Disformal Theories of Gravity: Screening from the Solar System to Cosmology

Jeremy Sakstein Institute of Gravitation and Cosmology University of Portsmouth

Dark Energy Interactions

Nordita
Stockholm 1^{st} October 2014
JS: 1409.1734 & 1409.7296

Outline

Disformal Theories

2 Screening

Viable Models

Disformal Gravity

$$S = \int d^4x \sqrt{-g} M_{\rm pl}^2 \left[\frac{R}{2} - \frac{1}{2} (\nabla_{\mu} \phi)^2 - V(\phi) \right] + S_{\rm m} [\tilde{g}_{\mu\nu}; \Psi_{\rm i}]$$

$$\tilde{g}_{\mu\nu} = \underbrace{A^2(\phi)}_{\text{conformal}} \left(g_{\mu\nu} + \underbrace{\frac{B^2(\phi)}{\Lambda^2} \partial_{\mu}\phi \partial_{\nu}\phi}_{\text{disformal}} \right)$$

Define:

$$\alpha \equiv \frac{\mathrm{d}\ln A}{\mathrm{d}\phi} \quad \gamma \equiv \frac{\mathrm{d}\ln B}{\mathrm{d}\phi}$$

This Talk

- Local behaviour not well understood
- No universal paradigm
- Lack of viable models

Local Behaviour

Recall GR:

$$\nabla^2 \Phi_{\rm N} = 4\pi G \rho \quad F_{\rm N} = -\nabla \Phi_{\rm N}$$

Disformal: No fifth-force in Minkowski but in FRW get

$$\nabla^{2}\phi = 8\pi QG\rho \quad F_{5} = -Q\nabla\phi$$

$$\Rightarrow \frac{F_{5}}{F_{N}} = 2Q^{2}$$

$$Q = \underbrace{\alpha}_{\text{conformal}} + \underbrace{\frac{B^{2}}{\Lambda^{2}} \left(\ddot{\phi}_{\infty} + \dot{\phi}_{\infty}^{2} \left[\gamma - \alpha\right]\right)}_{\text{disformal}}$$

$$\phi_{\infty} = \text{cosmological scalar}$$

Screening?

Can screen locally if cosmological dynamics are such that $Q \ll 1$.

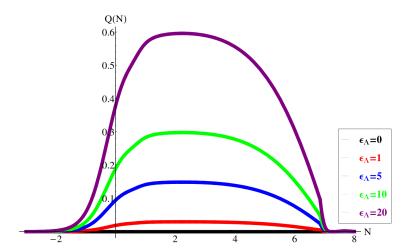
Simple Example:
$$B(\phi) = A(\phi) = 1 \Rightarrow \gamma = \alpha = 0$$

Model studied by Brax, van de Bruck, Burrage, Davis... et al.

$$Q = \frac{\ddot{\phi}_{\infty}}{\Lambda^2}$$

Want slowly-rolling fields!

$$V(\phi) = H_0^2 (1 + \phi^2)$$


Cosmology

Friedmann equations are same as GR.

$$\ddot{\phi}_{\infty} + 3H\dot{\phi}_{\infty} + V(\phi_{\infty})_{,\phi} = -Q_{0}$$
$$\dot{\rho}_{m} + 3H\rho_{m} = Q_{0}\dot{\phi}_{\infty}$$
$$Q_{0} = Q_{0}\left(\rho_{m}, \alpha, \frac{BH}{\Lambda}, \gamma\right)$$

Field/matter EOM encodes MG effects.

Local Scalar Charge

Solar System Tests

Best constraint: Cassini

$$|\gamma_{\rm PPN} - 1| < 2.1 \times 10^{-5}$$

Use measurements of H_0 , $\Omega_{\rm DE}$, w_0 and w_a to find

$$\frac{\Lambda}{H_0} \gtrsim 5.6 \times 10^5 \quad (\mathcal{M} \gtrsim \text{ eV})$$

What does this mean?

$$\frac{\Delta G}{G} < 10^{-24}!!!$$

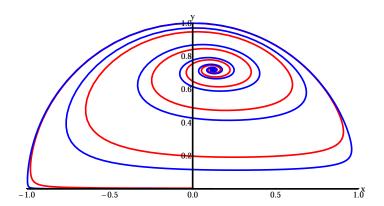
Background cosmology indistinguishable from quintessence!

More General Models?

Important next step: Find viable models

What we want: Dark energy dominated solutions with Q=0.

Do this using a phase-plane analysis - classify all solutions and find fixed points with these properties.

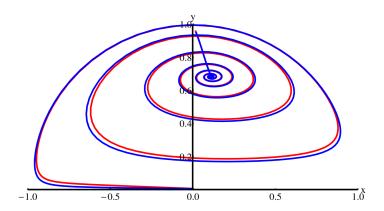

$$A(\phi) = e^{\alpha\phi}$$
 $B(\phi) = e^{\gamma\phi}$ $V(\phi) = m_0^2 e^{-\lambda\phi}$

Model of Koivisto, Mota & Zumalacarregui.

Phase-plane analysis

C.f. Coupled dark energy (conformal but no disformal).

Phase space is 2D.


Phase-Plane

3D phase space because Q_0 depends on $B(\phi)$ and γ — c.f. conformal has $Q_0 = \alpha \Rightarrow$ 2D.

General Case:

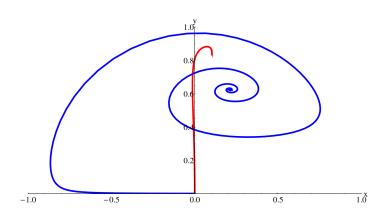
- No DE Q=0 fixed points \Rightarrow dark energy but large fifth-forces
- \bullet Old fixed points unstable system evolves towards dark energy domination and $Q\to\infty$

General Case

Special Case

$$\gamma = \lambda/2$$

Reduces the phase space to 2D and gives a new fixed point with


- $Q = 0 \Rightarrow$ no fifth-forces
- $w_{\mathrm{DE}}(\lambda, \Lambda/m_0)$ and $\Omega_{\mathrm{DE}}(\lambda, \Lambda/m_0)$

Can always reproduce any value of $w_{\rm DE}$ and $\Omega_{\rm DE}$ e.g.

 $\lambda=3.77953,~\Lambda/m_0=0.174519$ gives WMAP9 results exactly.

Special Case

Red = disformal dark energy, Blue = conformal dark energy

Open Questions

 $\gamma = \lambda/2$ good candidate model for disformal dark energy

Open problems:

- Proper fit to expansion history
- What about linear perturbations?

Need to find a good candidate model before doing more complicated things!