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No, an electron is, so far we know, an elementary particle

But what if we have very, very many electrons?

Philip W. Anderson (Higgs mechanism, 1962): ‘More is different’

Collectively, a system with many electrons can exhibit particles that are 
‘smaller’ than an electron: quantum number fractionalization!

Famous example: polyacetylene (Su, Schrieffer, Heeger, 1979) 
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We can create create a kink, a region with two neighbouring double bonds:
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Polyacetylene
To find the charge of the kink, we introduce two of them!

A A
no kink

A A
two kinksB

In a simplified model of polyacetylene, each line (bond!) represents an 
electron. In the second picture, there is one more electron.

The kinks are mobile, and identical. Together they carry charge e, each kink 
itself carries charge e/2! 

If the excitations have ‘smaller’ quantum numbers that the constituent 
particles, one speaks of ‘quantum number fractionalization’



Fractional quantum Hall effect
In 1982, the ‘fractional’ quantum Hall effect was discovered, namely, a 
plateau in the Hall conductance, with fractional value: 

�H =
1

3

e2

h

Tsui et. al, 1982

This effect was explained in 1983 by 
Laughlin. This state has particles with 
fractional charge (e/3) and so-called
‘fractional statistics’, they are neither 
fermions nor bosons! 
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Fractional quantum Hall effect
Many such fractional phases have been observed!

Eisenstein et. al., 1990

Note: odd denominator filling fractions (electrons are fermions)
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How can one determine the size of hail?

The bigger the noise, the lager the size of the hail!

The noise of hail is called ‘shot noise’, the noise of single events.

In the quantum Hall contacts, one let two edges come close, so that the 
particles can ‘tunnel’ from one edge to the other.

The noise in the tunneling current is proportional to the charge of the particles 
that tunnel! 
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Measuring the fractional charge
Schematic setup for a shot-noise experiment:
Send in current via contact A, and measure
the tunneling current at B

A

B

tunneling

Glattli, 1997

The power in the noise is 
proportional to the charge of the 
tunneling particles e⇤

S = e⇤ < It >

Several experiments, in various 
groups, have confirmed the 
existence of fractionally charged
particles!
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Statistics of particles
Exchanging twice, gives double the phase:

 (x1, x2) !  (x2, x1) !  (x1, x2) = e

2i' (x1, x2)

But a double exchange is equivalent to doing nothing: 

So the phase for a single exchange:
+ sign (bosons)
- sign (fermions)
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Statistics of particles in two dimensions
In the argument, we used the third dimension.

In two dimensions, there a double exchange is not the same as doing nothing, 
and arbitrary phases are allowed! Such particles are called anyons.

The theory of the fractional quantum Hall effect predict that the particles with 
fractional charge, also have fractional statistics.

One can calculate the phase if one braids two such particles (Berry phase):

 (w1, w2) !  (w2, w1) = ei⇡/3 (w1, w2)

Detecting fractional statistics has proven to be much harder than fractional 
charge. Attempts using interferometry have been made by several groups.
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Mach Zehnder interferometer

X



Mach Zehnder interferometer

X X can influence
the interference!
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Interference in the quantum Hall effect

�

In the quantum Hall effect, the particles move along the edge. In the 
constrictions, the particles can tunnel from one edge to the other.

To probe statistics, a double point contact setup is an ideal setup, because the 
two path can interfere with each other, leading to so-called Aharonov-Bohm 
oscillations.



More exotic statistics?
In 1987, a quantum Hall state with an even denominator Hall conductance 
was observed!
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More exotic statistics?
In 1987, a quantum Hall state with an even denominator Hall conductance 
was observed!

In 1990, Moore and Read proposed an extraordinary explanation:
a state with anyons that have charge e/4 and exhibit non-abelian statistics!
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Non-abelian statistics
Four e/4 anyons in the Moore-Read state can form two different states,
let’s call them | 0 > and | 1 >. They form a special q-bit, in which we can
use to store quantum information.

Locally, these two states are indistinguishable, the only differences are global 
properties! So perturbations act in the same way on them. This q-bit is stable 
to perturbations.

If the q-bit is so stable, how can we make gates?

One has to perform topologically non-trivial operations, such as braids!
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Braiding non-abelian anyons
The ‘wave function’ of four anyons can be described as follows

 (w1, w2, w3, w4) =

✓
 1

 2

◆

The exchange of two anyons is described by a matrix, not just a phase!

 (w1 $ w3) = M (w1, w2, w3, w4)Exchanging 1 and 3:

Exchanging 2 and 3:  (w2 $ w3) = N (w1, w2, w3, w4)

Changing the order of the exchanges, gives a different result!
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Again, we have topological protection!
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The result does not depend on the details of the exchange.
Again, we have topological protection!

If one uses this in a computation, one has to perform a measurement in the
end. Interferometry can be used for this!
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The interference pattern depends on how many anyons are in the 
interferometer region. 

For an odd number of anyons, the interference vanishes completely. This can 
(in principle!) be used to measure the outcome of the computation. 

There are promising experiments, but they are under (heavy) debate.



Interferometry in the Moore-Read state

X

The interference pattern depends on how many anyons are in the 
interferometer region. 

Bonderson et al., Stern et al.,2006

For an odd number of anyons, the interference vanishes completely. This can 
(in principle!) be used to measure the outcome of the computation. 

Fradkin et al., 1998

There are promising experiments, but they are under (heavy) debate.



Topological quantum computation?
Topological states with non-abelian anyons are rare, and hard to control.

But, recently, similar anyons (Majorana bound states) might have been 
observed in one-dimensional nano-wires. This could give better control on 
the system. 

The anyons of the Moore-Read state are not universal, the phase gate can not 
be constructed in a topological protected way.

States that are rich enough might exist (with conductance 12/5), but no 
experiments have been done to verify this (really hard!)

Topological states are a very interesting alternative to quantum computation, 
because of there inherent robustness, but the field is much behind other 
approaches. 



Conclusions part II
In topological phases, particles with fractional quantum numbers can 
sometimes appear!

Fractionalized particles have been predicted to exist in several 
systems, quantum Hall effect, on surfaces of topological insulators, in 
nano-wire systems (actually, they seem hard to avoid).

Experiments have seen signatures, that point that such particles really 
exist. More conclusive experiments are necessary!

If (once?) they are found, there are many ways to exploit them in very 
interesting devices (theory is way ahead of experiments here)!


