /kBT )� 1

, (13)

where kB is the Boltzmann constant and T the initial
temperature, and that there are no correlations

⌅b̂ink †b̂in�k
†⇧ = ⌅b̂ink b̂in�k⇧ = 0. (14)

In fact, for states of a harmonic oscillator (recall the
Hamiltonian is approximately diagonalized in this ba-
sis) only terms of the form ⌅(b̂in†)n(b̂in)n⇧ are non-zero,

and we also find ⌅b̂†kb̂
†
kb̂kb̂k⇧ = 2⌅b̂†kb̂k⇧2, ⌅b̂

†
kb̂

†
k0 b̂kb̂k0⇧ =

⌅b̂†kb̂k⇧⌅b̂
†
k0 b̂k0⇧ [9].

More simply at zero temperature we have

nth
k = ⌅b̂ink †b̂ink ⇧ = 0 (15)

with all other expectation values of operator products
also being zero in this case.

Mode populations:

We find the density of particles in mode k is given by

⌅n̂k⇧ = ⌅âoutk
†âoutk ⇧

=
�
1 + 2|⇤k(t)|2

⇥
nth
k + |⇤k(t)|2 (16)

where

|⇤k(t)|2 = (voutk )2 + ⇥2
k

�
1 + 2(voutk )2 cos(2⌃out

k t)
⇥
. (17)

The integral of (16) over k represents the depletion of the
condensate. In particular the first term gives the ther-
mal depletion whereas the second term gives the quan-
tum depletion, which is non-zero even at T = 0. The
explicit time-dependence of ⌅n̂k⇧ is due to field excita-
tion following the quench – in particular, the creation of
quasiparticle pairs with populations given by:

⌅n̂quasi
k ⇧ = ⌅b̂outk

†(t)b̂outk (t)⇧ =
�
2⇥2

k + 1
⇥
nth
k + ⇥2

k.

(18)

To see this clearly, it is illustrative to rewrite (16) as:

⌅n̂k⇧ = ⌅n̂quasi
k ⇧+ (voutk )2(1 + 2nth

k )

+2⇥2
k(v

out
k )2 cos(2⌃out

k t) (19)

Only when ⇥2
k > 0 is there any quasiparticle production

starting from either an initial thermal or zero temper-
ature state – that is, the presence of quasiparticle pro-
duction leads to the mode oscillations. It is also worth
noting that in the absence of a quench (17) reduces to
|⇤k(t)|2 ⇤ |vk|2 in which case (16) gives the usual result
⌅n̂k⇧ = (1 + 2(voutk )2)nth

k + (voutk )2 for a time-dependent
Bose gas.

Density-density correlations:

The momentum-space density-density correlations are
defined as:

G(2)
kk0 ⇥ ⌅â†kâ

†
k0 âkâk0⇧ = ⌅n̂kn̂k0⇧ � ⌅k,k0⌅â†kâk⇧. (20)

The time-dependent density-density correlations for the
field fluctuations after the quench are found from

G(2)
k,k0(t) = ⌅âoutk

†(t) âoutk0
†(t) âoutk (t) âoutk0 (t)⇧. (21)
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

4

B. Super-Poissonian statistics

We can rewrite the normalized variance as

V (k,k⇥, t) = 1� ⇥k,k0 � (⇧n̂k⌃ � ⇧n̂k0⌃)2

⇧n̂k⌃+ ⇧n̂k0⌃ +

+
G(2)

k,k +G(2)
k0,k0 � 2G(2)

k,k0

⇧n̂k⌃+ ⇧n̂k0⌃ . (25)

As this equation is only applicable for cases k ⌅= k⇥, it
can be shown that sub-Poissonian statistics requires

G(2)
k,k +G(2)

k0k0 � 2G(2)
kk0 < (⇧n̂k⌃ � ⇧n̂k0⌃)2. (26)

Notice, that this already tells us — and we will confirm
this later when evaluating V (k, k⇥, t) — that there is
no entanglement between two modes k and k⇥ ⌅= �k.
Only pair-particle production involving the modes k and
�k is consistent with the spatial symmetry of the system.

Silke: not sure if this shows us there is no entan-
glement, still depends on the values of ⇧n̂k⌃ and ⇧n̂k0⌃
doesn’t it?

For the interaction quench considered in Secs. II and
III we can explicitly calculate the normalized variance
given by equation (25). It is instructive to first consider
the case of zero initial temperature for which we find for
k⇥ ⌅= |k|, that

V (k,k⇥ ⌅= �k, t) = 1 +
⇧n̂k⌃2 + ⇧n̂k0⌃2

⇧n̂k⌃+ ⇧n̂k0⌃ ⇥ 1, (27)

Therefore the two mode variance is indicative of super-
Poissonian statistics — there is no entanglement between
the modes.

C. Sub-poissonian statistics

The situation is di�erent for modes k and k⇥ = �k,
where we find

V (k,k⇥ = �k, t) = 1 +
G(2)

k,k �G(2)
k,�k

⇧n̂k⌃

= 1�
�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2

⇧n̂k⌃

The first line shows that sub-Poissonian statistics is in
this case entirely equivalent to violation of the Cauchy-
Schwarz inequality as noted previously [? ].

Moreover in the zero temperature limit, nth
k ⇤ 0 so

that ⇧n̂k⌃ ⇤ |�k(t)|2, and V (k,�k, t) = 0. Thus starting
from the vacuum the fluctuations are always described
by non-classical behavior.
Silke: we need to say more about this. I think it is
significant that at T = 0 we have non-classical statistics
that are larger than some quenches, ie. for h < 1. This
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FIG. 2: (Color online) V (k,�k, ) for a number of di�erent of
di�erent quench magnitudes and at temperatures T = 0.44
and T = 1. Also shown for comparison is the condition
V (k,�k) = 1, the border between super- and sub-Poissonian
statistics.

is where it would be very interesting to look at the result
for parametric resonance.

To align our results with possible experimental obser-
vations, we will consider the integrated density-density
correlations and integrated two-mode variance, defined
by the time-averaged quantity in each case respectively.
The reason for time-averaging is simply that a time-of-

flight observation of the correlation function G(2)
k,k0(t) is

likely to be integrated over many modes in the transverse
direction, each mode having an independent phase o�set.
Henceforth we denote the integrated density-density cor-
relation and two-mode variance (by dropping the time-

dependence) as G(2)
k,k0 and V (k,k⇥) respectively.

Figs. 2 (a) and (b) show V (k,�k, ) for a number of
di�erent of di�erent quench magnitudes and at temper-
atures T = 0.44 and T = 1. In the former case, the
two mode variance exhibits sub-Poissonian statistics ev-
erywhere, whereas in the latter case, this is only true for
quenches h > 1. We also can construct phase diagrams
as shown in Figs. 3 (a), (b) and (c).
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

Time of flight measurements

sub-P statistics = Violation Cauchy-Schwarz inequality

Two mode statistics

• Two mode variance 
 
 

• Bogoliubov theory result: 
 
 

• Correlators: 

2

At the quench time we have the conditions âink (0) =
âoutk (0) and âin�k(0)

† = âout�k(0)
† [8], and consequently

we can express the out-operators in terms of the in-
operators,

b̂outk (0) = �k b̂
in
k (0) + ⇥k b̂

in
�k

†(0); (6)

b̂outk
†(0) = ⇥k b̂

in
�k(0) + �k b̂

in
k

†(0), (7)

where

�k,⇥k =
1

2

⇤
⌃out
k

⌃in
k

⌅1/2

± 1

2

⇤
⌃in
k

⌃out
k

⌅1/2

(8)

The Bogoliubov coe⇥cients are real as we have chosen the
quench to occur at t = 0, and �k ⇥ ��k and ⇥k ⇥ ⇥�k

due to the spatial symmetry of the plane-wave basis.
Here, we are primarily concerned with the momentum-

space observables, which are the expectation values of
products of time-dependent particle operators of the form
âoutk (t) or its conjugate, as these observables may be
directly observed using standard time-of-flight measure-
ments in experiments. Using equations (3,4,6,8) the par-
ticle operators following the quench take the form

âoutk (t) = uk b̂
out
k (0)e�i�out

k t + vk b̂
out
�k

†(0)ei�
out

k t

= ⇧k(t) b̂
in
k + ⇤k(t) b̂

in
�k

† (9)

âoutk
†(t) = vk b̂

out
�k(0)e

�i�out

k t + uk b̂
out
k

†(0)ei�
out

k t

= ⇤⇥
k(t) b̂

in
�k + ⇧⇥

k(t) b̂
in
k

† (10)

where

⇧k(t) = �ku
out
k e�i�out

k t + ⇥kv
out
k ei�

out

k t, (11)

⇤k(t) = ⇥ku
out
k e�i�out

k t + �kv
out
k ei�

out

k t. (12)

These coe⇥cients are in general complex, as they account
for the time-dependence of the modes, and ⇧k ⇥ ⇧�k and
⇤k ⇥ ⇤�k from spatial symmetry.

III. OBSERVABLES

Using Eqs. (9) and (10) we can calculate the expecta-
tion values of useful operator products. In particular, we
include finite-temperature e�ects by assuming the initial
state of the system prior to the quench (for t < 0) is that
of thermal equilibrium with

nth
k := ⌅b̂ink †b̂ink ⇧ = 1

exp(~⌃in
k /kBT )� 1

, (13)

where kB is the Boltzmann constant and T the initial
temperature, and that there are no correlations

⌅b̂ink †b̂in�k
†⇧ = ⌅b̂ink b̂in�k⇧ = 0. (14)

In fact, for states of a harmonic oscillator (recall the
Hamiltonian is approximately diagonalized in this ba-
sis) only terms of the form ⌅(b̂in†)n(b̂in)n⇧ are non-zero,

and we also find ⌅b̂†kb̂
†
kb̂kb̂k⇧ = 2⌅b̂†kb̂k⇧2, ⌅b̂

†
kb̂

†
k0 b̂kb̂k0⇧ =

⌅b̂†kb̂k⇧⌅b̂
†
k0 b̂k0⇧ [9].

More simply at zero temperature we have

nth
k = ⌅b̂ink †b̂ink ⇧ = 0 (15)

with all other expectation values of operator products
also being zero in this case.

Mode populations:

We find the density of particles in mode k is given by

⌅n̂k⇧ = ⌅âoutk
†âoutk ⇧

=
�
1 + 2|⇤k(t)|2

⇥
nth
k + |⇤k(t)|2 (16)

where

|⇤k(t)|2 = (voutk )2 + ⇥2
k

�
1 + 2(voutk )2 cos(2⌃out

k t)
⇥
. (17)

The integral of (16) over k represents the depletion of the
condensate. In particular the first term gives the ther-
mal depletion whereas the second term gives the quan-
tum depletion, which is non-zero even at T = 0. The
explicit time-dependence of ⌅n̂k⇧ is due to field excita-
tion following the quench – in particular, the creation of
quasiparticle pairs with populations given by:

⌅n̂quasi
k ⇧ = ⌅b̂outk

†(t)b̂outk (t)⇧ =
�
2⇥2

k + 1
⇥
nth
k + ⇥2

k.

(18)

To see this clearly, it is illustrative to rewrite (16) as:

⌅n̂k⇧ = ⌅n̂quasi
k ⇧+ (voutk )2(1 + 2nth

k )

+2⇥2
k(v

out
k )2 cos(2⌃out

k t) (19)

Only when ⇥2
k > 0 is there any quasiparticle production

starting from either an initial thermal or zero temper-
ature state – that is, the presence of quasiparticle pro-
duction leads to the mode oscillations. It is also worth
noting that in the absence of a quench (17) reduces to
|⇤k(t)|2 ⇤ |vk|2 in which case (16) gives the usual result
⌅n̂k⇧ = (1 + 2(voutk )2)nth

k + (voutk )2 for a time-dependent
Bose gas.

Density-density correlations:

The momentum-space density-density correlations are
defined as:

G(2)
kk0 ⇥ ⌅â†kâ

†
k0 âkâk0⇧ = ⌅n̂kn̂k0⇧ � ⌅k,k0⌅â†kâk⇧. (20)

The time-dependent density-density correlations for the
field fluctuations after the quench are found from

G(2)
k,k0(t) = ⌅âoutk

†(t) âoutk0
†(t) âoutk (t) âoutk0 (t)⇧. (21)
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

4

B. Super-Poissonian statistics

We can rewrite the normalized variance as

V (k,k⇥, t) = 1� ⇥k,k0 � (⇧n̂k⌃ � ⇧n̂k0⌃)2

⇧n̂k⌃+ ⇧n̂k0⌃ +

+
G(2)

k,k +G(2)
k0,k0 � 2G(2)

k,k0

⇧n̂k⌃+ ⇧n̂k0⌃ . (25)

As this equation is only applicable for cases k ⌅= k⇥, it
can be shown that sub-Poissonian statistics requires

G(2)
k,k +G(2)

k0k0 � 2G(2)
kk0 < (⇧n̂k⌃ � ⇧n̂k0⌃)2. (26)

Notice, that this already tells us — and we will confirm
this later when evaluating V (k, k⇥, t) — that there is
no entanglement between two modes k and k⇥ ⌅= �k.
Only pair-particle production involving the modes k and
�k is consistent with the spatial symmetry of the system.

Silke: not sure if this shows us there is no entan-
glement, still depends on the values of ⇧n̂k⌃ and ⇧n̂k0⌃
doesn’t it?

For the interaction quench considered in Secs. II and
III we can explicitly calculate the normalized variance
given by equation (25). It is instructive to first consider
the case of zero initial temperature for which we find for
k⇥ ⌅= |k|, that

V (k,k⇥ ⌅= �k, t) = 1 +
⇧n̂k⌃2 + ⇧n̂k0⌃2

⇧n̂k⌃+ ⇧n̂k0⌃ ⇥ 1, (27)

Therefore the two mode variance is indicative of super-
Poissonian statistics — there is no entanglement between
the modes.

C. Sub-poissonian statistics

The situation is di�erent for modes k and k⇥ = �k,
where we find

V (k,k⇥ = �k, t) = 1 +
G(2)

k,k �G(2)
k,�k

⇧n̂k⌃

= 1�
�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2

⇧n̂k⌃

The first line shows that sub-Poissonian statistics is in
this case entirely equivalent to violation of the Cauchy-
Schwarz inequality as noted previously [? ].

Moreover in the zero temperature limit, nth
k ⇤ 0 so

that ⇧n̂k⌃ ⇤ |�k(t)|2, and V (k,�k, t) = 0. Thus starting
from the vacuum the fluctuations are always described
by non-classical behavior.
Silke: we need to say more about this. I think it is
significant that at T = 0 we have non-classical statistics
that are larger than some quenches, ie. for h < 1. This
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FIG. 2: (Color online) V (k,�k, ) for a number of di�erent of
di�erent quench magnitudes and at temperatures T = 0.44
and T = 1. Also shown for comparison is the condition
V (k,�k) = 1, the border between super- and sub-Poissonian
statistics.

is where it would be very interesting to look at the result
for parametric resonance.

To align our results with possible experimental obser-
vations, we will consider the integrated density-density
correlations and integrated two-mode variance, defined
by the time-averaged quantity in each case respectively.
The reason for time-averaging is simply that a time-of-

flight observation of the correlation function G(2)
k,k0(t) is

likely to be integrated over many modes in the transverse
direction, each mode having an independent phase o�set.
Henceforth we denote the integrated density-density cor-
relation and two-mode variance (by dropping the time-

dependence) as G(2)
k,k0 and V (k,k⇥) respectively.

Figs. 2 (a) and (b) show V (k,�k, ) for a number of
di�erent of di�erent quench magnitudes and at temper-
atures T = 0.44 and T = 1. In the former case, the
two mode variance exhibits sub-Poissonian statistics ev-
erywhere, whereas in the latter case, this is only true for
quenches h > 1. We also can construct phase diagrams
as shown in Figs. 3 (a), (b) and (c).
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

Time of flight measurements

sub-P statistics = Violation Cauchy-Schwarz inequality

Two mode statistics

• Two mode variance 
 
 

• Bogoliubov theory result: 
 
 

• Correlators: 

2

At the quench time we have the conditions âink (0) =
âoutk (0) and âin�k(0)

† = âout�k(0)
† [8], and consequently

we can express the out-operators in terms of the in-
operators,

b̂outk (0) = �k b̂
in
k (0) + ⇥k b̂

in
�k

†(0); (6)

b̂outk
†(0) = ⇥k b̂

in
�k(0) + �k b̂

in
k

†(0), (7)

where

�k,⇥k =
1

2

⇤
⌃out
k

⌃in
k

⌅1/2

± 1

2

⇤
⌃in
k

⌃out
k

⌅1/2

(8)

The Bogoliubov coe⇥cients are real as we have chosen the
quench to occur at t = 0, and �k ⇥ ��k and ⇥k ⇥ ⇥�k

due to the spatial symmetry of the plane-wave basis.
Here, we are primarily concerned with the momentum-

space observables, which are the expectation values of
products of time-dependent particle operators of the form
âoutk (t) or its conjugate, as these observables may be
directly observed using standard time-of-flight measure-
ments in experiments. Using equations (3,4,6,8) the par-
ticle operators following the quench take the form

âoutk (t) = uk b̂
out
k (0)e�i�out

k t + vk b̂
out
�k

†(0)ei�
out

k t

= ⇧k(t) b̂
in
k + ⇤k(t) b̂

in
�k

† (9)

âoutk
†(t) = vk b̂

out
�k(0)e

�i�out

k t + uk b̂
out
k

†(0)ei�
out

k t

= ⇤⇥
k(t) b̂

in
�k + ⇧⇥

k(t) b̂
in
k

† (10)

where

⇧k(t) = �ku
out
k e�i�out

k t + ⇥kv
out
k ei�

out

k t, (11)

⇤k(t) = ⇥ku
out
k e�i�out

k t + �kv
out
k ei�

out

k t. (12)

These coe⇥cients are in general complex, as they account
for the time-dependence of the modes, and ⇧k ⇥ ⇧�k and
⇤k ⇥ ⇤�k from spatial symmetry.

III. OBSERVABLES

Using Eqs. (9) and (10) we can calculate the expecta-
tion values of useful operator products. In particular, we
include finite-temperature e�ects by assuming the initial
state of the system prior to the quench (for t < 0) is that
of thermal equilibrium with

nth
k := ⌅b̂ink †b̂ink ⇧ = 1

exp(~⌃in
k /kBT )� 1

, (13)

where kB is the Boltzmann constant and T the initial
temperature, and that there are no correlations

⌅b̂ink †b̂in�k
†⇧ = ⌅b̂ink b̂in�k⇧ = 0. (14)

In fact, for states of a harmonic oscillator (recall the
Hamiltonian is approximately diagonalized in this ba-
sis) only terms of the form ⌅(b̂in†)n(b̂in)n⇧ are non-zero,

and we also find ⌅b̂†kb̂
†
kb̂kb̂k⇧ = 2⌅b̂†kb̂k⇧2, ⌅b̂

†
kb̂

†
k0 b̂kb̂k0⇧ =

⌅b̂†kb̂k⇧⌅b̂
†
k0 b̂k0⇧ [9].

More simply at zero temperature we have

nth
k = ⌅b̂ink †b̂ink ⇧ = 0 (15)

with all other expectation values of operator products
also being zero in this case.

Mode populations:

We find the density of particles in mode k is given by

⌅n̂k⇧ = ⌅âoutk
†âoutk ⇧

=
�
1 + 2|⇤k(t)|2

⇥
nth
k + |⇤k(t)|2 (16)

where

|⇤k(t)|2 = (voutk )2 + ⇥2
k

�
1 + 2(voutk )2 cos(2⌃out

k t)
⇥
. (17)

The integral of (16) over k represents the depletion of the
condensate. In particular the first term gives the ther-
mal depletion whereas the second term gives the quan-
tum depletion, which is non-zero even at T = 0. The
explicit time-dependence of ⌅n̂k⇧ is due to field excita-
tion following the quench – in particular, the creation of
quasiparticle pairs with populations given by:

⌅n̂quasi
k ⇧ = ⌅b̂outk

†(t)b̂outk (t)⇧ =
�
2⇥2

k + 1
⇥
nth
k + ⇥2

k.

(18)

To see this clearly, it is illustrative to rewrite (16) as:

⌅n̂k⇧ = ⌅n̂quasi
k ⇧+ (voutk )2(1 + 2nth

k )

+2⇥2
k(v

out
k )2 cos(2⌃out

k t) (19)

Only when ⇥2
k > 0 is there any quasiparticle production

starting from either an initial thermal or zero temper-
ature state – that is, the presence of quasiparticle pro-
duction leads to the mode oscillations. It is also worth
noting that in the absence of a quench (17) reduces to
|⇤k(t)|2 ⇤ |vk|2 in which case (16) gives the usual result
⌅n̂k⇧ = (1 + 2(voutk )2)nth

k + (voutk )2 for a time-dependent
Bose gas.

Density-density correlations:

The momentum-space density-density correlations are
defined as:

G(2)
kk0 ⇥ ⌅â†kâ

†
k0 âkâk0⇧ = ⌅n̂kn̂k0⇧ � ⌅k,k0⌅â†kâk⇧. (20)

The time-dependent density-density correlations for the
field fluctuations after the quench are found from

G(2)
k,k0(t) = ⌅âoutk

†(t) âoutk0
†(t) âoutk (t) âoutk0 (t)⇧. (21)
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

4

B. Super-Poissonian statistics

We can rewrite the normalized variance as

V (k,k⇥, t) = 1� ⇥k,k0 � (⇧n̂k⌃ � ⇧n̂k0⌃)2

⇧n̂k⌃+ ⇧n̂k0⌃ +

+
G(2)

k,k +G(2)
k0,k0 � 2G(2)

k,k0

⇧n̂k⌃+ ⇧n̂k0⌃ . (25)

As this equation is only applicable for cases k ⌅= k⇥, it
can be shown that sub-Poissonian statistics requires

G(2)
k,k +G(2)

k0k0 � 2G(2)
kk0 < (⇧n̂k⌃ � ⇧n̂k0⌃)2. (26)

Notice, that this already tells us — and we will confirm
this later when evaluating V (k, k⇥, t) — that there is
no entanglement between two modes k and k⇥ ⌅= �k.
Only pair-particle production involving the modes k and
�k is consistent with the spatial symmetry of the system.

Silke: not sure if this shows us there is no entan-
glement, still depends on the values of ⇧n̂k⌃ and ⇧n̂k0⌃
doesn’t it?

For the interaction quench considered in Secs. II and
III we can explicitly calculate the normalized variance
given by equation (25). It is instructive to first consider
the case of zero initial temperature for which we find for
k⇥ ⌅= |k|, that

V (k,k⇥ ⌅= �k, t) = 1 +
⇧n̂k⌃2 + ⇧n̂k0⌃2

⇧n̂k⌃+ ⇧n̂k0⌃ ⇥ 1, (27)

Therefore the two mode variance is indicative of super-
Poissonian statistics — there is no entanglement between
the modes.

C. Sub-poissonian statistics

The situation is di�erent for modes k and k⇥ = �k,
where we find

V (k,k⇥ = �k, t) = 1 +
G(2)

k,k �G(2)
k,�k

⇧n̂k⌃

= 1�
�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2

⇧n̂k⌃

The first line shows that sub-Poissonian statistics is in
this case entirely equivalent to violation of the Cauchy-
Schwarz inequality as noted previously [? ].

Moreover in the zero temperature limit, nth
k ⇤ 0 so

that ⇧n̂k⌃ ⇤ |�k(t)|2, and V (k,�k, t) = 0. Thus starting
from the vacuum the fluctuations are always described
by non-classical behavior.
Silke: we need to say more about this. I think it is
significant that at T = 0 we have non-classical statistics
that are larger than some quenches, ie. for h < 1. This
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FIG. 2: (Color online) V (k,�k, ) for a number of di�erent of
di�erent quench magnitudes and at temperatures T = 0.44
and T = 1. Also shown for comparison is the condition
V (k,�k) = 1, the border between super- and sub-Poissonian
statistics.

is where it would be very interesting to look at the result
for parametric resonance.

To align our results with possible experimental obser-
vations, we will consider the integrated density-density
correlations and integrated two-mode variance, defined
by the time-averaged quantity in each case respectively.
The reason for time-averaging is simply that a time-of-

flight observation of the correlation function G(2)
k,k0(t) is

likely to be integrated over many modes in the transverse
direction, each mode having an independent phase o�set.
Henceforth we denote the integrated density-density cor-
relation and two-mode variance (by dropping the time-

dependence) as G(2)
k,k0 and V (k,k⇥) respectively.

Figs. 2 (a) and (b) show V (k,�k, ) for a number of
di�erent of di�erent quench magnitudes and at temper-
atures T = 0.44 and T = 1. In the former case, the
two mode variance exhibits sub-Poissonian statistics ev-
erywhere, whereas in the latter case, this is only true for
quenches h > 1. We also can construct phase diagrams
as shown in Figs. 3 (a), (b) and (c).
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FIG. 1: (Color online) Momentum-space density-density

correlations G(2)
k,k(t)/�n̂k⇥

2
and G(2)

k,�k(t)/�n̂k⇥
2

following a
quench of magnitude h = 0.1 at three di�erent temperatures:
a) T = 0.5; b) T = 1; and c) T = 5. Nb. �n̂k⇥ is the time-
averaged value of �n̂k⇥.

After a lengthy, but straightforward calculation, and
by employing the identity |⇥k(t)|2 � |�k(t)|2 = 1, we find

the normal-ordered density-density correlations:

G(2)
k,k0(t)

⇤
⇧

⌅

⇤n̂k⌅⇤n̂k0⌅, k⇥ ⇥= |k|
2⇤n̂k⌅2, k⇥ = k
2⇤n̂k⌅2 +

�
1 + 2nth

k

⇥
|�k(t)|2 � (nth

k )2, k⇥ = �k
.

(22)

Fig. 1 shows G(2)
k,k(t) and G(2)

k,�k(t) following a quench
of magnitude h = 0.1 at three di�erent temperatures.
Several features are worth noting: first, the term |�k(t)|2
leads to an explicit time-dependence of the correlation

functions; second, at low temperatures we find G(2)
k,k(t) <

G(2)
k,�k(t) whereas at higher temperatures G(2)

k,k(t) >

G(2)
k,�k(t). As we shall see in the next section, the for-

mer case is the behaviour that underlies the presence of
non-classical statistics in the system.

IV. NON-CLASSICAL STATISTICS

The presence of non-classical statistics of field fluctu-
ations can only be understood in the context of quan-
tum phenomena. Well-known examples of this from the
field of quantum optics include violations of the Cauchy-
Schwarz inequality or Bell’s inequality [7]. In the present
case, non-classical correlations arise either from the ini-
tial squeezed low temperature state or from quasiparticle
production following the quench, both which entail pair-
ing of modes of opposite momenta (ie. k and �k). As we
shall see it is the number fluctuations between two such
modes where non-classicality may be observed.

A. Two mode variance

If the fluctuations in the occupation numbers in the
bosonic operators, â†i (t) and âj(t) where (i, j = k,k⇥),
have a classical stochastic process underlying it, i.e. a
positive definite probability distribution for the mode oc-
cupation numbers ⇤n̂j(t)⌅ = ⇤â†j(t)âj(t)⌅, the normalized
two mode variance V (k,k⇥, t) is defined by

V (k,k⇥, t) =
⇤(n̂k(t)� n̂k0(t))2⌅ � ⇤n̂k(t)� n̂k0(t)⌅2

⇤n̂k(t)⌅+ ⇤n̂k0(t)⌅
(23)

where k ⇥= k⇥. If this quantity is greater than, equal or
less than to unity we can characterize two-mode radiation
process respectively as follows:

V (k,k⇥, t)

⇤
⇧

⌅

> 1 super-Poissonian
= 1 Poissonian
< 1 sub-Poissonian

. (24)

Sub-poissonian statistics for the two mode variance
are indicative of non-classical states, and in particular,
squeezed number fluctuations between the modes k and
�k.

Time of flight measurements

sub-P statistics = Violation Cauchy-Schwarz inequality

auto-correlations versus cross-correlations

ALL CLASSICAL 
due to finite 
temperature 

effects!



Why is it useful..? quantum versus classical

(i) we need to gain more insights into the difficulties in generating quantum-
correlated (entangled) pairs of phonons in such a controllable setting, and then 
try to apply our findings to cosmology;!
(ii) we should be able to apply the mechanisms behind cosmological particle 
production for quantum information purposes, or at least to enhance our 
understanding of entanglement in weakly interaction systems (e.g. thermalization 
versus loss of non-classical behavior due to interaction);

Up until now: !
we have not managed to mimic any 
quantum aspect of field theory in 
curved spacetimes!!!



Cosmology inspired ultra-cold atom experiments

Atom-chips: Prof. Joerg Schmiedmayer and Prof. Peter Kruger

highly 
controllable 
atom traps 

More experiments planned: Chris 
Westbrook (e.g. repeat the experiment 
looking for non-classical correlations...)



Superradiant scattering in the laboratory

2.4 Rotating black holes 37

black hole cannot exhibit an ergoregion.)
While from an astrophysical point of view the Kerr black hole is of immense interest as the rem-

nant of a collapsed star, the acoustic analogue focuses on the classical and quantum effects in the
vicinity of the ergoregion.

2.4.2 | The ergosphere
The ergosphere represents a spacetime region where the angular velocity of the rotating black hole
is high enough to “drag the surrounding space along with the velocity of light”. Any observer or parti-
cle entering this region can no longer remain in a non-rotating orbit — regardless of how much force
is applied. It will be dragged along with the rotating spacetime. However, as the observer / object is
still outside the event horizon r ≥ r+, it is in principle possible to escape to infinity.

In 1969 Roger Penrose [148] discovered that it is possible to extract energy from rotating black
holes. This mechanism is referred to as the Penrose effect (its field theory analogue is referred to
as superradiant scattering) and can be understood as follows [196].
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Figure 2.4: Illustration of the superradiance scattering in the ergoregion of a rotating black hole. (The
figure shows a projection of the black hole onto some θ = constant plane, for θ = π/2.)

Consider a particle — starting far away from the rotating black hole — that is freely falling into the
ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
field ξa. It is possible to establish a relationship between time translation in the Kerr geometry, and a
conserved and well-defined energy far away (due to asymptotic flatness) from the black hole, such
that E0 = −paξa; see Noether’s theorem for example in [150] . Here pa is the 4-momentum of the
test particle. As pointed out in the introduction, there are no forces acting on a freely falling particle,
so that the energy remains constant when the particle is approaching the black hole. The particle
has been prepared such that it will be broken up into two fragments (e.g., employing explosives and
a timing device), once it enters the ergoregion. Conservation of energy-momentum pa

0 = pa
1 + pa
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!
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B2 Extended Synopsis of the scientific proposal (15 sides)

In the beginning of the 20th century two new theories appeared, that radically changed our un-
derstanding of the physical world. In 1916 Einstein introduced general relativity, which was to replace
Newton’s theory of gravitation. General relativity was not only able to explain terrestrial gravity
and the motion of astronomical bodies, as Newton’s theory, but it also made exciting new predictions
such as the correct bending of light rays by the gravitational field, the expansion of the universe,
and the existence of black holes. Most of these predictions have by now been verified. The reason
why Einstein’s theory brought a paradigm shift in physics is that it no longer attributed gravitational
attraction to a force between masses. Instead, it proposed that spacetime, a 4-dimensional continuum
that combines 3-dimensional space with time, can be curved and that this is the cause for gravitational
acceleration.
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 In the beginning of 20th century two new theories appeared, that radically changed 
our understanding of the physical world. In 1916 Einstein introduced general relativity, 
which was to replace Newton's theory of gravitation. General relativity was not only able to 
explain terrestrial gravity and the motion of astronomical bodies, as Newton's theory, but it 
also made exciting new predictions such as the correct bending of light rays by the 
gravitational field, the expansion of the universe, and the existence of black holes. Most of 
these predictions have by now been verified. The reason why Einstein's theory brought a 
paradigm shift in physics is that it no longer attributed gravitational attraction to a force 
between masses. Instead, it proposed that spacetime, a 4-dimensional continuum that 
combines 3-dimensional space with time, can be curved and that this is the cause for 
gravitational acceleration.

In the same period the scientific community was beginning to realize that matter at atomic 
and sub-atomic scales exhibits unexpected behavior and that physical quantities associated 
to it appear to change in discrete amounts, referred to as quanta. The precise description of 
matter at these scales required the introduction of a new theory, quantum theory, which was 
pioneered by Heisenberg, Born, Bohr and Pauli. Quantum theory predicted a series of new 
effects, collectively termed quantum effects. Quantum effects have been detected in various 
experiments and nowadays the applications of quantum theory range from astrophysics to 
electronic engineering.

Quantum theory and general relativity set the foundations of modern physics, but at the 
same time they caused a divide. The former predicts and explains quantum effects but 
ignored spacetime curvature (and hence gravity), whereas the latter describes gravity but 
ignores quantum effects. There are regimes, such as the vicinity of black holes, in which 
both gravity and quantum effects are important, see Fig.1(a). Therefore, the description of 
physical processes taking place in these 
regimes requires a new theory, which 
manages to merge quantum theory and 
general relativity. This theory, dubbed 
"quantum gravity", holds the answers to 
pertinent questions, such as the origin and 
the final fate of our universe. 

The search for quantum gravity is one of 
the grand challenges of modern physics 
for at least 50 years now. I am proposing 
to explore various phenomena of semi-
classical and full quantum gravity in table-
top experiments, and establish various 
fruitful connections between quantum 
gravity and other branches of physics. In 
contrast to many other proposals in 
quantum gravity, the project objectives are 
not only theoretical, but also of 
experimental nature. The scientific goals 
are to study the robustness and 
universality of (rotating) black hole 
phenomena in bathtub vortex flows, see Fig.1(b); stronger-than-classical quasi-particle 
production in an effectively expanding universe in Bose-Einstein condensates (BECs); and 
last but not least the possibility to emerge a smooth geometry from a quantum-mechanical 
systems.
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FIG.1 Black holes, accessible regions of no escape 
surrounded by an event horizon. From an 
astrophysical point of view it is essential to study 
rotating black holes, since any realistic gravitational 
collapse is not spherically symmetric, and therefore 
leads to the formation of a black hole with non-zero 
angular momentum. Rotating black holes (a) exhibit 
an ergosphere, that is a spacetime region where the 
angular velocity of the rotating black hole is high 
enough to “drag the surrounding space along with 
the velocity of light”. A bathtub vortex flow (b) can be 

(a) (b)

Figure 1: (a) Black holes, accessible regions of no
escape surrounded by an event horizon. It is essen-
tial to study rotating black holes, since any realistic
gravitational collapse is not spherically symmetric,
and therefore leads to the formation of a black hole
with non-zero angular momentum. Rotating black
holes exhibit an ergosphere, that is a spacetime
region where the angular velocity of the rotating
black hole is high enough to “drag the surrounding
space along with the velocity of light”. (b) A bath-
tub vortex flow can be used to mimic some of the
e↵ects predicted to arise in the vicinity of rotating
black holes, such as the processes responsible to re-
duce the mass and angular momentum of the black
hole.

In the same period the scientific community
was beginning to realize that matter at atomic
and sub-atomic scales exhibits unexpected be-
havior and that physical quantities associated to
it appear to change in discrete amounts, referred
to as quanta. The precise description of mat-
ter at these scales required the introduction of
a new theory, quantum theory, which was pi-
oneered by Heisenberg, Born, Bohr and Pauli.
Quantum theory predicted a series of new e↵ects,
collectively termed quantum e↵ects. Quantum
e↵ects have been detected in various experiments
and nowadays the applications of quantum the-
ory range from astrophysics to electronic engi-
neering.

Quantum theory and general relativity set the
foundations of modern physics, but at the same
time they caused a divide. The former predicts
and explains quantum e↵ects but ignores space-
time curvature (and hence gravity), whereas the
latter describes gravity but ignores quantum ef-
fects. There are regimes, such as the vicinity of
black holes, in which both gravity and quantum
e↵ects are important, see Fig. 1(b). Therefore,
the description of physical processes taking place in these regimes requires a new theory, which man-
ages to merge quantum theory and general relativity. This theory, dubbed “quantum gravity”, holds
the answers to pertinent questions, such as the origin and the fate of our universe.

The search for quantum gravity is one of the grand challenges of modern physics for at least 50
years now. In the lack of su�cient observational and experimental guidance I am proposing to explore
various phenomena of semi-classical and full quantum gravity in tabletop experiments, and establish
various fruitful connections between quantum gravity and other branches of physics. In contrast to
many other proposals in quantum gravity, the project objectives are not only theoretical, but also of
experimental nature. The scientific goals are to design and carry out analogue gravity experiments
suitable to study (I) the processes responsible for a black hole to evaporate away its mass and angular
momentum and (II) cosmological particle production in our universe; and (III) based on previous
studies I wish to explore the possibility of emerging a smooth geometry from a quantum-mechanical
system. In order to implement my scientific goals I follow a interdisciplinary approach, that will not
only deepen our understanding of quantum gravity, but also establish various useful connections be-
tween various disciplines in physics.
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While from an astrophysical point of view the Kerr black hole is of immense interest as the rem-

nant of a collapsed star, the acoustic analogue focuses on the classical and quantum effects in the
vicinity of the ergoregion.

2.4.2 | The ergosphere
The ergosphere represents a spacetime region where the angular velocity of the rotating black hole
is high enough to “drag the surrounding space along with the velocity of light”. Any observer or parti-
cle entering this region can no longer remain in a non-rotating orbit — regardless of how much force
is applied. It will be dragged along with the rotating spacetime. However, as the observer / object is
still outside the event horizon r ≥ r+, it is in principle possible to escape to infinity.

In 1969 Roger Penrose [148] discovered that it is possible to extract energy from rotating black
holes. This mechanism is referred to as the Penrose effect (its field theory analogue is referred to
as superradiant scattering) and can be understood as follows [196].

E2

E0

E1

Figure 2.4: Illustration of the superradiance scattering in the ergoregion of a rotating black hole. (The
figure shows a projection of the black hole onto some θ = constant plane, for θ = π/2.)

Consider a particle — starting far away from the rotating black hole — that is freely falling into the
ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
field ξa. It is possible to establish a relationship between time translation in the Kerr geometry, and a
conserved and well-defined energy far away (due to asymptotic flatness) from the black hole, such
that E0 = −paξa; see Noether’s theorem for example in [150] . Here pa is the 4-momentum of the
test particle. As pointed out in the introduction, there are no forces acting on a freely falling particle,
so that the energy remains constant when the particle is approaching the black hole. The particle
has been prepared such that it will be broken up into two fragments (e.g., employing explosives and
a timing device), once it enters the ergoregion. Conservation of energy-momentum pa

0 = pa
1 + pa
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2

iW (f, f∗)|ξ0
− 2

∫ ∞

ξ0
Γ(ξ)|f(ξ)|2dξ > 0 and so a sufficient

condition is iW (f, f∗)|ξ0
≥ 0 and Γ(ξ) ≤ 0, ∀ ξ ∈ (ξ0,∞)

(at least one of the inequalities must be strict). On the
other hand, superradiance is impossible if iW (f, f∗)|ξ0

≤
0 and Γ(ξ) ≥ 0, ∀ ξ ∈ (ξ0,∞). In these cases it is suf-
ficient to know the behaviour of the solution near the
boundary ξ0. However, for the most general case, it is
necessary to solve the differential equation (1) to deter-
mine the ocurrance or absence of superradiance.

We will now discuss in detail different physical systems
using the conservation equation (5). We start with the
standard cases of superradiance, i.e. black hole scattering
and Zel’Dovich’s cylinder, before going a step further to
consider analogue spacetimes.

The scattering process of a scalar wave with electric
charge e in a Kerr–Newman background (mass M , charge
Q, specific angular momentum a) is described by a sep-
arable Klein–Gordon field [8],

ψ(t, r, θ,φ) =
f(r)√
r2 + a2

e−iωteimφSℓm(θ), (6)

where m is the azimuthal number index, ℓ is the orbital
number index and Sℓm are the spheroidal harmonics. By
an appropriate change of coordinates,

dξ

dr
=

r2 + a2

∆
, (7)

where ∆ = r2 − 2Mr +Q2 + a2, the Klein–Gordon equa-
tion reduces to (1) with Γ(ξ) = 0 and

V =

(

ω −
am + eQr

r̃2

)2

−λ2 ∆

r̃4
+

∆

r̃3

d

dr

(

∆
d

dr

1

r̃

)

, (8)

where r̃2 = r2 + a2, λ is a separation constant, and r =
r(ξ). Furthermore,

V →
{

ω2, ξ → +∞(r → ∞)
(ω − mΩh − eΦh)2, ξ → −∞(r → r+)

(9)

where r+ = M +
√

M2 − Q2 − a2 is the event horizon,
while Ωh = a/(r2

++a2)2 and Φh = Qr+/(r2
++a2)2 are the

event horizon’s angular velocity and electric potential,
respectively. An incoming wave from +∞, described by
equation (3), is scattered by the black hole. As nothing
can classically escape from it, only ingoing (i.e. group ve-
locity towards the black hole) solutions are allowed near
the horizon,

f(ξ) = T e−i(ω−mΩh−eΦh)ξ, ξ → −∞(r → r+), (10)

where T is the transmission coefficient. From the con-
servation equation (5) we obtain,

|R|2 = 1 −
ω − mΩh − eΦh

ω
|T |2. (11)

This equation reflects the conservation of particle cur-
rent [9]. If ω < mΩh + eΦh, this current is outgoing

at the horizon. Consequently, to obey conservation, the
particle current at infinity must also be outgoing and,
therefore, superradiance must occur. Another way to
understand the physics behind the phenomenon is com-
paring the energies and direction of propagation of the
waves. Far from the black hole, group and phase ve-
locities point in the same direction. However, near the
horizon, the phase velocity of the ingoing wave points
outwards. Consequently, even though the wave is propa-
gating towards the black hole, rotational energy is being
extracted from it, as confirmed by an energy flux calcu-
lation at the horizon [9].

We would like to emphasise the importance of the
boundary condition to the results. Suppose that instead
of having an event horizon, the boundary conditions were
different, such that outgoing waves with amplitude Y
were also allowed. Expression (11) would then become

|R|2 = 1 −
ω − mΩh − eΦh

ω

(

|T |2 − |Y|2
)

. (12)

and, for |T | > |Y|, the condition on ω for superradiance
would be unchanged [18]. This could also be applied to a
rapidly rotating star with an ergoregion. For simplicity,
we assume Kerr–Newman to be the exterior metric and
the surface of the star to be perfectly reflecting, |T | = |Y|.
Consequently, |R| = 1, see for example [10].

A different kind of physical system where superradi-
ance occurs is Zel’Dovich’s rotating cylinder [4]. Follow-
ing the analysis and notation of reference [5], we con-
sider an infinitely long cylinder of radius R rotating in
vaccum with constant angular velocity Ω. The cylinder
has spatially uniform permittivity ϵ(ω) ∈ R, permeability
µ(ω) ∈ R, and electrical conductivity σ ≥ 0. We consider
axial electric modes with k = 0, which are characterized
by the following electric,

E =
γ

ω
(ω − mΩ)

f(r)√
r

e−iωteimφẑ, (13)

and magnetic fields,

B =

(

γ

ωr
(m − ωΩr2)r̂ +

i

ω
φ̂

d

dr

)

f(r)√
r

eimφe−iωt, (14)

where m > 0 is the azimuthal index number and γ is the
Lorentz factor. The radial function f(r) satisfies equa-
tion (1) with r = ξ and effective potentials,

V =

{

ω2 − 4m2−1
4r2 , r > R

ω2 + (1 − ϵµ)(ω − mΩ)2γ2 − 4m2−1
4r2 , r < R

(15)
and

Γ(r) =

{

0, r > R
4πγµσ(ω − mΩ), r < R

. (16)

In the asymptotic limit, a solution to equation (1) is given
by (3). Near r = 0, the only solution for which the elec-
tric and magnetic fields are well behaved is f ∝

√
rrm.

1

R

angular velocity and electric potential 

at the event horizon
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black hole cannot exhibit an ergoregion.)
While from an astrophysical point of view the Kerr black hole is of immense interest as the rem-

nant of a collapsed star, the acoustic analogue focuses on the classical and quantum effects in the
vicinity of the ergoregion.

2.4.2 | The ergosphere
The ergosphere represents a spacetime region where the angular velocity of the rotating black hole
is high enough to “drag the surrounding space along with the velocity of light”. Any observer or parti-
cle entering this region can no longer remain in a non-rotating orbit — regardless of how much force
is applied. It will be dragged along with the rotating spacetime. However, as the observer / object is
still outside the event horizon r ≥ r+, it is in principle possible to escape to infinity.

In 1969 Roger Penrose [148] discovered that it is possible to extract energy from rotating black
holes. This mechanism is referred to as the Penrose effect (its field theory analogue is referred to
as superradiant scattering) and can be understood as follows [196].
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Figure 2.4: Illustration of the superradiance scattering in the ergoregion of a rotating black hole. (The
figure shows a projection of the black hole onto some θ = constant plane, for θ = π/2.)

Consider a particle — starting far away from the rotating black hole — that is freely falling into the
ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
field ξa. It is possible to establish a relationship between time translation in the Kerr geometry, and a
conserved and well-defined energy far away (due to asymptotic flatness) from the black hole, such
that E0 = −paξa; see Noether’s theorem for example in [150] . Here pa is the 4-momentum of the
test particle. As pointed out in the introduction, there are no forces acting on a freely falling particle,
so that the energy remains constant when the particle is approaching the black hole. The particle
has been prepared such that it will be broken up into two fragments (e.g., employing explosives and
a timing device), once it enters the ergoregion. Conservation of energy-momentum pa

0 = pa
1 + pa
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so that the energy remains constant when the particle is approaching the black hole. The particle
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ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
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black hole cannot exhibit an ergoregion.)
While from an astrophysical point of view the Kerr black hole is of immense interest as the rem-

nant of a collapsed star, the acoustic analogue focuses on the classical and quantum effects in the
vicinity of the ergoregion.

2.4.2 | The ergosphere
The ergosphere represents a spacetime region where the angular velocity of the rotating black hole
is high enough to “drag the surrounding space along with the velocity of light”. Any observer or parti-
cle entering this region can no longer remain in a non-rotating orbit — regardless of how much force
is applied. It will be dragged along with the rotating spacetime. However, as the observer / object is
still outside the event horizon r ≥ r+, it is in principle possible to escape to infinity.

In 1969 Roger Penrose [148] discovered that it is possible to extract energy from rotating black
holes. This mechanism is referred to as the Penrose effect (its field theory analogue is referred to
as superradiant scattering) and can be understood as follows [196].
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Figure 2.4: Illustration of the superradiance scattering in the ergoregion of a rotating black hole. (The
figure shows a projection of the black hole onto some θ = constant plane, for θ = π/2.)

Consider a particle — starting far away from the rotating black hole — that is freely falling into the
ergoregion. The Kerr geometry is time-independent, and therefore posesses a time like Killing vector
field ξa. It is possible to establish a relationship between time translation in the Kerr geometry, and a
conserved and well-defined energy far away (due to asymptotic flatness) from the black hole, such
that E0 = −paξa; see Noether’s theorem for example in [150] . Here pa is the 4-momentum of the
test particle. As pointed out in the introduction, there are no forces acting on a freely falling particle,
so that the energy remains constant when the particle is approaching the black hole. The particle
has been prepared such that it will be broken up into two fragments (e.g., employing explosives and
a timing device), once it enters the ergoregion. Conservation of energy-momentum pa

0 = pa
1 + pa
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Experimental verification of superradiant scattering processes.— I propose an 
experiment to study effects occurring around effective horizons in analogue gravity systems, 
such as the Hawking and superradiant scattering processes. To address this issue 
experimentally, we utilize the analogy between waves on the surface of a stationary draining 
fluid/superfluid flows and the behavior of classical and quantum field excitations nearby 
rotating black holes. The proposal is a joint-collaboration with Prof. Joseph Niemela (ICTP, 
head of Applied Mathematics), and carried out at Elettra, the synchrotron accelerator 
facilities nearby Trieste. Over the last couple of years I have put together an experimental 
team consisting of 8 researchers and secured the core funding to carry out this experiment. 
We have designed the water flume currently being under construction, see Fig.3, set up the 
necessary detection mechanism (an imaging technique involving a high resolution camera, 
special PC and a laser system), developed the data analysis tools, and investigated the 
necessary theoretical background [19, 20, 3]. Early 2013 we will be ready to start a series of 
experimental studies in order to:

➡ experimentally verify field theory 
prediction arising from an effective 
(rotating) black hole;

➡ start a series of scattering experiments to 
study multi-scattering experiments of 
surface wave excitations interacting with 
various bathtub vortex flows [3]; 

➡ study instabilities that may arise in such a 
system, similarly the black hole laser 
proposal [22].

Numerical and experimental studies of superfluid bathtub vortex flows.— Bathtub vortex 
flows — i.e. time-independent free surface flows forming when a fluid drains out of a basin 
— are very easy to observe in everyday life [23,24]. It is, therefore, probably surprising that 
they have not been subjected to extensive studies. Instead, relatively few theoretical and 
experimental results have been published in the literature. The exceptions are the following 
textbooks [25, 26, 27] or journal publications [28, 29, 30, 31, 23, 24]. In particular, the 
publications by Andersen et al. [23,24] are worth mentioning. Perhaps, given the lack of 
intense experimental interest already inside the fluid mechanics community, it is only to a 
certain extent surprising that there seems to be neither theoretical nor experimental studies 
on stationary draining superfluid flows.

➡ We need to extend our knowledge from fluid to superfluid bathtub vortex flows to 
initiate pioneer studies on stationary draining superfluid flows. 

Impact.— The experimental verification of superradiant wave-scattering will be the first 
black hole analogue experiment to be carried out. Furthermore, the complex structure of the 
surface wave excitations allow us to get a deeper insight into various multi-scattering 
processes [3] and bathtub vortex flows. Perhaps the biggest scientific challenge is related to 
the pioneer studies on stationary draining superfluid flows. We are the first to embark on 
this subject, trying to resolve a truly fundamental questions in superfluity: how will the 
quantized vortex lines arrange themselves in the presence of a drain hole? 
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FIG.3 Technical drawings of experimental 
setup to observe superradiant scattering 
from a bathtub vortex flow.
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Figure 4: Experimental setup to observe superradiant scattering of surface waves in a bathtub vortex
flow. The experimental setup consists of a 3m x 1.5m x 0.5 m acrylic water channel, and a supporting
steel table. Water is pumped into the channel on both short ends of the flume and drains at the
center. More pictures of the finished setup can be found online www.gravitylaboratory.com.

Methodology and feasibility of project (I).— Over the last couple of years I have put together
an experimental team consisting of various researchers and secured the core funding to carry out this
experiment. We have designed the water flume. In Fig. 2 we show a picture of one of the technical
drawings (top), the actual flume (middle), and the resulting vortex in our setup (bottom). We are
currently working on the necessary detection mechanisms (a one-dimensional and a two-dimensional
imaging technique) to observe small changes in the amplitude of surface waves scattering with the
e↵ective rotating black hole. 2 We have already built a simple wave generator to stimulate the free
surface, but further work is required to generate non-zero azimuthal waves that e�ciently mine the
angular momentum of the e↵ective rotating black hole. Currently we are carrying out a series of
experimental studies in order to:
(a) investigate the wavefront dislocations at the vortex due to the water analogue of the Aharonov-

Bohm e↵ect [18] and deviations thereof due to the presence of an e↵ective ergosphere [9];
(b) experimentally verify field theory prediction arising from an e↵ective (rotating) black hole [21];
(c) start a series of scattering experiments to study multi-scattering experiments of surface waves

interacting with various bathtub vortex flows [20], including Hawking radiation type scattering [12,
28, 34];

(d) study instabilities that may arise in such a system, similarly the black hole laser proposal [8].

Besides the experimental e↵ort, I have been working on the theoretical aspects of superradiance in
analogue gravity systems throughout my scientific career. In particular, we were able to show that
the e↵ective metric obtained from stationary draining fluid flows captures the essential features of
a Kerr black hole (i.e. the most common representation of a rotating black hole) [31], the necessary
and su�cient conditions for superradiant scattering to occur [21], and the influence of dispersion of
superradiant scattering [20]. These studies lay the theoretical foundations for the experiment, and
have helped to improve our understanding of superradiant scattering. I am still exploring some of the
details of the old and new systems for the analogue of superradiance and the Aharonov-Bohm e↵ect:
(i) to improve our estimate for the magnitude of the superradiant amplification our setup in a

realistic scattering scenario of gravity waves on a common draining water vortex, i.e. a more
realistic axisymmetric draining fluid (work in progress);

(ii) to extend our knowledge from fluid to superfluid bathtub vortex flows to pioneer studies on
stationary draining superfluid flows;

(iii) to study the natural occurrence of superradiant scattering, e.g. superradiant scattering from
tornados;

(iv) to explore the possibility of seeing the analogue of the Aharonov-Bohm e↵ect in superfluids,
e.g. Bose–Einstein condensates.

2The improvement of the detection mechanism and the wave generator are already fully funded by the Royal Society
URF Research grant, and will take place in the UK. Once the desired performance is achieved we will move the new
components to Italy.
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Figure 4: Experimental setup to observe superradiant scattering of surface waves in a bathtub vortex
flow. The experimental setup consists of a 3m x 1.5m x 0.5 m acrylic water channel, and a supporting
steel table. Water is pumped into the channel on both short ends of the flume and drains at the
center. More pictures of the finished setup can be found online www.gravitylaboratory.com.

Methodology and feasibility of project (I).— Over the last couple of years I have put together
an experimental team consisting of various researchers and secured the core funding to carry out this
experiment. We have designed the water flume. In Fig. 2 we show a picture of one of the technical
drawings (top), the actual flume (middle), and the resulting vortex in our setup (bottom). We are
currently working on the necessary detection mechanisms (a one-dimensional and a two-dimensional
imaging technique) to observe small changes in the amplitude of surface waves scattering with the
e↵ective rotating black hole. 2 We have already built a simple wave generator to stimulate the free
surface, but further work is required to generate non-zero azimuthal waves that e�ciently mine the
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Aharonov-Bohm-effect water equivalent



Aharonov-Bohm-effect and beyond
13

FIG. 8. Scattering in a DBT (left, the ‘↵� e↵ect’ with � = 1) compared with scattering in the AB e↵ect (right), at couplings
↵ = ↵̃ = 0.5 (upper), 2 (middle) and 4 (lower).

compute �t numerically (for a given C,D) we took two
steps: (i) we found the specific angular momenta l±

⇡

(for
co- and counter-rotating orbits) which give scattering in
the backward direction, ⇥ = ⇡, by solving Eq. (16) nu-
merically with the secant method; (ii) we computed the
time di↵erence numerically by calculating
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✏!0
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where ṫ, �̇, and du/d� are given in Eq. (11) and
(13), the root u

0

is determined from Eq. (17),
and the square parantheses denote the di↵erence be-
tween the integral evaluated on the co- and counter-
rotating orbits. The limiting procedure is re-
quired because the integrals are formally divergent,

whereas the di↵erence is finite and well-defined.
With this procedure, we obtain numerical data
�t/D ⇡ [0,�3.621,�7.235,�10.838,�14.428,�18.009]
for C/D = 0, 0.2, . . . , 0.8, 1.0. The relationship is almost
linear-in-C, and well-fitted by �t ⇠ �18.1C.
To understand the linear relationship, let us now con-

sider a simple approximation in which the time di↵er-
ence is computed along the ‘critical’ orbits (rather than
along the neighboring scattered orbits). The polar angle
� along the orbit is given in terms of the radius r = v�1/2

by

� =
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where 1/v
0

= (r±
c

)2 = |l±
c

|pC2 +D2, and l takes the
values l±

c

[given in Eq. (15)]. The time di↵erence between

Scattering by a draining bathtub 
vortex, Sam R. Dolan!

 and Ednilton S. Oliveira!
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Exp. #6 rotating black holes in a fluid of light

Daniele Faccio

fluid of light: graphene dissolved in methanol
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