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FieldS coupled to dark matterS

Motivation:
- fundamental theories have multiple fields;

- e.g. neutrinos have 3 families. Dark matter could have more
than one component?

- How do scalar fields, dark matter or neutrinos couple with
each other?



Some field work

Assisted inflation Liddle 1998; Copeland 1999
Assisted quintessence Kim 2005; Tsujikawa 2006
Coupled quintessence Amendola 2000; Holden 2000
Coupled quintessence with Brookfield 2008; Baldi 2012

2 dark matter components

Multifield coupled quintessence This work 2014
with many dark matter components

More references in the article arXiv:1407.2156




Field coupled to dark matter(s)

Single field coupled quintessence:
') Scaling accelerating solutions;

:) application to growing neutrino dark energy;
.( dark matter never dominant for scaling solutions

:( Instability problems in the matter density contrast.

Single field but 2 dark matter components (Brookfield, Baldi):

- When couplings are symmetric one obtains dark matter
domination followed by scalar field domination.
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Dynamical equations
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Sum of exponentials V(¢1, ..., ¢n) = M* 3, e=N¢
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Critical points for sum of exponentials

1. Scalar field dominated solution
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More fields => inflation easier to achieve



Critical points for sum of exponentials

2. Scaling solution (example 2 fields x 2 dark-matter)
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Critical points for sum of exponentials




Critical points for sum of exponentials

2. Scaling solution

n fields are copy of field ®1 e, Cis diagonal with
the coefficients taking all the same value.
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Only the field abundance has a mild dependence on n!



Exponential of sum V(¢y, ..., ¢,) = Mie~ Zirr:
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Critical points for exponential of sum

1. Scalar field dominated solution

Weff — —1 - 3)‘eff7
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More fields means inflation more difficult to achieve.



Critical points for exponential of sum

2. Scaling solution (example 2 fields x 2 dark-matter)

It is useful to perform an orthogonal
transformation Q, s.t.

T, = Qijxy,
Ai = Qij\j,
Cii = QuCly, 3 |




Critical points for exponential of sum

2. Scaling solution (example 2 fields x 2 dark-matter)
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Critical points for exponential of sum
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Critical points for exponential of sum

2. Scaling solution

n fields are copy of field Cbl
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Strong dependence on n!



Critical points for exponential of sum

n fields are copy of field Cbl
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Kinetic dominated solution

This solution is common to both potentials

weff:Q¢: 1.



Subdominant potential

This solution is common to both potentials
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Matter dominated solution

When this relation is satisfied, Z Cixz? = 0,
k
and the couplings obey, Cu _Cn
Cia  Co’

Fields settle at the bottom of the effective
potential along a flat direction defined by,

(C11 — C12)(¢1 — P1g) + (Co1 — C2) (P2 — p2g) =



Matter dominated solution
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Matter density contrast

Density contrast for dark matter component k:
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Beware of excessive growth or damping which may
arise from the third term.



2 flelds x 2 dark matter solutions

51’ + A151 — B101 — B209 0,
5&’ —+ AQ(Sé — (101 — Cq09 = 0,

Where A, B, C are constants for the scaling solutions,
andthen 5. ~ eV b 0o = bdy

When one of the dark matter components is much
smaller than the other:
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Summary

- The scalar field dominated solution: easier to
obtain inflation for sum of exponentials;

- Scaling solution: Effective coupling depends on Cs
and As for sum of exponentials but only depends on Cs for
the exponential of sum potential;

- Matter dominated epoch: couplings must obey relation for
early dust behavior. Fields settle at the bottom of the
effective potential which is a flat direction;

- Matter density contrast: Source term in the density
contrast equation => excessive growth for large Cs.



