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Motivation

Quantum field theory (QFT) is an extraordinarily successful framework for 
understanding a wide range of physical phenomena:

- quantum electrodynamics (QED)

- standard model of particle physics

- many body theory for condensed matter systems

Precision tests of QED determine the fine structure constant to a part in 108

Efficient approximation schemes are the key to QFT’s success:

- work well when interactions are weak

- strong coupling presents a difficult challenge

- numerical simulations are undermined by fermion sign problem

Gauge theory/gravity duality is a novel gravitational approach 
 

to strongly coupled QFT
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Motivation

Quantum many particle theory works extremely well!

- explains a wide range of physical phenomena in broad classes of materials

- most known materials are in fact well described by established methods
- but there are exceptions...
- physicists want to understand them
- may point the way towards new materials or improved functionality
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Can gauge theory/gravity duality provide new insights?
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Outline

Lecture 1

- strong/weak coupling dualities in physics

- open/closed duality in string theory

- Black branes vs. Dirichlet branes  

- AdS/CFT (anti-de Sitter/conformal field theory) correspondence

Lecture 2 

- scale invariance and quantum critical points

- heavy fermion alloys, high Tc superconductors

- applied AdS/CFT:
- electrical conductivity
- holographic superconductors
- holographic metals
- ....



Electromagnetic duality

Maxwell equations in vacuum

~r · ~E = 0

~r · ~B = 0

~r⇥ ~B =
@ ~E

@t

�~r⇥ ~E =
@ ~B

@t

Exchanging the electric and magnetic fields

gives back the same set of equations

~E �! ~B , ~B �! � ~E



Electromagnetic duality (cont.)

Maxwell equations with sources (both electric and magnetic)

Exchanging the electric and magnetic fields

again gives back the same set of equations

~E �! ~B , ~B �! � ~E

~r · ~E = ⇢e

~r · ~B = ⇢m �~r⇥ ~E =
@ ~B

@t
+ ~Jm

~r⇥ ~B =
@ ~E

@t
+ ~Je

along with the electric and magnetic sources

~Je �! ~Jm , ~Jm �! � ~Je

⇢e �! ⇢m , ⇢m �! �⇢e



Dirac quantization condition

Quantum theory:  The wave function describing a particle with electric

charge e in the presence of a magnetic charge g is well-defined only if

- Quantization of e follows from the existence of magnetic monopoles

- Dual theory has weakly coupled monopoles and strongly coupled electrons

e g = 2⇡~n , (n = 0,±1,±2, . . .)

- Dirac condition implies that monopoles would be strongly coupled in
 

  ordinary electromagnetism

g / 1/e

- In particle physics we study generalizations of electromagnetic theory
 

  where monopoles occur as soliton solutions of the field equations



Five-minute primer on string theory

Replace point particles by one-dimensional strings and attempt to 

work out a quantum theory in flat spacetime.

Does not work unless the space-time has 26 dimensions and even  

then there are instabilities.

Adding fermions (and supersymmetry) leads to a stable theory in

10 dimensional spacetime.



(from A. Sen, 1999)

Consistent string theories in 10 spacetime dimensions

The five string theories are interrelated by a web of strong/weak

coupling string dualities



Open/closed string duality

The same string world-sheet can be interpreted in different ways

Pair of open strings

A given system can have very different descriptions from the point of view 

of open vs. closed strings
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Low-energy limit of string theory

`s

Strings appear point like in low-energy processes

closed (super-)string theory (super-)gravity theory

Type II super-gravity  --  bosonic fields

metric:

R-R tensors:

NS-NS tensor:

dilaton:

F (q)
µ1...µq

q 2 {1, 3, 5}

Hµ⌫�

�

gµ⌫

correspond to massless modes of closed strings



String theory generalization of monopoles

A black p-brane solution of the field equations of 10-d supergravity describes a

space-time where charged matter is confined to a p+1 dimensional hyperplane.

Higher-dimensional generalization of a charged black hole in general relativity.

The allowed charge-to-mass ratio of a black p-brane has an upper bound.

Space-time geometry outside a maximally charged (a.k.a. extremal) 3-brane:

   far field:                   M10         ten-dimensional Minkowski spacetime

   near horizon:      AdS5 x S5   product of 5d anti-de Sitter spacetime and a 5-sphere

String theory contains a variety of higher dimensional objects called p-branes.



Dirichlet 3-brane in IIB string theory

3+1 dimensional hyperplane where open strings can end

D-brane dynamics  ! worldsheet physics of open strings

Polchinski ’95: D-brane carries unit R-R charge! BPS object

20

Dirichlet-branes

D3-brane in IIB string theory

Open strings provide a very different view of p-branes.

Dp-brane:  A p+1 dimensional hyperplane where open strings end.

Low-energy limit Yang-Mills gauge theory

Dp-brane dynamics physics of open strings



N coincident D3 branes ! extremal 3-brane of R-R charge = N

Low energy dynamics: massless string modes

closed strings ! d = 10 IIB supergravity (+↵0 corrections)

open strings ! d = 4, N = 4 supersymmetric
U(N) Yang-Mills theory (+↵0 corrections)

Note: U(N) = U(1)⇥ SU(N)

"
center of mass d.o.f.
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Multiple coincident D3-branes

Low-energy dynamics             massless open string modes

d = 4 , N = 4 supersymmetric U(N) Yang-Mills theory

d = 10, Type IIB supergravity in AdS5 x S5 background

Closed string description



AdS/CFT correspondence

N = 4 supersymmetric
 

U(N) Yang-Mills theory

in 3+1 dimensions

supergravity 

in AdS5 x S5 

background 

-  strong/weak coupling duality so it is difficult to prove

-  the original AdS/CFT conjecture has passed numerous tests and 

   has been generalized in many directions 



AdS/CFT prescription

Relates QFT correlation function to string amplitude in AdS5 background

Zstring

⇥{�i}
⇤
=

⌧
exp{

Z
d

4
x

X

i

˜

�i(~x)Oi(~x)}
�

QFT

String theory partition function QFT generating functional

is a field (string mode) in AdS5 background�i(~x, r)

�̃(~x) = lim
r!1

�i(~x, r) boundary value

is a local operator in QFTOi(~x)

Holographic dictionary: metric

gauge potential conserved current

energy momentum tensorgµ⌫  ! Tµ⌫

Aµ  ! Jµ

Both sides of the prescription require regularization & renormalization

...



Two sides of AdS-CFT

1. Quantum gravity via gauge theory

• emergent spacetime

• Hawking information paradox

2. Gravitational approach to strongly coupled field theories

• strongly coupled QFT in D spacetime dimensions
equivalent to weakly coupled gravity in D+1 dimensions

• recipe for correlation functions at finite temperature

• transport coefficients, damping rates

• involves novel black hole geometries



Applied AdS-CFT

Investigate strongly coupled quantum field theories via classical gravity

- growing list of applications:

Bottom-up approach:  Look for interesting behavior in simple models

• hydrodynamics of quark gluon plasma

• holographic QCD

• quantum critical systems

• strongly correlated electron systems
• cold atomic gases

• out of equilibrium dynamics

• ....

- Assume that classical gravity in (asymptotically) AdS spacetime is dual
  to some strongly coupled QFT.

- Use AdS/CFT techniques to compute QFT correlation functions.

- Add gauge and matter fields to gravity theory to model interesting physics.

- Back-reaction can modify asymptotic behavior:   non AdS -  non CFT



Applied AdS-CFT

Investigate strongly coupled quantum field theories via classical gravity

- growing list of applications:

Bottom-up approach:  Look for interesting behavior in simple models

• hydrodynamics of quark gluon plasma

• jet quenching in heavy ion collisions

• quantum critical systems

• strongly correlated electron systems
• cold atomic gases

• holographic superconductors

• holographic metals

• out of equilibrium dynamics

• ....



Lecture 2

M.C. Escher’s 
Circle Limit IV (1960)



ds2
= b2

✓
z2

(�dt2 + d~y 2
) +

dz2

z2

◆

Coordinate singularity at z = 0 ! horizon where @
@t becomes null

The metric is invariant under SO(1, n� 1) Lorentz transf on t, ~y
(leaving z intact)

and also under SO(1, 1) maps

(t, z, yi
)!

⇣
c t,

z

c
, c yi

⌘
, c > 0

Finally the map z ! ⇠ = 1/z gives

ds2
=

b2

⇠2

��dt2 + d~y 2
+ d⇠2

�

8

Anti-de Sitter geometry

ds2
= b2

✓
z2

(�dt2 + d~y 2
) +

dz2

z2

◆

Coordinate singularity at z = 0 ! horizon where @
@t becomes null

The metric is invariant under SO(1, n� 1) Lorentz transf on t, ~y
(leaving z intact)

and also under SO(1, 1) maps

(t, z, yi
)!

⇣
c t,

z

c
, c yi

⌘
, c > 0

Finally the map z ! ⇠ = 1/z gives

ds2
=

b2

⇠2

��dt2 + d~y 2
+ d⇠2

�

8

and also under the scaling
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Applied AdS-CFT

• Assume that classical gravity in (asymptotically) AdS spacetime

is dual to some strongly coupled QFT

• Use AdS-CFT techniques to calculate QFT correlation functions

at strong coupling

• Add gauge fields and matter fields to the gravity theory to

model interesting physics

• Quantum critical systems have scale invariance + strong correlations

! natural starting point for applied AdS-CFT

32



Quantum critical points

Physical systems with z = 1, 2, and 3 are known --  non-integer values of z are also possible

T = 0Typical behavior at 

characteristic energy  

coherence length ⇠ ⇠ (g � gc)�⌫

� ⇠ (g � gc)z⌫

z  = dynamical scaling exponent� ⇠ ⇠�z

z > 1   scale invariance without conformal invariance - asymptotically Lifshitz spacetime
z = 1   scaling symmetry is part of  SO(d+1,1)  conformal group = isometries of adSd+1

Scale invariant theory at finite T : ⇠ = c T�1/z

Deformation away from fixed pt.: �i ⇠ (length)�1 �i = 0QCP  has

Quantum critical region : ⇠ = T�1/z ⌘(T�1/z�i) ⌘(0) = c



J. Phys. A: Math. Theor. 42 (2009) 343001 Topical Review

Figure 2. Resistivity of thin films of bismuth versus temperature. The different curves correspond
to different thicknesses, varying from a 4.36 Å film that becomes insulating at low temperatures,
to a thicker 74.27 Å film that becomes superconducting. The figure is reproduced from [11].
(Reprinted with permission. Copyright (1989) by the American Physical Society.)

1.3. Quantum critical points in the real world

Quantum phase transitions are believed to be important in describing superconducting–
insulator transitions in thin metallic films, as is demonstrated pictorially by rotating figure 2
90◦ counter-clockwise. The rotated diagram is meant to resemble closely figure 1 where phase
one is an insulator, phase two is a superconductor, and g corresponds to the thickness of the
film. The insulating transition is a cross-over, while the superconducting transition might
be of Kosterlitz–Thouless type. There exists a critical thickness for which the system reaches
the quantum critical point at T = 0.

One of the most exciting (and also controversial) prospects for the experimental relevance
of quantum phase transitions is high-temperature superconductivity. Consider the parent
compound La2CuO4 of one of the classic high Tc superconductors, La2−xSrxCuO4. La2CuO4

is actually not a superconductor at all but an anti-ferromagnetic insulator at low temperatures.
The physics of this layered compound is essentially two dimensional. The copper atoms are

6

Classic example of a QCP

Resistivity vs. temperature in thin 
films of bismuth

T = 0 state changes from 
insulating to superconducting at a 
critical thickness

From D.B. Haviland, Y. Liu and A.M. Goldman, 
Phys. Rev. Lett. 62 (1989) 2180.



Quantum criticality in heavy fermion materials
REVIEW ARTICLE FOCUS

The explicit identification of the QCPs in these and related
HF metals has in turn helped to establish a number of properties
that are broadly important for the physics of strongly correlated
electron systems. One of the modern themes, central to a variety
of strongly correlated electron systems, is how the standard
theory of metals, Landau’s Fermi-liquid (FL) theory, can break
down (see below, first section). Quantum criticality, through its
emergent excitations, serves as a mechanism for NFL behaviour,
as demonstrated by a T-linear electrical resistivity (Fig. 1b,c).
Moreover, the NFL behaviour covers a surprisingly large part of the
phase diagram. For instance, in Ge-doped YbRh2Si2, the T-linear
electrical resistivity extends over three decades of temperature
(Fig. 1c), a range that contains a large entropy (see below). Finally,
quantum criticality can lead to novel quantum phases such as
unconventional superconductivity (Fig. 1d).

These experiments have mostly taken place over the past
decade, and they have been accompanied by extensive theoretical
studies. The latter have led to two classes of quantum criticality
for HF metals. One type extends the standard theory of second-
order phase transitions to the quantum case9–11, whereas the other
type invokes new critical excitations that are inherently quantum
mechanical12–14. The purpose of this article is to provide a status
report on this rapidly developing subject.

MAGNETIC HF METALS AND FL BEHAVIOUR

HF phenomena were first observed in the low-temperature
thermodynamic and transport properties of CeAl3 in 1975 (ref. 15).
The 1979 discovery of superconductivity in CeCu2Si2 (ref. 16)
made HF physics a subject of extensive studies. This discovery was
initially received by the community with strong scepticism, which,
however, was gradually overcome with the aid of two observations,
of (1) bulk superconductivity in high-quality CeCu2Si2 single
crystals17 and (2) HF superconductivity in several U-based
intermetallics: UBe13 (ref. 18), UPt3 (ref. 19) and URu2Si2 (ref. 20;
W. Schlabitz, et al., unpublished). Around the same time, it was
recognized that CeCu2Si2, CeAl3 and other Ce-based compounds
behaved as ‘Kondo-lattice’ systems21.

KONDO EFFECT

Consider a localized magnetic moment of spin h̄/2 immersed
in a band of conduction electrons. The Kondo interaction—an
exchange coupling between the local moment and the spins of
the conduction electrons—is AF. It is energetically favourable for
the two types of spin to form an up–down arrangement: when
the local moment is in its up state, |"i, a linear superposition
of the conduction-electron orbitals will be in its down state,
|#ic, and vice versa. The correct ground state is not either of
the product states, but an entangled state—the Kondo singlet,
(1/2)(|"i|#ic � |#i|"ic). One of the remarkable features is
that there is a Kondo resonance in the low-lying many-body
excitation spectrum. The singlet formation in the ground state
turns a composite object, formed out of the local moment
and a conduction electron, into an elementary excitation with
internal quantum numbers that are identical to those of a bare
electron—spin h̄/2 and charge e. Loosely speaking, because of the
entanglement of the local moment with the spin degree of freedom
of a conduction electron, the local moment has acquired all the
quantum numbers of the latter and is transformed into a composite
fermion. We will use the term Kondo eVect to describe the
phenomenon of Kondo-resonance formation at low temperatures.

At high temperatures, on the other hand, the system wants
to maximize the entropy by sampling all of the possible
configurations. It gains free energy by making the local moment
essentially free, which in turn weakly scatters the conduction
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Figure 1 Quantum critical points in HF metals. a, AF ordering temperature TN versus
Au concentration x for CeCu6�xAux (ref. 7), showing a doping-induced QCP.
b, Suppression of the magnetic ordering in YbRh2Si2 by a magnetic field. Also shown
is the evolution of the exponent ↵ in 1⇢ ⌘ [⇢ (T )�⇢0] / T ↵ , within the
temperature–field phase diagram of YbRh2Si2 (ref. 55). Blue and orange regions
mark ↵ = 2 and 1, respectively. c, Linear temperature dependence of the electrical
resistivity for Ge-doped YbRh2Si2 over three decades of temperature (ref. 55),
demonstrating the robustness of the non-Fermi-liquid (NFL) behaviour in the
quantum-critical regime. d, Temperature-versus-pressure phase diagram for
CePd2Si2, illustrating the emergence of a superconducting phase centred around the
QCP. The Néel (TN) and superconducting (Tc) ordering temperatures are indicated by
filled and open symbols, respectively79.

electrons; this is the regime of asymptotic freedom, a notion
that also plays a vital role in quantum chromodynamics. It is
in this regime that Kondo discovered logarithmically divergent
correction terms in the scattering amplitude beyond the Born
approximation22. Kondo’s work opened a floodgate to a large body
of theoretical work23, which, among other things, led to a complete
understanding of the crossover between the high-temperature
weak-scattering regime and the low-temperature Kondo-singlet
state. This crossover occurs over a broad temperature range, and is
specified by a Kondo temperature; the latter depends on the Kondo
interaction and the density of states of the conduction electrons
at the Fermi energy. We will use Kondo screening to refer to the
process of developing the Kondo singlet correlations as temperature
is lowered.

KONDO LATTICE AND HEAVY FERMI LIQUID

HF metals contain a lattice of strongly correlated f electrons and
some bands of conduction electrons. The f electrons are associated
with the rare-earth or actinide ions and are, by themselves, in a
Mott-insulating state: the on-site Coulomb repulsion is so much
stronger than the kinetic energy that these f electrons behave as
localized magnetic moments, typically at room temperature and
below. They are coupled to the conduction electrons via an (AF)
Kondo interaction. In theoretical model studies, only one band of
conduction electrons is typically considered. Such a coupled system
is called a Kondo lattice.

It is useful to compare the HF metals with other strongly
correlated electron systems. The Mott-insulating nature of the f

nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics 187

From P. Gegenwart, Q. Si and F. Steglich, 
Nature Phys. 4 (2008) 186.



As discussed in the theory section, UCu5!xPdx has
been an important system for investigating the role of
disorder in non-Fermi-liquid behavior. Using magnetiza-
tion as a function of field curves at several low tempera-
tures (T!1.8 K) to determine the fit parameters, Bernal
et al. (1995) determined a distribution P(TK) of Kondo
temperatures for their x"1.0 and 1.5 samples prepared
similarly to the samples of Andraka and Stewart (1993).
These distributions, shown in Fig. 11, depend on the
saturation observed in M vs H at low temperatures
caused, in the disorder models, by the uncompensated,
low-TK moments. Obviously a system with little or no
saturation in M vs H at low temperatures is not a candi-
date for these models. Bernal et al. (see also MacLaugh-
lin et al., 1996) then use the determined fit parameters to
see how well these describe their measured (large and
strongly temperature-dependent) inhomogeneous NMR
linewidths for these two compositions. They find a quali-
tative (factor of 2) agreement between the measured
linewidths and those that would be caused by the calcu-
lated, parameter-fixed distribution of magnetic suscepti-
bility (induced via static disorder). A similar agreement,
within a factor of 2, between the measured field depen-
dence of the specific heat for UCu4Pd and UCu3.5Pd1.5
and that calculated from their model (shown for
UCu4Pd in Fig. 8) using parameters determined by fit-
ting M vs H data was also obtained by Bernal et al.

The somewhat long-standing controversy over
whether the as-prepared UCu4Pd consists of ordered
sublattices or not (in the AuBe5 structure there are four
Be I and one Be II sites per formula unit)2 has been
recently decided by "SR relaxation measurements down
to 3 K by MacLaughlin et al. (1998) and extended x-ray-

absorption fine-structure (EXAFS) work by Booth et al.
(1998) on unannealed UCu4Pd and by lattice parameter
measurements and resistivity measurements (mentioned
above) down to 0.08 K by Weber et al. (2001) on an-
nealed UCu4Pd. Analysis of the width of the frequency
shift distribution of the "SR relaxation data led
MacLaughlin et al. to argue for considerable magnetic
susceptibility inhomogeneity in unannealed UCu4Pd, in
agreement with the NMR linewidth results of Bernal
et al. On a microscopic basis, the EXAFS data of Booth
et al. on unannealed UCu4Pd indicate that—rather than
having all the Pd on the Be I site and all the Cu on the
Be II site—24#3% of the Pd occupies Be II sites. Fi-
nally, as shown clearly in Fig. 12, the work of Weber
et al. found that annealing UCu4Pd causes a decrease in
the heretofore accepted lattice parameter, which, as dis-
cussed in the caption for Fig. 12, implies qualitatively
that—as shown quantitatively by Booth et al.—a signifi-
cant amount of Pd must occupy the smaller Be II sites in
unannealed UCu4Pd. In addition, Weber et al. find a
strong decrease in the residual resistivity (see Table II),
implying that at least some of the Pd in the unannealed
sample was occupying inequivalent sites. It would be in-
teresting to measure NMR linewidths and/or "SR relax-
ation in the annealed UCu5!xPdx samples.

Certainly the lack of spin-glass behavior at low tem-
peratures for annealed UCu4Pd (Weber et al., 2001) ar-
gues strongly both for close attention to sample quality,
especially in systems in which disorder is thought to play
an important role, and for measurements to the lowest
temperatures possible. As an example of the importance
of the latter, presumably the short correlation length be-
tween spins and rapid relaxation rate reported in the T
!3 K "SR work of MacLaughlin et al. (1998) is not
characteristic of the sample as it approaches T"0, i.e.,
for T$T(#ac peak).

c. UCu5!xPtx (II)
Chau and Maple (1996) and Chau et al. (2001) inves-

tigated UCu5!xPtx (Pt is isoelectronic to Pd) and, as in-
dicated by the subsection heading, found no spin-glass
behavior, making this doped non-Fermi-liquid system
one of the few examples known in which—when
investigated—the disorder inherent with doping does
not cause frustrated local moments (at least down to 1.8
K, the lowest temperature of measurement). One pos-
sible reason is that, unlike UCu5!xPdx , the end point in
the UCu5!xPtx phase diagram (i.e., UPt5) occurs in the
same structure (AuBe5) as UCu5, although Chau et al.
(2001) report that there are impurity phases present in
UCu5!xPtx for 2.5$x$4.0. The electrical resistivity in-
creases below room temperature for x"0.5 and 0.75,
where the temperature behavior between 1.4 (lowest
temperature of measurement) and 20 K follows the clas-
sic non-Fermi-liquid %"%0!AT (see Table II) similar to
UCu5!xPdx for x"1.0 and 1.5. (Note, however, that TN
is still finite—&5 K—as determined by a cusp in the
magnetic susceptibility for x"0.5.) Chau et al. (2001)
note that there is a distinct minimum in the residual

2Bernal et al. argue for similar disorder present in both x
"1 and 1.5 alloys, while Chau, Maple, and Robinson (1998),
using elastic neutron-diffraction measurements, argue that Pd
and Cu occupy different sublattices in UCu4Pd.

FIG. 7. 5f electronic specific heat, 'C , divided by temperature
vs log T for both Y0.8U0.2Pd3 and Y0.9U0.1Pd3, after Maple et al.
(1996). Note the positive deviation from the log T behavior
below &0.25 K.

822 G. R. Stewart: Non-Fermi-liquid behavior in d- and f-electron metals

Rev. Mod. Phys., Vol. 73, No. 4, October 2001

measurement) and !2.5 K fit either a !log T or T1""

approximately equally well, as do # data between 1.8
and 6 K, with "!0.9. The resistivity behaves like $#$0
"AT% between 1.8 and 15 K, with %#1.6, 1.2, 1.1, 1.1
for x#0.15, 0.3, 0.35, 0.4, respectively. Other than the
smaller % exponent for the resistivity, no difference is
observed in the non-Fermi-liquid behavior near the sup-
pression of antiferromagnetism in URu2!xRexSi2 at x
#0.15 vis à vis the creation of ferromagnetic behavior at
x#0.4. Further work on this system is in progress.

q. U2Pd1!xSi3"x (II)
Homma et al. (2000) report that non-Fermi-liquid be-

havior occurs in this system at x#0.4 and 0.5, just at the
point in the phase diagram where, with increasing x,
spin-glass behavior is suppressed. Thus this may be an
ideal system in which to check the theory of Sengupta
and Georges (1995) for a quantum critical point in the
phase diagram where T freezing→0, where T freezing in a
spin glass is the temperature below which, for example,
#FC begins to differ from #ZFC . The samples of
U2Pd1!xSi3"x were annealed for one week at 800 °C,
but the difference in annealed and unannealed proper-
ties was not investigated. Both C/T and # were mea-
sured only down to 1.8 K; both were found to follow
T!1"" up to 7.5 and 17 K, respectively, with, however,
differing " values: "C#0.82 (0.85) for x#0.4 (0.5), "#
#0.61 (0.62) for x#0.4 (0.5).

r. Ce0.1La0.9Pd2Al3 (III)
CePd2Al3 is a hexagonal antiferromagnet, TN#2.8 K,

occurring in the same structure as UPd2Al3. Polycrystal-
line samples of Ce0.1La0.9Pd2Al3 were prepared and an-
nealed at 900 °C for five days, with no mention of the
effect of annealing on the measured properties, and then
characterized for non-Fermi-liquid behavior by $, #, and

C/T measurements (Nishigori et al. 1999). Although no
statement was given at what composition the La doping
suppressed TN , presumably—based on doping results
on similar systems—TN→0 before the Ce concentration
was reduced to 10%. C/T(#)&log T between 1.5 and 7
K (1.9 and 7 K), while $&$0!AT0.5 between 1.7 and 9
K. Nishigori et al. pointed out that a hexagonal Ce sys-
tem could be described by the quadrupolar Kondo
model of Cox. As discussed above in the theory section,
the multichannel Kondo model, of which the quadrupo-
lar Kondo model is one variation, predicts C/T and #
&log T for n#2, S# 1

2 as well as $!$0&AT0.5. An ex-
perimental finding, however, of the T0.5 dependence in
the resistivity is unusual; measurements to lower tem-
peratures are under way.

s. U0.1M0.9In3, M#Y,Pr,La (I)
Cubic UIn3 is an antiferromagnet, TN#95 K. Hirsch

et al. (2001) found that, far from where doping on the U
site has already driven TN→0, there is a maximum in
the low-temperature C/T values vs doping at the 10% U
concentration for all the dopants tried (Y, Pr, and La).
An investigation of the temperature dependence of the
specific heat led to the discovery that C/T&log T be-
tween 0.07 and 2 K. In addition, the partial substitution
of 4-valent Sn for 3-valent In led to an enhancement of
the low-temperature C/T values by &30% (see Table
II). Spin-glass behavior (divergence of #FC and #ZFC)
below &7 K was observed.

t. CePt0.96Si1.04 (I?)
Götzfried et al. (2001) have recently tuned the heavy-

fermion system CePtSi (see also work below in Sec.
III.A.2 on CePtSi1!xGex) to non-Fermi-liquid behavior
by varying the Pt/Si ratio. At CePt0.9Si1.1 they see an
anomaly in C/T at &0.3 K that may be due to a spin-
glass transition. When the Si content is decreased below
this concentration to the CePt0.96Si1.04 composition, the

FIG. 13. logC/T vs log T for U0.07Th0.93Ru2Si2, data from Am-
itsuka and Sakakibara (1994). This replot of the original data,
where C/T was plotted vs log T, demonstrates a substantial
temperature range of agreement for C/T&T!1"", or the
Griffiths-phase model, which was applied to non-Fermi-liquid
systems after the data were published.

FIG. 14. C5f /T vs log T for UxTh1!xPt2Si2, where C5f equals
Cmeasured!C lattice , after Amitsuka, Hidano, et al. (1995). The
data exhibit a concave curvature as plotted vs log T over the
whole temperature range up to 10 K.
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From G.Stewart, Rev.Mod.Phys. 73 (2001) 797.
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in terms of the symmetries of the ordered 
phases. Signatures of these states are o!en 
provided by their elementary excitations, 
which within the ordered phases should 
form well-de"ned quasiparticles at low 
temperatures and energies.

Quantum criticality is now known to 
occur in a class of metals called heavy-
fermion systems, which are reviewed by 
Philipp Gegenwart et al.3 on page 186 of 
this issue. #ese systems take their name 
from the strong mass renormalization of 
Landau quasiparticles due to hybridization 
of the f electrons with the conduction 
electrons. #e quantum critical behaviour 
is summarized in Fig. 1. In heavy-fermion 
systems, the ordered phase that terminates 
at the QCP is magnetic, and is clearly 
visible in experiments. #e connection 
between magnetic quantum criticality and 
the anomalous temperature dependencies 
of physical properties in the critical region 
is also unambiguous. #e mechanism 
responsible for the superconductivity is 
not understood in detail, but a pairing 
glue (that enables the electrons to form 
Cooper pairs) consisting in part of critical 
magnetic $uctuations is very plausible in 
many cases4. Heavy fermions are therefore 
model materials in which to study quantum 
criticality in itinerant electron systems, with 
a diverse variety of behaviour that re$ects 
their complex electronic structure.

In the copper-oxide superconductors 
the connection to quantum criticality 
is less clear. Figure 2 shows the phase 
diagram of the hole-doped cuprates, 
plotting the evolution with doping of 
the antiferromagnetic (AFM) Mott 
insulator — the ‘parent’ compound 
from which high-temperature 
superconductivity emerges — into a high-
temperature d-wave superconductor, 
and then into a Fermi-liquid-like metal. 
Although few compounds can be tuned 
through the entire phase diagram, it is 
believed to be broadly representative of 
the hole-doped materials. #e underdoped 
side of the phase diagram is particularly 
rich: in addition to the normal-state 
pseudogap5,6, which suppresses spin and 
charge excitations below a temperature T*, 
underdoped materials exhibit a variety of 
spin and charge orders that can be static 
or $uctuate7.

#e short coherence length of a Cooper 
pair, the low super$uid density and the 
high electrical anisotropy make these 
systems very susceptible to the defects and 
variations in composition that occur in real 
materials, and also to deliberately applied 
perturbations such as magnetic $ux lines 
in the vortex phase. #is situation makes it 
very di%cult to identify which competing 
orders are essential to the description of 

high-temperature superconductivity. Two 
particularly important questions are: is 
there a universal zero-temperature phase 
transition underlying the superconducting 
dome? And is this transition continuous, 
with strong $uctuations that dominate 
the physics over a wide range of doping 
and temperature?

In addressing the "rst question, 
Je&ery Tallon and John Loram have made 
a comprehensive survey6 of physical 
properties across the phase diagram, 
including a large body of thermodynamic 
experiments they themselves have carried 
out. #ey "nd that the pseudogap is 
characterized by an energy scale that falls 
abruptly to zero at a critical doping of 
0.19 holes per in-plane Cu atom, in a wide 
range of materials and measurements, 
as sketched in Fig. 2. Properties such as 
electronic heat capacity change abruptly 
on crossing the critical doping, indicating 
that it may be a zero-temperature transition 
between two distinct phases. However, 
Tallon and Loram take pains to point out 
that their work indicates the T* line in the 

phase diagram to be a thermal crossover, 
not a phase transition, and it is di%cult 
to conclude whether the pseudogap 
constitutes a distinct quantum state.

A number of experiments further re"ne 
our understanding. Benoit Fauqué et al. 
have identi"ed a novel magnetic order in 
YBa2Cu3O6+x using neutron scattering8. 
#e magnetic structure has the same 
translational symmetry as the lattice, 
but sensitive experiments, using spin-
polarized neutrons as the probe particle, 
are able to separate nuclear and electronic 
components of the di&raction signal and 
reveal an onset temperature of the e&ect 
that scales with T*. #is may be the "rst 
direct evidence of a hidden order within 
the pseudogap region. Jing Xia et al. have 
recently made sensitive measurements 
of the polar Kerr e&ect in YBa2Cu3O6+x 
that provide some of the clearest evidence 
to date of a sharp phase transition 
coinciding with T* (ref. 9). #eir ingenious 
experiment uses a zero-area-loop Sagnac 
interferometer, in which two counter-
propagating beams of circularly polarized 
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Figure 2 Doping–temperature phase diagram of the hole-doped cuprate superconductors. (For a detailed 
review see ref. 7.) The parent compounds of the cuprate superconductors are Mott insulators, which order 
antiferromagnetically below room temperature. The antiferromagnetism (AFM) is weakened by the doping 
of holes and is eventually replaced by high-temperature d-wave superconductivity (S/C), in which holes 
form Cooper pairs with finite angular momentum as a way of reducing their mutual Coulomb repulsion. The 
dome of superconductivity extends to a doping of approximately 0.3 holes per in-plane Cu atom, after which 
it is replaced by a metallic state that is widely believed to be a Fermi liquid. The most puzzling aspects of 
the phase diagram are found in the normal state: at the doping level corresponding to optimal transition 
temperature Tc, the resistivity has an anomalous form, linear in temperature to 1,000 K. At lower doping, 
the underdoped cuprates show a strong suppression of spin and charge excitations below the pseudogap 
temperature T*. The overall behaviour shows similarities to the heavy-fermion metals, and a major open 
question is whether it can be understood in terms of a QCP hidden beneath the superconducting dome. Recent 
experiments by Xia et al.9 provide new evidence in support of this view, showing a sharp time-reversal-
symmetry-breaking transition at T* (red dots).
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From S. Kashara et al., Phys. Rev. B. 81 (2010) 184519.
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(Tc ¼ 96K; H.E. et al., manuscript in preparation). In order to
facilitate comparison with earlier publications8–10 we also present 1/
t(q) for a number of temperatures, adopting qp=2pc¼
19;364cm21 for the plasma frequency (where c is the velocity of
light). The scattering rate 1/t(q) increases approximately linearly as
a function of frequency, and when the temperature T is increased,
the 1/t(q) curves are shifted vertically proportional toT. The notion
that 1=tðq;TÞ, qþT in the copper oxides forms one of the centre
pieces of the marginal Fermi liquid model1,11, and it has been shown
to be approximately correct in a large number of experimental
papers8–10. This phenomenology stresses the importance of tem-
perature as the (only) relevant energy scale near optimal doping,
which has motivated the idea that optimally doped copper oxides
are close to a quantum critical point1. As can be seen in Fig. 1, 1/t(q)
has a negative curvature in the entire infrared region for all
temperatures, and it saturates at around 5,000 cm21. Although
this departure from linearity may seem to be a minor detail, we
will see that it is a direct consequence of the quantum critical scaling
of the optical conductivity.
If a quantum phase transition indeed occurs at optimal doping

x ¼ xc , then threemajor frequency regimes of qualitatively different
behaviour are expected2: (1) q , T; (2) T , q , Q; (3) Q , q. As
we now report, we find direct indications of these regimes in our
optical conductivity data.
Region 1 (q , T) corresponds to measurement times long

compared to the compactification radius of the imaginary time,
LT ¼ !h=kBT (see Methods). Some ramifications have already been
discussed above. In addition, Sachdev2 showed that in this regime
the system exhibits a classical relaxational dynamics characterized
by a relaxation time tr ¼ ALT (A is a numerical prefactor of order 1),
reflecting that temperature is the only scale in the system. For
the low frequency regime we expect a Drude form j1ðqÞ ¼
ð4pÞ21q2

prtr=ð1þq2t2r Þ; where qpr is the plasma frequency. Then
Tj1(q,T) becomes a universal function of q/T, at least up to a
number of order one:

!h

kBTj1ðq;TÞ
¼ 4p

Aq2
pr

1þA2 !hq

kBT

! "2
 !

ð1Þ

In the inset of Fig. 2 we display !h=ðkBTj1Þ as a function of u¼

!hq=kBT: Clearly the data follow the expected universal behaviour
for u , 1.5, with A ¼ 0.77. The experimental data are in this regard
astonishingly consistent with Sachdev’s predictions, including
A < 1. From the fitted prefactor we obtain q pr /
2pc ¼ 9,597 cm21. Above we have already determined the total
spectral weight of the free carrier response, (q p/
2pc)2 ¼ 19,3642 cm22. Hence the classical relaxational response
contributes 25% of the free carrier spectral weight. These numbers
agree with the results and analysis of Quijada et al.8. This spectral
weight collapses into the condensate peak at q ¼ 0 when the
material becomes superconducting8. In Fig. 2 we also display the
scaling function proposed by Prelovsek12, j1ðqÞ ¼ Cð12
expð2!hq=kBTÞÞ=q: The linear frequency dependence of this for-
mula for !hq=kBT ,, 1 is clearly absent from the experimental data.
The universal dependence of Tj1(q,T) on q/T also contradicts the
“cold spot model”13, where Tj1(q,T) has a universal dependence on
q/T2.

In region 2 (T , q , Q) we can probe directly the scale invar-
iance of the quantum critical state. Let us now introduce the scaling
relation along the time axis, as follows from elementary considera-
tion. The euclidean (that is, imaginary time) correlator has to be
known in minute detail in order to enable the analytical continu-
ation to real (experimental) time. However, in the critical state
invariance under scale transformations fixes the functional form of
the correlation function completely: It has to be an algebraic
function of imaginary time. Hence, it is also an algebraic function
of Matsubara frequency qn ¼ 2pn/LT, and the analytical continu-
ation is unproblematic: (1) Scale invariance implies that j1(q) and
j2(q) have to be algebraic functions of q, (2) causality forces the
exponent to be the same for j1(q) and j2(q), and (3) time reversal

 

           

Figure 2 Temperature/frequency scaling behaviour of the real part of the optical
conductivity of Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
data are plotted as ðq=q0Þ0:5j1ðq;T ÞÞ: The collapse of all curves on a single curve for
!hq/k BT . 3 demonstrates that in this q/T-region the conductivity obeys j1ðq;T Þ ¼
q20:5 gðq=T Þ ¼ T20:5hðq=T Þ: Note that g(u) ¼ u 0.5h(u). In b, the data are presented
as !h/(k BTj 1(q,T )), demonstrating that for !hq/k BT , 1.5 the conductivity obeys

j 1(q,T ) ¼ T 21f (q/T ).

 

Figure 3 Universal power law of the optical conductivity and the phase angle spectra of

optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
phase function of the optical conductivity, Arg(j(q)) is presented. In b, the absolute value
of the optical conductivity is plotted on a double logarithmic scale. The open symbols

correspond to the power law jj(q)j ¼ Cq 20.65.
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From D. van der Marel et al., Nature 425 (2003) 271.
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of the optical conductivity.
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reflecting that temperature is the only scale in the system. For
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In the inset of Fig. 2 we display !h=ðkBTj1Þ as a function of u¼

!hq=kBT: Clearly the data follow the expected universal behaviour
for u , 1.5, with A ¼ 0.77. The experimental data are in this regard
astonishingly consistent with Sachdev’s predictions, including
A < 1. From the fitted prefactor we obtain q pr /
2pc ¼ 9,597 cm21. Above we have already determined the total
spectral weight of the free carrier response, (q p/
2pc)2 ¼ 19,3642 cm22. Hence the classical relaxational response
contributes 25% of the free carrier spectral weight. These numbers
agree with the results and analysis of Quijada et al.8. This spectral
weight collapses into the condensate peak at q ¼ 0 when the
material becomes superconducting8. In Fig. 2 we also display the
scaling function proposed by Prelovsek12, j1ðqÞ ¼ Cð12
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mula for !hq=kBT ,, 1 is clearly absent from the experimental data.
The universal dependence of Tj1(q,T) on q/T also contradicts the
“cold spot model”13, where Tj1(q,T) has a universal dependence on
q/T2.

In region 2 (T , q , Q) we can probe directly the scale invar-
iance of the quantum critical state. Let us now introduce the scaling
relation along the time axis, as follows from elementary considera-
tion. The euclidean (that is, imaginary time) correlator has to be
known in minute detail in order to enable the analytical continu-
ation to real (experimental) time. However, in the critical state
invariance under scale transformations fixes the functional form of
the correlation function completely: It has to be an algebraic
function of imaginary time. Hence, it is also an algebraic function
of Matsubara frequency qn ¼ 2pn/LT, and the analytical continu-
ation is unproblematic: (1) Scale invariance implies that j1(q) and
j2(q) have to be algebraic functions of q, (2) causality forces the
exponent to be the same for j1(q) and j2(q), and (3) time reversal
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Gravity duals at finite temperature

z  =  1 :   planar AdS-Reissner-Nordström black hole

z  >  1 :   planar charged Lifshitz black hole

periodic Euclidean time:  

   introduces an energy scale:    scale symmetry is broken

thermal state in field theory:   black hole with
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2 Preliminary holographic notions 3

versus ‘mesonic’ phases. The precise meaning of these terms will be made
clear in what follows.

2 Preliminary holographic notions

There exist certain quantum field theories in which the locality of the renor-
malisation group (RG) flow can be (usefully) geometrically realised. This is a
feature of the holographic correspondence that will be central to our discus-
sion. The basic idea is to append an extra spatial dimension to the spacetime
of the quantum field theory. This extra dimension will correspond to the RG
scale as illustrated in figure 1 below. In contrast to the fixed ‘boundary’ field

/RQJ�
GLVWDQFHV

6KRUW�
GLVWDQFHV

Figure 1 The extra radial dimension in holography corresponds to the
renormalisation group scale. Processes in the interior determine long dis-
tance physics, the IR, of the dual field theory while processes near the
boundary control the short distance, or UV, physics.

theory spacetime, the ‘bulk’ spacetime with an extra dimension will be dy-
namical. The boundary conditions set at infinity in the bulk correspond to
the UV values of couplings in the field theory. Solving the gravitational equa-
tions of motion is dual to following the RG flow down in energy scales. A
modern presentation of the holographic renormalisation group may be found
in [4, 5]. For our purposes we will only need the mental picture of figure 1 as
a way of organising our thoughts about asymptotically AdS spacetimes. The
asymptotic spacetime describes the UV of the quantum field theory while
the interior of the spacetime describes the IR.
At this point we can understand why AdS spacetime plays a privileged role

in discussions of holography. The simplest quantum field theories are those
that exhibit no RG flow at all, i.e. that are scale invariant. AdS spacetime is
the geometrisation of this invariance for a relativistic quantum field theory.

(from S. Hartnoll, arXiv:1106.4342)
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where the temperature T was defined in (63) above. Substituting into (110) we obtain a

di↵erential equation for S. Ingoing boundary conditions now amount to the requirement

that near the horizon: S = 1 + ↵1(r � r+) + ↵2(r � r+)2 + · · · . The overall normalisation

is not important as the equation is linear. Indeed we see in (115) that the conductivity is

a ratio of two coe�cients in the near-boundary expansion, so the overall normalisation will

drop out. The coe�cients ↵i are easily found by looking for Taylor series expansions of

(110) at the horizon. We wish to numerically integrate the equation (110) from the horizon

to the boundary. The Taylor expansion at the horizon is necessary because the horizon is

a singular point of the di↵erential equation, so we cannot set the initial data exactly at the

horizon. Therefore we must set the initial conditions a little away from the horizon. The

essential lines of Mathematica code computing the conductivity will look something like

soln[! ] := NDSolve[{AxEqn[!] == 0, S[1� ✏] == Ser[1� ✏, !],

S

0[1� ✏] == SerPrime[1� ✏, !]}, S, {r, ⌘, 1� ✏}]
�[! ] := �I/! S

0[⌘]/S[⌘] /. soln[!][[1]][[1]]

Here ✏ is small number setting the initial distance from the horizon and ⌘ is a small number

determining the distance from the boundary at which the conductivity (115) is evaluated.

The functions Ser and SerPrime are the Taylor series expansion at the horizon and the

derivative thereof, respectively. In performing numerics it is generally convenient to set

L = 1 and furthermore to scale the horizon to r+ = 1. However, one then needs to undo

this scaling to recover physical units.
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Figure 6: The real (left) and imaginary (right) parts of the electrical conductivity computed

via AdS/CFT as described in the text. The conductivity is shown as a function of frequency.

Di↵erent curves correspond to di↵erent values of the chemical potential at fixed temperature.

The gap becomes deeper at larger chemical potential. We have set g = 1 in (115).
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Electrical conductivity from AdS/CFT

Figures from S. Hartnoll, Class. Quant. Grav. 26 (2009) 224002

Holographic dictionary: U(1) currentAµ  ! Jµ

Solve Maxwell’s equations in black hole background 

--   with “in-going” boundary conditions at black hole horizon

Asymptotic behavior:

Calculation simplifies at             :~k = 0 �
xx

(!) = � i

!

a(1)
x

a(0)
x

A
x

(!,~k, ⇠) ⇡ a(0)
x

(!,~k) + a(1)
x

(!,~k)⇠ + . . .

Delta function peak in            at              due to translation invariance ! = 0Re �



The numerical results for the real and imaginary parts of the electrical conductivity are

shown in figure 6 above. These plots have not appeared elsewhere.

We comment on the physical interpretation of these plots in the following subsection.

Particularly suggestive is the depletion of the real part of the conductivity at frequencies

below a scale set by the chemical potential.

2.8 Comparison to experiments in graphene

It is amusing and instructive to compare our results for the conductivity in figure 6 to some

recent experimental data in graphene. Graphene is a natural material to compare to, as

at low energies it is described by a 2+1 dimensional relativistic theory with a chemical

potential determined by the gate voltage (see e.g. [46]). It therefore has precisely the same

kinematics as the AdS/CFT system we are studying. Graphene has been subjected to

intense study recently following the isolation of single layered samples [76].

Figure 7: Experimental plots of the real (top) and imaginary (bottom) parts of the electrical

conductivity in graphene as a function of frequency. The di↵erent curves correspond to

di↵erent values of the gate voltage. The inset in the upper plot shows an interband transition

that is accessible at energies above 2EF . Plots taken from [77].
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(figures from S. Sachdev, arXiv:0711.3015)

Experimental results in graphene



section we will couple this critical mode to the k ¼ 0
current by introducing a lattice that is irrelevant in the
IR. We will furthermore explain how k can be tuned to
the critical values by varying the charge doping of the
system.

The simplest and perhaps most natural lattice to consider
is an ‘‘ionic lattice’’ in which the operator that couples to
the lattice is the charge density Jt. That is, we introduce a
spatial modulation to the chemical potential

Að0Þ
t ¼ !þ Vðx; yÞ: (4.19)

Holographically this is implemented by the usual UV

boundary condition limr!1At ¼ Að0Þ
t . In a purely electric

background, we can consistently set the pseudoscalar
’ ¼ 0 in the theory (4.1). Therefore the background gen-
erated by the lattice is found by solving the Einstein-
Maxwell equations (sans pseudoscalar) subject to the
UV boundary condition. We shall do this numerically in
a perturbative approximation in the following section.
However, the essential physical features can be determined
without an explicit background solution, as we proceed
to show.

The charge density at any nonzero wave vector is an
irrelevant perturbation about the AdS2 % R2 solution (4.4)
of Einstein-Maxwell theory [24,41]. Therefore, however
strong the UV potential in (4.19), the effects of the lattice
will always be small in the far IR. The IR Green’s functions
computed in the previous section are thus unchanged. The
role of the lattice is only to mix the unstable finite wave
number modes with the homogeneous current mode,
according to our discussion in Sec. III. To isolate this effect
from Drude momentum-relaxation physics, we take the
current to propagate in the y direction, but the lattice to
oscillate only in the x direction, with wave number kL:

Vðx; yÞ ¼ VðxÞ ¼ V
!
xþ 2"

kL

"
: (4.20)

According to (3.1), to obtain the conductivity we must
calculate ImGR

JyJyð!; TÞ at k ¼ 0. We are now taking the
current to run in the y rather than x direction. This Green’s
function is holographically related to perturbations #Ay

in the bulk. Even without a lattice, in a nonzero charge
density spacetime, #Ay couples to #gty. With the lattice,
inspection of the equations reveals that in the full space-
time the four modes f#Ay;#gty;#gxy;#’g are coupled at
wave numbers that are integer multiplies of kL. These can
be collected into three gauge-invariant modes for each
wave number

kn ¼ nkL; (4.21)

satisfying second-order equations of motion. In the IR, the
different wave number modes decouple and obey the equa-
tions that we have solved in the previous subsection. The
upshot is that the general matching formula (3.3) becomes

ImGR
JyJyð!; TÞ ¼

X

i;n

dinImGR
i ð!; T; knÞ: (4.22)

Here the IR Green’s functions GR
i are those obtained in

(4.14) above. Their wave number dependence is through
$iðknÞ in (4.16). The mixing is illustrated in Fig. 3 below.
To tune the system across the instability identified in the

previous subsection, insofar as the conductivity is con-
cerned (see the discussion at the end of Sec. VIA), we
now need to vary kL so that one of the kn becomes equal to
the wave numbers kA or kB bounding the unstable region.
Physically it is presumably not feasible to tune kL itself, as
the material is fixed. However, in the formulas for $iðknÞ in
(4.16), a dimensionful quantity has been suppressed and
lengths have been rescaled relative to natural lengths of the
UV geometry [6]. This is possible because of the emergent
z ¼ 1 scaling, under which lengths are dimensionless.
The invariant dimensionless quantity to consider, from a
UV perspective, is the ratio of momentum to the square
root of the charge density: k=

ffiffiffiffiffi
Jt

p
[24]. The charge density

Jt corresponds to the total electric charge available for
conduction. This can be tuned experimentally by doping
the system. Doping is indeed the mechanism of tuning in
the cuprate and pnictide unconventional superconductors.
Thus, with kF fixed, doping the system will allow the
dimensionless IR wave numbers kn to be tuned through
their critical values, communicating the BKT transition of
interest into a linear in temperature resistivity (3.4).
The optical conductivities in (3.7) and (3.8) now show

that a lattice combined with local criticality and a mode on
the verge of a finite wave number instability leads to a
significant low energy spectral weight, ranging to %&
!'1 at the critical point itself. A strong optical conductivity
going like %&!'2=3 was recently obtained in an impres-
sive numerical holographic lattice computation inRef. [34].
The mechanism underlying these effects are quite different.
The lattice scatterings captured in Ref. [34] relaxed the
current, resolving the Drude peak, while ours merely mix
modes of differing transverse momenta. The tail in the
optical conductivity observed in Ref. [34] is indeed a tail

Locally 
critical IR

UV deformed by 
lattice

FIG. 3 (color online). The IR is tuned to the boundary of an
instability condensing finite wave number vectorial modes. The
lattice is imposed in the UV but irrelevant in the IR. Away from
the locally critical IR region, the lattice mixes modes of different
wave number and couples the unstable mode to the homo-
geneous electric current.

ARISTOMENIS DONOS AND SEAN A. HARTNOLL PHYSICAL REVIEW D 86, 124046 (2012)

124046-8

From A. Donos and S. Hartnoll, 
Phys. Rev. D 86 (2012) 124046

Holographic lattices

Break translation symmetry via UV boundary conditions

- Ionic lattice:

- Scalar field lattice:  !  1(x, y)
1

r

+  2(x, y)
1

r

2
+ . . .

 1 = A0 cos(k0x)

At ! µ (1 +A0 cos(k0x)) + . . .

Optical conductivity G. Horowitz, J. Santos and D. Tong, JHEP 1207 (2012) 168

- low frequency:

- high frequency:

- intermediate frequency:

�(!) =
K⌧

1� i!⌧

|�(!)| = B

!2/3
+ C

�(!) ! constant

(Tc ¼ 96K; H.E. et al., manuscript in preparation). In order to
facilitate comparison with earlier publications8–10 we also present 1/
t(q) for a number of temperatures, adopting qp=2pc¼
19;364cm21 for the plasma frequency (where c is the velocity of
light). The scattering rate 1/t(q) increases approximately linearly as
a function of frequency, and when the temperature T is increased,
the 1/t(q) curves are shifted vertically proportional toT. The notion
that 1=tðq;TÞ, qþT in the copper oxides forms one of the centre
pieces of the marginal Fermi liquid model1,11, and it has been shown
to be approximately correct in a large number of experimental
papers8–10. This phenomenology stresses the importance of tem-
perature as the (only) relevant energy scale near optimal doping,
which has motivated the idea that optimally doped copper oxides
are close to a quantum critical point1. As can be seen in Fig. 1, 1/t(q)
has a negative curvature in the entire infrared region for all
temperatures, and it saturates at around 5,000 cm21. Although
this departure from linearity may seem to be a minor detail, we
will see that it is a direct consequence of the quantum critical scaling
of the optical conductivity.
If a quantum phase transition indeed occurs at optimal doping

x ¼ xc , then threemajor frequency regimes of qualitatively different
behaviour are expected2: (1) q , T; (2) T , q , Q; (3) Q , q. As
we now report, we find direct indications of these regimes in our
optical conductivity data.
Region 1 (q , T) corresponds to measurement times long

compared to the compactification radius of the imaginary time,
LT ¼ !h=kBT (see Methods). Some ramifications have already been
discussed above. In addition, Sachdev2 showed that in this regime
the system exhibits a classical relaxational dynamics characterized
by a relaxation time tr ¼ ALT (A is a numerical prefactor of order 1),
reflecting that temperature is the only scale in the system. For
the low frequency regime we expect a Drude form j1ðqÞ ¼
ð4pÞ21q2

prtr=ð1þq2t2r Þ; where qpr is the plasma frequency. Then
Tj1(q,T) becomes a universal function of q/T, at least up to a
number of order one:

!h

kBTj1ðq;TÞ
¼ 4p

Aq2
pr

1þA2 !hq

kBT

! "2
 !

ð1Þ

In the inset of Fig. 2 we display !h=ðkBTj1Þ as a function of u¼

!hq=kBT: Clearly the data follow the expected universal behaviour
for u , 1.5, with A ¼ 0.77. The experimental data are in this regard
astonishingly consistent with Sachdev’s predictions, including
A < 1. From the fitted prefactor we obtain q pr /
2pc ¼ 9,597 cm21. Above we have already determined the total
spectral weight of the free carrier response, (q p/
2pc)2 ¼ 19,3642 cm22. Hence the classical relaxational response
contributes 25% of the free carrier spectral weight. These numbers
agree with the results and analysis of Quijada et al.8. This spectral
weight collapses into the condensate peak at q ¼ 0 when the
material becomes superconducting8. In Fig. 2 we also display the
scaling function proposed by Prelovsek12, j1ðqÞ ¼ Cð12
expð2!hq=kBTÞÞ=q: The linear frequency dependence of this for-
mula for !hq=kBT ,, 1 is clearly absent from the experimental data.
The universal dependence of Tj1(q,T) on q/T also contradicts the
“cold spot model”13, where Tj1(q,T) has a universal dependence on
q/T2.

In region 2 (T , q , Q) we can probe directly the scale invar-
iance of the quantum critical state. Let us now introduce the scaling
relation along the time axis, as follows from elementary considera-
tion. The euclidean (that is, imaginary time) correlator has to be
known in minute detail in order to enable the analytical continu-
ation to real (experimental) time. However, in the critical state
invariance under scale transformations fixes the functional form of
the correlation function completely: It has to be an algebraic
function of imaginary time. Hence, it is also an algebraic function
of Matsubara frequency qn ¼ 2pn/LT, and the analytical continu-
ation is unproblematic: (1) Scale invariance implies that j1(q) and
j2(q) have to be algebraic functions of q, (2) causality forces the
exponent to be the same for j1(q) and j2(q), and (3) time reversal

 

           

Figure 2 Temperature/frequency scaling behaviour of the real part of the optical
conductivity of Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
data are plotted as ðq=q0Þ0:5j1ðq;T ÞÞ: The collapse of all curves on a single curve for
!hq/k BT . 3 demonstrates that in this q/T-region the conductivity obeys j1ðq;T Þ ¼
q20:5 gðq=T Þ ¼ T20:5hðq=T Þ: Note that g(u) ¼ u 0.5h(u). In b, the data are presented
as !h/(k BTj 1(q,T )), demonstrating that for !hq/k BT , 1.5 the conductivity obeys

j 1(q,T ) ¼ T 21f (q/T ).

 

Figure 3 Universal power law of the optical conductivity and the phase angle spectra of

optimally doped Bi2Sr2Ca0.92Y0.08Cu2O8þd. The sample is the same as in Fig. 1. In a, the
phase function of the optical conductivity, Arg(j(q)) is presented. In b, the absolute value
of the optical conductivity is plotted on a double logarithmic scale. The open symbols

correspond to the power law jj(q)j ¼ Cq 20.65.

letters to nature
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Linear resistivity can be obtained from some holographic lattice models 
A. Donos and S. Hartnoll, PRD 86 (2012) 124046



Holographic superconductors

Couple a charged scalar field to gravitational system

instability at low T :       black brane with scalar “hair”

AdS/CFT prescription:  hair corresponds to sc condensate

transport properties:      solve classical wave equation in bh background

add magnetic field:       dyonic black hole -- holographic sc is type II

conformal system:        start from AdS-RN exact solution 

z > 1 systems:               work with Lifshitz black branes 

Numerical results for superconducting condensate:
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c-êTcD-ê2



0.00 0.01 0.02 0.03 0.04 0.05 0.06

!1.2

!1.1

!1.0

!0.9

T

F

Figure 7: The free energy density vs temperature for the q = 1 system at fixed µ ≈ 1.79. The blue
horizontal line at F = −1 is the soliton insulator. The dashed purple line at F ≈ −0.97
is the soliton superconductor. The dotted green line and the thick red line are the black
hole and black hole superconductor, respectively. Note that as we cool the system from
high temperature, the free energy favors the black hole, then the superconducting black
hole, then the soliton insulator.

becomes first order for small q.

The complete phase diagrams were constructed for q ≥ 1 and shown in Figure 6. In

all these cases, the black hole is never the dominant configuration at low temperature. As

mentioned above, a physical reason for this could be that the curvature of the hairy black

hole becomes infinite at T = 0, and the system is trying to avoid singular configurations.

One can test this by including a λ|ψ|4 term in the action (2.1). With the added term, the

hairy black hole will be nonsingular at T = 0. For small λ, the curvature is still large at low

temperatures and the phase diagrams are expected be similar to those in Figure 6. But for

larger values of λ, the curvature is smaller at low temperatures and it is not clear whether

or not the hairy black holes will be preferred at T = 0.

Although high curvature may be the reason the system with q ≥ 1 prefers the soliton

over the black hole at low temperature, it seems likely that this will change for q < 1. As

we discussed in the previous section, the phase boundary, µ = µc, between the soliton and

soliton superconductor increases as q is lowered. But once µc > 1.86, the extremal Reissner-

Nordstrom AdS black hole has lower free energy than the soliton. Since the hairy black hole

will have even lower free energy, it seems clear that this solution must dominate the phase

diagram for T = 0 and 1.86 < µ < µc. In this case, the system has to approach the singular

configuration since no other phase exists4. Higher numerical precision is required to compute

4An example of a zero temperature phase transition between a soliton and black hole is given in [21].
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(from G. Horowitz and B. Way, arXiv:1007.3714)

(from S. Hartnoll, arXiv:1106.4342)

18 Horizons, holography and condensed matter
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Figure 6 The zero temperature holographic superconductor. The electric
flux is sourced entirely by the scalar field condensate.

finds that the theory (6.1) admits Lifshitz solutions with the dynamical
critical exponent z given by solutions to

8(VT � 3) + 4(V
0 2
T � 4VT + 12)z + (V

0 2
T + 8VT � 24)z2 + V

0 2
T z3 = 0 . (6.6)

Here we introduced

VT = 2L2
�
V (�1) +m2�2

1
�
, V

0
T =

2L

e

�
V 0(�1) + 2m2�1

�
. (6.7)

Thus the dynamical critical exponent is determined by the value of the
potential and its first derivative at the fixed point value of �1, which is in
turn determined by the equations of motion. In order for the scaling (6.5) to
have a straightforward interpretation as a renormalisation transformation,
one should have z > 0. The null energy condition in the bulk furthermore
implies z > 1 [46]. Even if (6.6) gives physical solutions for z, it is not
guaranteed that the corresponding Lifshitz solution is realised as the near
horizon geometry. An instructive simple case to consider is m2 > 0 and
V = 0. One obtains in this case [46, 45]

z =
�2

�2 � L2m2
, �2

1 =
1

e2L2

6z

(1 + z)(2 + z)
. (6.8)

The Lifshitz solutions are seen to exist so long as the scalar is not too heavy,
L2m2 < �2. As L2m2 ! 0, we see that z ! 1 and an emergent relativistic
AdS4 is obtained. As L2m2 ! �2 from below, z ! 1 and the extremal
AdS2⇥R2 geometry is recovered. However, recall from (6.2) that AdS2⇥R2 is
stable against � condensing if �2�m2L2  3

2 . Extremal Reissner-Nordström
is likely the ground state in this case. It follows that the Lifshitz geometries
(6.8) realized as IR scaling regimes in this theory with a positive quadratic

Fr
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Thermodynamic stability

Temperature

AdS-RN black brane

holographic SC

5 The planar Reissner-Nordström-AdS black hole 13

The Maxwell potential of the solution is

A = µ

✓
1� r

r+

◆
dt . (5.5)

We have required the Maxwell potential to vanish on the horizon, At(r+) =
0. The simplest argument for this condition is that otherwise the holonomy
of the potential around the Euclidean time circle would remain nonzero when
the circle collapsed at the horizon, indicating a singular gauge connection.
The planar Reissner-Nordström-AdS solution is characterized by two scales,
the chemical potential µ = limr!0At and the horizon radius r+. From the
dual field theory perspective, it is more physical to think in terms of the
temperature than the horizon radius

T =
1

4⇡r+

✓
3�

r2+µ
2

2�2

◆
. (5.6)

The black hole is illustrated in figure 4 below. This black hole, which can

&KDUJH�
GHQVLW\(OHFWULF�IOX[�
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�

Figure 4 The planar Reissner-Nordström-AdS black hole. The charge den-
sity is sourced entirely by flux emanating from the black hole horizon.

additionally carry a magnetic charge, was the starting point for holographic
approaches to finite density condensed matter [27, 28].

Because the underlying UV theory is scale invariant, the only dimension-
less quantity that we can discuss is the ratio T/µ. In order to answer our
basic question about the IR physics at low temperature, we must take the
limit T/µ ⌧ 1 of the solution. We thereby obtain the extremal Reissner-
Nordström-AdS black hole with

f(r) = 1� 4

✓
r

r+

◆3

+ 3

✓
r

r+

◆4

. (5.7)

The near-horizon extremal geometry, capturing the field theory IR, follows

High T

T = 0

Low T dynamics at finite density is
governed by near-horizon region 
in spacetime geometry

12 Horizons, holography and condensed matter

given electric flux at the boundary, leads to gravitational physics that is
interesting in its own right.

89
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Figure 3 The basic question in finite density holography: use the gravi-
tational equations to motion to find the interior IR geometry given the
boundary condition that there is an electric flux at infinity.

5 The planar Reissner-Nordström-AdS black hole

The minimal framework capable of describing the physics of electric flux in
an asymptotically AdS geometry is Einstein-Maxwell theory with a negative
cosmological constant [26]. The Lagrangian density can be written

L =
1

22

✓
R+

6

L2

◆
� 1

4e2
Fµ⌫F

µ⌫ . (5.1)

Here  and e are respectively the Newtonian and Maxwell constants while
L sets the cosmological constant lengthscale.
There is a unique regular solution to the theory (5.1) with electric flux

at infinity and that has rotations and spacetime translations as symmetries.
This is the planar Reissner-Nordström-AdS black hole, with metric

ds2 =
L2

r2

✓
�f(r)dt2 +

dr2

f(r)
+ dx2 + dy2

◆
. (5.2)

The metric function here is

f(r) = 1�
✓
1 +

r2+µ
2

2�2

◆✓
r

r+

◆3

+
r2+µ

2

2�2

✓
r

r+

◆4

. (5.3)

We introduced the dimensionless ratio of the Newtonian and Maxwell cou-
plings

�2 =
e2L2

2
. (5.4)

(from S. Hartnoll, arXiv:1106.4342)

2nd order phase 
transition



Zero temperature entropy

Low temperature limit is described by a near extremal black brane

z > 1 :

z = 1 : Extremal RN black brane has non-vanishing entropy

BUT
black brane with charged scalar hair has vanishing entropy density in extremal limit

Lifshitz black brane with hair also has vanishing entropy density in extremal limit

G.Horowitz and M.Roberts (2009)

0.2 0.4 0.6 0.8 1.0T!Tc
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S!Sc

E. Brynjólfsson, U. Danielsson, L.T., T. Zingg, (2010)

z = 2



Holographic metals

Include charged fermions in the bulk:
Smatter = �

Z
d4

x

p
�g

�
 ̄6D + m ̄ 

 

Dirac equation: (6D + m) = 0

Boundary fermions:  ±(t, ~x) = lim
r!1

 ±(t, ~x, r) �3 ± = ± ±

Fermion probe calculations: S.-S. Lee (2008); H.Liu, J.McGreevy, D.Vegh (2009);
T. Faulkner, H. Liu, J. McGreevy, D.Vegh (2009);
M.Cubrovic, J.Zaanen, K.Schalm (2009)

 ±(t, ~x, r) =
1

(2⇡)3

Z
d! d

2
k ̃±(!,

~

k, r)e�i!t+i

~

k·~x

Adapt AdS/CFT prescription to compute                 GR(!, k)

Single fermion spectral function
can be directly compared to ARPES data.

A(!, k) =
1
⇡

Im
�
Tr

⇥
i�3GR(!, k)

⇤�

DM = @M +
1

4
!abM�ab � iqAM



Holographic Fermi surface

vF , kF ⇠ µ ⌫ =

s

m2 � q2 +
k2F
µ2� ⇠ !2⌫

GR(!, k)
�1 ⇠ ! � vF (k � kF )� i�+ . . .

Landau Fermi liquid: � ⇠ !2

Depending on the probe parameters we can have:

⌫ >
1

2

⌫ <
1

2

long-lived quasiparticles

no stable quasiparticles

⌫ =
1

2
log suppressed quasiparticle residue marginal Fermi liquid



Going beyond fermion probe approximation 

Fermion many-body problem in AdS_4 No easier than original problem!

Thomas-Fermi approximation:  Treat fermions as a continuous charged fluid

Scaling Regime

Electron Star

S. Hartnoll, J. Polchinski, E. Silverstein, D. Tong (2009)
S. Hartnoll, A. Tavanfar (2010)

T = 0 configuration is an electron star



Black Hole

Electron Fluid

Oppositely Charged

Electron stars at finite temperature

S. Hartnoll, P. Petrov (2010); 
V. Giangreco Puletti, S. Nowling, L.T., T. Zingg (2010)



Thermodynamic stability

AdS-Reissner Nordström 
background is unstable to 
forming an electron cloud 
at low T 
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Figure 5. The free energy densities of AdS-RN black brane and electron cloud solutions for �̂ = 10
and m̂ = .55. In addition the free energy for an extremal black hole and the electron star solution
of [5] are shown with a red box and a green dot, respectively.

The factor of v

3

0

in the denominator tells us that we should instead work with the dimen-
sionless quantity

F

µ

3

= �1
2

c

s

M

s

µ

3

s

, (3.6)

when comparing free energy densities.
In figure 5 we use these dimensionless variables to compare the free energy densities

of various geometries for a typical case when m̂ = .55 and �̂ = 10, holding the chemical
potential fixed. One readily sees that the electron cloud solution is preferred over the black
brane solution up to the point where the local chemical potential is too low to support any
fluid. Beyond this point the only solution is an AdS-RN black brane. At low temperatures,
on the other hand, the free energy density of the electron cloud geometries approaches that
of the corresponding electron star.

In addition to the low-temperature regime, it is also interesting to ask about the nature
of the transition to the AdS-RN black brane solution at higher temperatures. To address
this issue, we consider the di↵erence in energy densities between an electron cloud solution
just below the critical temperature T

c

and an AdS-RN black brane solution,

�
✓

F

µ

3

◆
⌘

✓
F

µ

3

◆

AdS�RN

�
✓

F

µ

3

◆

EC

, (3.7)

at the same value of T/µ. Figure 6 shows a log-log plot of this di↵erence near the critical
point where one loses the cloud solution at T

c

/µ = 0.058868 for m̂ = .55 and �̂ = 10. The
solid curve in figure 6 is a straight line of slope 3 giving numerical evidence of a third order
phase transition where

�
✓

F

µ

3

◆
= O

✓
T

c

� T

µ

◆
3

. (3.8)
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3rd order 
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Figure 7. Real and Imaginary part of the conductivity for m̂ = 0.55, �̂ = 10. The curves blue dots,
dashed green and solid red correspond to temperature value T/TC = 2, 1 and 0.162, respectively.
TC/µ = 0.05887 denotes the critical temperature where the phase transition occurs. Curves for
lower values of T are almost indistinguishable from the solid red curve.

where !

s

is defined in terms of the canonical normalized frequency ! as !

s

= c

s

v

0

!.
Equation (4.4) can be regarded as the definition of the auxiliary function �B̂

x

. We note
that (4.4) and (4.5) form a closed system involving only �Â

x

and �B̂

x

.
At the horizon, ingoing boundary conditions are imposed [15]. This implies �Â

x

!
u

� i!
4⇡T and �B̂

x

! i!u

� i!
4⇡T as u ! 0 and T being the Hawking temperature of the AdS-

RN black brane solution (2.14). At the AdS boundary, where the background is of the
form (2.17), the behavior of those functions is

�Â

x

= Â

(0)

x

+ Â

(1)

x

e

�u + · · · , (4.6)

�B̂

x

= B̂

(0)

x

+ B̂

(1)

x

e

�u + · · · . (4.7)

The coe�cients Â

(i)

x

and B̂

(i)

x

are connected, e.g. B̂

(0)

x

= c

s

Â

(1)

x

. This relation can be used
to express the conductivity as

� = � i

!

s

B̂

(0)

x

Â

(0)

x

, (4.8)

which is manifestly invariant under the rescaling described in the previous sections.
Our results for the conductivity are obtained by numerics. This is achieved by integrat-

ing out from the horizon in the background of an AdS-RN solution, as already indicated,
until the inner edge of the electron shell is reached. There, �Â

x

and �B̂

x

need to be
continued smoothly into a solution of (4.4) and (4.5) with the electron cloud solution as
background. At the outer edge, a second matching to the exterior solution must occur. Fi-
nally, the coe�cients Â

(0)

x

and B̂

(0)

x

can be read o↵ at the boundary and plugged in to (4.8).
A plot of the conductivity can be seen in figure 7. The pole in the imaginary part, as

usual, indicates the presence of a delta peak in the real part. The o↵set in the conductivity
goes rather quickly to zero once the electron cloud is in place. This is also shown in figure 8.
Parameterizing the real and imaginary part of the conductivity as

Re � ⇠ �

0

+ �

2

✓
!

µ

◆
2

, Im � ⇠ ��1

µ

!

(4.9)
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Summary and open questions 

• Gauge theory/gravity correspondence provides a handle on some strongly coupled field theories.

• It is motivated by the study of supersymmetric solitons in string theory but bottom-up models only 
involve classical gravity & simple matter fields.

• Can also be used to study thermalization in out-of-equilibrium systems (holographic quenching, etc.)

• Moving towards more realistic models: 

- consider dyonic black holes to include magnetic effects 

- introduce modulated sources at AdS boundary to model lattice effects 

- quantum electron stars (bulk fermions beyond probe or TF approximation)   

- holographic p- and d-wave superconductors

• Many open questions: 

- why is classical gravity valid? 

- what plays role of N (# of colors)?

- disordered systems?

- designer gravity?


