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Observation:  

Absorption of redshifted γ21cm CMB photons,

Depends on the density of neutral H atoms

Direct probe of the matter power spectrum
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1st window:  Dark ages
Signal driven by CMB and Collisions

2nd window:  Reionisation
Signal driven by CMB and 
Wouthuysen-Field effect 
(Ly-alpha radiation from the first stars)

Wouthuysen-Field effect 

(20 < z < 6 ) + X-rays heating 

Lyman-α transition
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Advantages-Disadvantages

Disadvantages :

Low Signal to noise ratio  

Details of the reionisation era not known

Ionospheric foregrounds:  opacity for frequencies < 30 Mhz  (z > 50)                                 

Advantages :

3D Tomography of the Universe over the redshift range 200 < z < 2

Dark ages:  simple physics => direct probe of density perturbations

Probe much smaller scales than with CMB anisotropies (no Silk damping)

At high redshift, smaller scales are in the linear regime



The 21cm power spectrum at reionisation
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where Y ≃ 0.24 is the helium mass fraction1 and mH

the mass of the hydrogen atom. During reionization, one
assumes that Ts is driven to high values due to ionizing
sources [68] such that one can expand Eq. (1) in

Tb = aTϵ − a
Tϵ

Ts

(
Trad +

1

2
Tϵ

)
+O

(
Tϵ

Ts

)2

, (4)

where

Tϵ ≡ τϵTs =
9A10M2

Pl

16ν221mH

ΩbH2
0 (1− Y )

a3(ηϵ)H(ηϵ)
xH(ηϵ) . (5)

In the limit Ts ≫ Tϵ, Tb ≃ aTϵ. The brightness temper-
ature is thus positive (emission line), does not depend
anymore on the spin temperature and is directly propor-
tional to xH. Up to the metric fluctuations, this is also
the case for the linear perturbations δTb which directly
probe the neutral hydrogen fluctuations. However, the
approximation Ts ≫ Tϵ cannot hold at the beginning of
reionization as Ts should continuously rise from the dark
ages value to its maximum value deep in the reioniza-
tion era. As a result, it is far from evident that there
exists a redshift range for which this approximation is
fully consistent. Actually, even for a spin temperature
Ts ∼ 103K, one can check that differences at the percent
level already arise between Eq. (1) and the leading term
of Eq. (4). For these reasons, in this paper, we keep the
complete dependence in Ts and Trad and assume a sim-
ple, but consistent, model of reionization to parametrize
the spin temperature evolution (see Fig. 2 and Sec. II B).

2. Linear perturbations

The brightness temperature fluctuations can be ob-
tained by solving the Boltzmann equations driving the
evolution of the 21-cm photons in a perturbed FLRW
space-time. This has already been done by Lewis and
Challinor during the dark ages in Ref. [42]. We have fol-
lowed their approach while adding the contributions of
the hydrogen ionized fraction perturbations coming from
the reionization sources. For this purpose, we have mod-
ified the publicly available CAMB code [73, 75] and numer-
ically solved the full Boltzmann equations incorporating
all the linear order effects discussed in Ref. [42], i.e. ne-
glecting only anisotropies higher than dipole photon ones
and any broadening of the emission line profile. The mul-
tipoles components of the 21-cm distribution function ac-
tually used in the next sections have been written down
in Appendix A.
In order to illustrate the physical processes at work, it

is nevertheless convenient to approximate the perturbed
Boltzmann distribution in the small scale limit and at

1 Notice that the helium fraction affects significantly the brightness
temperature for a given Ωb.

leading order in τϵ. Let us emphasize again that these
approximations are not made in the actual forecasts of
Sec. III. Along the line-of-sight direction n̂, at the mea-
sured energy ϵ, one gets

δTb(x, n̂, ϵ) ≃ Tbe
−τc

[
∆s −

1

aH
n̂ ·

∂v

∂η

]

ηϵ

, (6)

where the ∆s is monopole source

∆s ≡ ∆HI +
Trad

Ts − Trad
(∆Ts

−∆Trad
) , (7)

and all ∆x ≡ δx/x stand for relative perturbations. The
second term of Eq. (6) encodes the redshift distortions
due to the perturbations v in the (baryonic) gas rel-
ative velocity to the observer. As shown in Ref. [42],
Thompson scattering suppresses the 21-cm brightness on
all scales and is responsible of the exponential term in
Eq. (6), τc(ηϵ) being the Thompson optical depth to the
redshift of observation (not to be confused with τϵ). Dur-
ing the dark ages, xH ≃ 1 and the perturbations ∆HI in
the neutral hydrogen directly trace the baryonic pertur-
bations ∆b ≡ δnb/nb. At the EoR, the ionizing sources
on their own are expected to induce new perturbations
in the neutral fraction such that ∆HI = ∆xH

+ ∆b (at
fixed helium fraction), or, in terms of the hydrogen ion-
ized fraction xi (not to be confused with the total ionized
fraction xe)

∆HI = ∆b −
xi

xH

∆xi
, (8)

where ∆xi
is the relative ionized fraction perturba-

tion. Notice that the ionizing sources are also gener-
ating additional spin temperature perturbations through
their effects on the gas temperature and Lyman-α emis-
sion [16, 67, 76]. However, they are not considered here
for simplicity. The expression for the brightness fluc-
tuations can be further simplified by assuming that the
regime Ts ≫ Trad holds at the redshift of interest. In this
limit, Eq. (6) reads in Fourier space

δTb(k, n̂, ϵ) ≃ e−τc T̃b(ϵ)
[
xH∆b − xi∆xi

− µ2xH∆v

]
ηϵ

,

(9)
where µ ≡ k · n̂/k and T̃b ≡ Tb/xH is the background
brightness temperature if hydrogen were fully neutral,
i.e. from Eq. (4) and (5)

T̃b(ϵ) =
9A10M2

Pl

16ν221mH

ΩbH2
0 (1 − Y )

a2(ηϵ)H(ηϵ)
. (10)

In Eq. (9), we have introduced the perturbed quantity

∆v ≡
kv

aH
, (11)

where v is the Fourier transform of the radial baryon
velocity. Assuming that at EoR we can neglect the time
evolution of the gravitational potentials [39], one can fur-
ther approximate ∆v ≃ −∆b.

Power spectrum : 

From k-space to u-space : 

The mu-dependance
can be used to extract 

the cosmological signal

Brightness temperature:

Useful approximation:
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The 21cm signal to constrain DE-MG
Beyond the w and dw/da  parametrization (ref), only a very few papers:

- Archidiacono, Lopez-Honorez, Mena, 1409.1802:  forecasts for early dark energy 

                                                                                       with CHIME / FFTT experiments

- Duniya, Bertacca, Maartens, 1305.4509:  Clustering of quintessence with 21cm 

                                                                         intensity mapping

- Hall, Bonvin, Challinor, 1212.0728 : CHIME experiment, f(R) model, post-reionisation

                                                                B0 < 7 x 10 -7

- Brax, Clesse, Davis, 1207.1273:  f(R), chameleon, symmetron, dilaton models

                                                         FFTT experiment



Tomographic approach of MG
MG Models described by two scale-independent functions of the scale factor:

The scalar field mass m and the coupling to matter

1. Background dynamics identical to LCDM

2. Compute linear perturbations

3. Compute the 21cm power spectrum at reionisation
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This is the time evolution of the scalar field at the background level since the instant when
the field starts being at the minimum of the effective potential. This leads to the solution

φ(a) =
3

mPl

∫ a

aini

β(a)

am2(a)
ρ(a)da+ φc , (3.44)

where φc is the initial value of the scalar field. Similarly the minimum equation implies that
the potential can be reconstructed as a function of time

V = V0 − 3

∫ a

aini

β(a)2

am2(a)

ρ2

m2
Pl

da, (3.45)

where V0 is the initial value of the potential at a = aini. This defines the bare scalar field
potential V (φ) parametrically when β(a) and m(a) are given. Let us come back to the
chameleon, f(R), dilaton and symmetron models for which one can explicitly verify that
this way of defining models can be used.

3.4.1 Chameleon and f(R) models

For these models and in the matter era, the coupling to matter β is constant. We will be
interested in the models where

m = m0a
−r . (3.46)

When r > 3 and β = 1/
√
6, they correspond to the large curvature f(R) models with

r = 3(n+ 2)/2 in the matter era. When 3/2 < r < 3, the models are of the chameleon type
with an inverse power law potential

V (φ) ∼
Λn+4

φn
, (3.47)

and n = (2r − 6)/(2r − 3).

3.4.2 Symmetron

The symmetron models can be reconstructed using

β(a) = β⋆

√

1−
(a⋆
a

)3
(3.48)

for z < z⋆ and β = 0, z > z⋆. Similarly we have

m(a) = m⋆

√

1−
(a⋆
a

)3
. (3.49)

The parameters (β⋆,m⋆, z⋆) determine the model completely,

φ⋆ =
2β⋆ρ⋆
m2

⋆mPl
, m⋆ =

√
2µsym, λsym =

µ2
sym

φ2
⋆

. (3.50)

Finally we have

β(φ) =
β⋆
φ⋆

φ . (3.51)

– 14 –
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r = 3(n+ 2)/2 in the matter era. When 3/2 < r < 3, the models are of the chameleon type
with an inverse power law potential

V (φ) ∼
Λn+4

φn
, (3.47)

and n = (2r − 6)/(2r − 3).

3.4.2 Symmetron

The symmetron models can be reconstructed using

β(a) = β⋆

√

1−
(a⋆
a

)3
(3.48)

for z < z⋆ and β = 0, z > z⋆. Similarly we have

m(a) = m⋆

√

1−
(a⋆
a

)3
. (3.49)

The parameters (β⋆,m⋆, z⋆) determine the model completely,

φ⋆ =
2β⋆ρ⋆
m2

⋆mPl
, m⋆ =

√
2µsym, λsym =

µ2
sym

φ2
⋆

. (3.50)

Finally we have

β(φ) =
β⋆
φ⋆

φ . (3.51)
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This is the time evolution of the scalar field at the background level since the instant when
the field starts being at the minimum of the effective potential. This leads to the solution

φ(a) =
3

mPl

∫ a
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am2(a)
ρ(a)da+ φc , (3.44)

where φc is the initial value of the scalar field. Similarly the minimum equation implies that
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∫ a
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Pl

da, (3.45)

where V0 is the initial value of the potential at a = aini. This defines the bare scalar field
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3.4.3 Dilatons

For dilatons, the behaviour of the mass and coupling functions in the matter era close to φ⋆

is universal and defined by
m = m0a

−2 , (3.52)

corresponding to a mass which is proportional to the Hubble rate. The coupling to matter
is time dependent and follows the inverse matter density

β = β0a
3 , (3.53)

with a coupling which increases as matter becomes sparser. This model can be seen as a
generalisation of chameleon models where one can choose

m = m0a
−r, β = β0a

−s , (3.54)

where r = 2 and s = −3 here. We will consider these (r, s) models in the following.

4 21 cm power spectrum of modified gravity

4.1 21 cm FFTT-type experiment

The present and next generations of large radio-telescopes, like LOFAR [75, 76], MWA [77]
and SKA [78, 79] are designed for the detection of the 21 cm signal from the period
of reionisation. However, their sensitivity is not expected to be sufficient to constrain
cosmology2 through the observation of the 21 cm power spectrum [60]. Nevertheless, M.
Tegmark and M. Zaldarriaga have recently proposed the concept of Fast Fourier Transform
radio-Telescopes (FFTT) [42] whose potential ability to measure the 21 cm power spectrum
and to put strong constraints on the cosmological parameters have been demonstrated in
ref. [60]. The FFTT is an all digital radio-telescope composed of a square grid of dipole
antennas. The multifrequency images of half the sky are reconstructed from the data
measured by each antenna after several fast Fourier transforms. The key advantage of
the FFTT compared to traditional interferometric radio-telescopes is its cost, scaling as
NA log2NA instead of N2

A, with NA the number of dipole antenna.
In this paper, we adopt the FFTT as a template to study modified gravity effects on the

21 cm power spectrum from reionisation. We refer to refs. [42, 60] for the main specifications
of the experiment that are reported in table 1. The aim of this section is to evaluate the
errors on the 21 cm power spectrum for the considered FFTT experiment. For simplicity, we
assume ideal foreground removals and refer the interested reader in foregrounds and removal
techniques to refs. [80–82].

The noise spectrum Pn for the FFTT is given by [42]

Pn(u) =
4πfskyλ2T 2

sys

f2
coverD

2
maxΩfovto

P⊥
n (u⊥)P

∥
n (u∥) , (4.1)

where Tsys is the system temperature, Dmax is the length of a side of the FFTT, Ωfov = 2π
is the total field of view, fsky = Ωfov/4π and to is the total observation time. fcover =
NA(D/Dmax)2 is the fraction of the total area covered by the antenna. D is the minimum

baseline between two antennas. P⊥
n and P ∥

n are the fourier transform in the u-space of the

2Except for the SKA and for some optimistic scenarios [60].
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This is the time evolution of the scalar field at the background level since the instant when
the field starts being at the minimum of the effective potential. This leads to the solution

φ(a) =
3

mPl

∫ a

aini

β(a)

am2(a)
ρ(a)da+ φc , (3.44)

where φc is the initial value of the scalar field. Similarly the minimum equation implies that
the potential can be reconstructed as a function of time

V = V0 − 3

∫ a

aini

β(a)2

am2(a)

ρ2

m2
Pl

da, (3.45)

where V0 is the initial value of the potential at a = aini. This defines the bare scalar field
potential V (φ) parametrically when β(a) and m(a) are given. Let us come back to the
chameleon, f(R), dilaton and symmetron models for which one can explicitly verify that
this way of defining models can be used.

3.4.1 Chameleon and f(R) models

For these models and in the matter era, the coupling to matter β is constant. We will be
interested in the models where

m = m0a
−r . (3.46)

When r > 3 and β = 1/
√
6, they correspond to the large curvature f(R) models with

r = 3(n+ 2)/2 in the matter era. When 3/2 < r < 3, the models are of the chameleon type
with an inverse power law potential

V (φ) ∼
Λn+4

φn
, (3.47)

and n = (2r − 6)/(2r − 3).

3.4.2 Symmetron

The symmetron models can be reconstructed using

β(a) = β⋆

√

1−
(a⋆
a

)3
(3.48)

for z < z⋆ and β = 0, z > z⋆. Similarly we have

m(a) = m⋆

√

1−
(a⋆
a

)3
. (3.49)

The parameters (β⋆,m⋆, z⋆) determine the model completely,

φ⋆ =
2β⋆ρ⋆
m2

⋆mPl
, m⋆ =

√
2µsym, λsym =

µ2
sym

φ2
⋆

. (3.50)

Finally we have

β(φ) =
β⋆
φ⋆

φ . (3.51)
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This limit on the scalar field mass corresponds to a ratio m0/H0 ≃ 90, i.e. lower than
the constraint obtained with local tests [57], m0/H0 ! 103 (imposed to guarantee that
galaxies such as the Milky Way have a thin shell). However, it is comparable to the solar
system constraint [57],

m2
0

H2
0

!
β2
0Ωm010−4r+4s+12

(2r − s− 3)Φ⊙
, (4.7)

where Φ ∼ 10−6 is the solar Newtonian potential, giving rise for s = 0, r = 3, β0 = 1/
√
6

to the bound m0/H0 ! 100.

We have also calculated the non-biased matter power spectrum today for
m0 = 2 × 10−3Mpc−1 in the linear approximation. It is plotted in figure 8. Impor-
tant differences with the Λ-CDM model appear at small scales, that cannot be totally
absorbed by a normalisation factor and that can exceed the level of the 68% C.L. error bars
of the SDSS data. For increasing values of the scalar field mass, the difference with the
Λ-CDM matter power spectrum becomes undetectable. However, it must be noticed that
we did not take into account potentially important non-linear effects.

To summarise, we have found that future observations of the 21 cm signal at reionisation
with a FFTT-like radiotelescope could constrain more efficiently the f(R) model with r = 3
than the present matter power spectrum, mainly because the signal can probe smaller scales
in the linear regime. Modified gravity effects could be detectable up to a scalar field mass
value m0 ≃ 2×10−2Mpc−1, corresponding to m0/H0 ≃ 90. Although this value is lower than
the galaxy constraint from [57], it is competitive with the tests of gravity in the solar system
and better than the bounds from the CMB and other local tests of gravity. It will therefore
be interesting to study whether this situation could be improved by using multi-redshifts
measurements and by combining data from the whole 3D u-space, or made worse due to
possible degeneracies with cosmological and nuisance reionisation parameters. Such a study
will require ideally the use of more complex Fisher matrix or Monte-Carlo methods and is left
for future work. This last remark is also valid for the other models we consider in this paper.

4.2.2 Symmetron

The relative differences between the 21 cm power spectra at z = 11 for the symmetron and
the Λ-CDM models are plotted in figures 4 and 5, respectively for k∥ = 0 and k⊥ varying,

and for k⊥ = 0.1Mpc−1 and k∥ varying. At large scales, as for the f(R) model, one gets
β2/(1 +m2a2/k2) → 0 in eqs. (3.19) and (3.20) and the symmetron cannot be distinguished
from the Λ-CDM model. At small scales, β2/(1+m2a2/k2) → β2, inducing a scale invariant
shift of the 21 cm power spectrum amplitude.

In the case of orthogonal modes to the line of sight, figure 4 shows that the
transition between these two regimes occurs in the range of observable scales for
10−2Mpc−1 < m0 < 10Mpc−1. The magnitude of the shift is controlled by β0 and by the
redshift z∗ from which modifications of gravity are triggered. For β0 ≃ 1, modified gravity
effects could be detected by the FFTT up to z∗ ≃ 14, i.e. just before the reionisation.
However, only values of β0 of the order of unity or higher will be detectable.

When parallel modes are probed with k⊥ ≈ 0.1Mpc−1 and k∥ < 2Mpc−1, the transition

regime is in principle detectable up to m0 ≈ 200Mpc−1 (see figure 5). Moreover, the
amplitute of the shift increases since the 21-power spectrum goes like (1 + µ2)2 with µ ≈ 1.1
at the smallest scales (it is larger than unity due to modified gravity effects in eq. (2.11)).
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- Typically one order of magnitude better than LSS constraints (linear regime)

- Competitive with solar system constraints, but less stringent than galaxy constraints
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
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(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Figure 3. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
k⊥ = 0.1Mpc−1 and k∥ varying up to 2Mpc−1 (cut-off introduced to avoid non linear effecs). As in
figure 2, power spectra are calculated at z = 11, assuming a neutral fraction xH = 0.9. From top
to bottom, m0 values are respectively 2× 10−3Mpc−1 (blue), 10−2Mpc−1 (red) and 2× 10−2Mpc−1

(yellow). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

4.2.3 Dilaton

For dilaton models, m(a) = m0a−2 and β(a) = β0a3 in the matter dominated era, with
typically β0 of order unity. One thus gets β2/(1 + m2a2/k2) = β0a3/[1 + m2

0/(a
2k2)] in

eqs. (3.19) and (3.20) for the evolution of matter perturbations. At redshifts z ≃ 10, i.e.
during the reionisation, the coupling to matter was therefore about a thousand times lower
than today, so that the model signatures on the 21 cm power spectrum are indistinguishable
from the Λ-CDM case if we want the matter power spectrum today to remain under control.
For large values of the scalar field mass (typically m0 ! 0.1Mpc−3), the difference with the
Λ-CDM model is even more suppressed since m2

0/(a
2k2) ≫ 1.

4.2.4 Chameleon models

The dilaton and f(R) models are particular cases of generalised chameleon models, for which
β0, m0, r and s can vary. In figures 6 and 7, we have calculated the 21 cm power spectrum
at reionisation for various values of β0, r and s. Increasing β0 or s increases the relative
difference with the Λ-CDM model while increasing r implies a reduction of this difference.

In the case r > 3, s < 0 and β0 ∼ O(1), the best constraints from local tests of gravity
come from the galaxies, imposing m0/H0 > 103, i.e. approximatively m0 ! 0.1Mpc−1. This
bound increases by several orders of magnitude if r < 3 due to the stringent constraints
from laboratory experiments with cavities. If s ! 1, solar system tests of gravity can give
the best constraints with the condition given by eq. (4.7).
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to bottom, m0 values are respectively 2× 10−3Mpc−1 (blue), 10−2Mpc−1 (red) and 2× 10−2Mpc−1

(yellow). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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typically β0 of order unity. One thus gets β2/(1 + m2a2/k2) = β0a3/[1 + m2
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2k2)] in

eqs. (3.19) and (3.20) for the evolution of matter perturbations. At redshifts z ≃ 10, i.e.
during the reionisation, the coupling to matter was therefore about a thousand times lower
than today, so that the model signatures on the 21 cm power spectrum are indistinguishable
from the Λ-CDM case if we want the matter power spectrum today to remain under control.
For large values of the scalar field mass (typically m0 ! 0.1Mpc−3), the difference with the
Λ-CDM model is even more suppressed since m2

0/(a
2k2) ≫ 1.

4.2.4 Chameleon models

The dilaton and f(R) models are particular cases of generalised chameleon models, for which
β0, m0, r and s can vary. In figures 6 and 7, we have calculated the 21 cm power spectrum
at reionisation for various values of β0, r and s. Increasing β0 or s increases the relative
difference with the Λ-CDM model while increasing r implies a reduction of this difference.

In the case r > 3, s < 0 and β0 ∼ O(1), the best constraints from local tests of gravity
come from the galaxies, imposing m0/H0 > 103, i.e. approximatively m0 ! 0.1Mpc−1. This
bound increases by several orders of magnitude if r < 3 due to the stringent constraints
from laboratory experiments with cavities. If s ! 1, solar system tests of gravity can give
the best constraints with the condition given by eq. (4.7).
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k⊥ = 0.1Mpc−1 and k∥ varying up to 2Mpc−1 (cut-off introduced to avoid non linear effecs). As in
figure 2, power spectra are calculated at z = 11, assuming a neutral fraction xH = 0.9. From top
to bottom, m0 values are respectively 2× 10−3Mpc−1 (blue), 10−2Mpc−1 (red) and 2× 10−2Mpc−1

(yellow). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

4.2.3 Dilaton

For dilaton models, m(a) = m0a−2 and β(a) = β0a3 in the matter dominated era, with
typically β0 of order unity. One thus gets β2/(1 + m2a2/k2) = β0a3/[1 + m2

0/(a
2k2)] in

eqs. (3.19) and (3.20) for the evolution of matter perturbations. At redshifts z ≃ 10, i.e.
during the reionisation, the coupling to matter was therefore about a thousand times lower
than today, so that the model signatures on the 21 cm power spectrum are indistinguishable
from the Λ-CDM case if we want the matter power spectrum today to remain under control.
For large values of the scalar field mass (typically m0 ! 0.1Mpc−3), the difference with the
Λ-CDM model is even more suppressed since m2

0/(a
2k2) ≫ 1.

4.2.4 Chameleon models

The dilaton and f(R) models are particular cases of generalised chameleon models, for which
β0, m0, r and s can vary. In figures 6 and 7, we have calculated the 21 cm power spectrum
at reionisation for various values of β0, r and s. Increasing β0 or s increases the relative
difference with the Λ-CDM model while increasing r implies a reduction of this difference.

In the case r > 3, s < 0 and β0 ∼ O(1), the best constraints from local tests of gravity
come from the galaxies, imposing m0/H0 > 103, i.e. approximatively m0 ! 0.1Mpc−1. This
bound increases by several orders of magnitude if r < 3 due to the stringent constraints
from laboratory experiments with cavities. If s ! 1, solar system tests of gravity can give
the best constraints with the condition given by eq. (4.7).
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k⊥ = 0.1Mpc−1 and k∥ varying up to 2Mpc−1 (cut-off introduced to avoid non linear effecs). As in
figure 2, power spectra are calculated at z = 11, assuming a neutral fraction xH = 0.9. From top
to bottom, m0 values are respectively 2× 10−3Mpc−1 (blue), 10−2Mpc−1 (red) and 2× 10−2Mpc−1

(yellow). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

4.2.3 Dilaton

For dilaton models, m(a) = m0a−2 and β(a) = β0a3 in the matter dominated era, with
typically β0 of order unity. One thus gets β2/(1 + m2a2/k2) = β0a3/[1 + m2

0/(a
2k2)] in

eqs. (3.19) and (3.20) for the evolution of matter perturbations. At redshifts z ≃ 10, i.e.
during the reionisation, the coupling to matter was therefore about a thousand times lower
than today, so that the model signatures on the 21 cm power spectrum are indistinguishable
from the Λ-CDM case if we want the matter power spectrum today to remain under control.
For large values of the scalar field mass (typically m0 ! 0.1Mpc−3), the difference with the
Λ-CDM model is even more suppressed since m2

0/(a
2k2) ≫ 1.

4.2.4 Chameleon models

The dilaton and f(R) models are particular cases of generalised chameleon models, for which
β0, m0, r and s can vary. In figures 6 and 7, we have calculated the 21 cm power spectrum
at reionisation for various values of β0, r and s. Increasing β0 or s increases the relative
difference with the Λ-CDM model while increasing r implies a reduction of this difference.

In the case r > 3, s < 0 and β0 ∼ O(1), the best constraints from local tests of gravity
come from the galaxies, imposing m0/H0 > 103, i.e. approximatively m0 ! 0.1Mpc−1. This
bound increases by several orders of magnitude if r < 3 due to the stringent constraints
from laboratory experiments with cavities. If s ! 1, solar system tests of gravity can give
the best constraints with the condition given by eq. (4.7).
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√

Ωm104s−4r+18

3− s
(4.8)

(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√

Ωm104s−4r+18

3− s
(4.8)

(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√

Ωm104s−4r+18

3− s
(4.8)

(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
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yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0
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(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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Figure 6. Relative differences between the 21 cm power spectra for Λ-CDM and chameleon models,
with k∥ = 0. As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9. Fiducial

parameter values are m0 = 10−3Mpc−1, β0 = 1/
√
6, r = 3 and s = 0. Plain curves are for s = 0.5

(top yellow), s = 0 (blue) and s = −0.5 (bottom red). Dashed curves are for r = 3.5 (bottom green)
and r = 2.5 (top blue) and dotted curves are for β0 = 2/

√
6 (top yellow) and β0 = 1/(2

√
6) (bottom

red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

depending on α. More precisely, A10 = 2παν321h
2
p/(3c

4m2
e), and ν21 ∝ α2R∞ ∝ α4, where R∞

is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,

∆α

α
=

1

10

∆P∆TB

P∆TB

. (4.12)

From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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and r = 2.5 (top blue) and dotted curves are for β0 = 2/
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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√
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and r = 2.5 (top blue) and dotted curves are for β0 = 2/
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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e), and ν21 ∝ α2R∞ ∝ α4, where R∞

is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
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∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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2
p/(3c

4m2
e), and ν21 ∝ α2R∞ ∝ α4, where R∞

is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.
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e), and ν21 ∝ α2R∞ ∝ α4, where R∞

is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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Figure 6. Relative differences between the 21 cm power spectra for Λ-CDM and chameleon models,
with k∥ = 0. As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9. Fiducial

parameter values are m0 = 10−3Mpc−1, β0 = 1/
√
6, r = 3 and s = 0. Plain curves are for s = 0.5

(top yellow), s = 0 (blue) and s = −0.5 (bottom red). Dashed curves are for r = 3.5 (bottom green)
and r = 2.5 (top blue) and dotted curves are for β0 = 2/
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6 (top yellow) and β0 = 1/(2

√
6) (bottom

red). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

depending on α. More precisely, A10 = 2παν321h
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e), and ν21 ∝ α2R∞ ∝ α4, where R∞

is the Rydberg constant. Therefore the 21 cm brightness temperature TB ∝ A10/ν221 ∝ α5,
and the 21 cm power spectrum P∆TB

∝ α10. As a consequence, the relative error on α from a
given experiment will be ten times better than the relative error on the 21 cm power spectrum,
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From this argument, one expects that measuring the 21 cm signal could be an excellent
way to probe the variation of the fine-structure constant, and by extension a probe of the
coupling βγ . However, in the context of modified gravity and a signal from the reionisation,
the situation is not so ideal. The coupling to photons not only affects the 21 cm brightness
temperature through the time variation of the fine structure constant but also through the
time-dependent fermion masses. Moreover, it is not clear how variations of α and fermion
masses can affect the reionisation process itself, and thus the time evolution of xH, that is
fairly unknow even in absence of modified gravity effects.

From these considerations, it appears nearly impossible to constrain the value of βγ
from single redshift observations only. Nevertheless, in the context of 21 cm tomography over
a broad range of redshifts (typically from the early stages of the reionisation to the period
following its completion, 12 ! z ! 2), the evolution of the mean ionized fraction could be
reconstructed and combining high and low redshift measurements could provide a natural
way of constraining the variation of α. Below, we estimate a bound on βγ that could be
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Figure 7. Relative differences between the 21 cm power spectra at z = 11, assuming xH = 0.9, for
Λ-CDM and chameleon models, with k⊥ = 0.1Mpc−1. Model parameters for the plain curves are
m0 = 0.1Mpc−1, r = 3, s = 0 and β0 = 5 (top blue), β0 = 3 (red) and β0 = 1 (bottom yellow). The
dotted curve is for m0 = 0.1Mpc−1, s = 0, β0 = 5 and r = 3.2 . The dashed curve is for s = 0.5,
r = 3, β0 = 5 and m0 = 0.8Mpc−1 (from eq. (4.8)). The grey band corresponds to the expected
errors on the power spectrum measurements for the considered FFTT experiment.

established from 21 cm observations with the FFTT, under the assumption that the mass
variation of fermions can be neglected in the brightness temperature.

Assuming that the background reionisation model will be reconstructed and that the
21 cm power spectrum amplitude will be measured with a percent level accuracy, one can
constrain |∆α|/α ! 10−3 and a bound on the parameter βγ can be derived. From eq. (4.11),
one gets

|βγ | ! 10−3 ×
1

κ4∆φ
, (4.13)

where ∆φ is the scalar field variation during the redshift range of observation of the 21 cm sig-
nal. It can be calculated from eq. (3.44). For the f(R), dilaton and chameleon model, one gets

κ4∆φ =
9β0H2

0Ωm

m2
0(2r − s− 2)

(

a2r−s−2
max − a2r−s−2

min

)

, (4.14)

where amax and amin are respectively the maximal and minimal value of the scale factor in
the range of the 21 cm observations. For instance, for the redshift range given above and
the f(R) model, one can obtain

|βγ | ! 0.3
m2

0

H2
0

. (4.15)

With m0/H0 ≈ 103, one gets βγ ! 106, which is an intermediate value between the present
observational bound βγ0 ! 1011 and the much tighter bound βγ0 ! 0.1 derived in [58] from
the best experimental bound on the variation of α. The bound on βγ remains at a similar
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Figure 7. Relative differences between the 21 cm power spectra at z = 11, assuming xH = 0.9, for
Λ-CDM and chameleon models, with k⊥ = 0.1Mpc−1. Model parameters for the plain curves are
m0 = 0.1Mpc−1, r = 3, s = 0 and β0 = 5 (top blue), β0 = 3 (red) and β0 = 1 (bottom yellow). The
dotted curve is for m0 = 0.1Mpc−1, s = 0, β0 = 5 and r = 3.2 . The dashed curve is for s = 0.5,
r = 3, β0 = 5 and m0 = 0.8Mpc−1 (from eq. (4.8)). The grey band corresponds to the expected
errors on the power spectrum measurements for the considered FFTT experiment.

established from 21 cm observations with the FFTT, under the assumption that the mass
variation of fermions can be neglected in the brightness temperature.

Assuming that the background reionisation model will be reconstructed and that the
21 cm power spectrum amplitude will be measured with a percent level accuracy, one can
constrain |∆α|/α ! 10−3 and a bound on the parameter βγ can be derived. From eq. (4.11),
one gets

|βγ | ! 10−3 ×
1

κ4∆φ
, (4.13)

where ∆φ is the scalar field variation during the redshift range of observation of the 21 cm sig-
nal. It can be calculated from eq. (3.44). For the f(R), dilaton and chameleon model, one gets

κ4∆φ =
9β0H2

0Ωm

m2
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max − a2r−s−2
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)

, (4.14)

where amax and amin are respectively the maximal and minimal value of the scale factor in
the range of the 21 cm observations. For instance, for the redshift range given above and
the f(R) model, one can obtain

|βγ | ! 0.3
m2
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. (4.15)

With m0/H0 ≈ 103, one gets βγ ! 106, which is an intermediate value between the present
observational bound βγ0 ! 1011 and the much tighter bound βγ0 ! 0.1 derived in [58] from
the best experimental bound on the variation of α. The bound on βγ remains at a similar
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r = 3, β0 = 5 and m0 = 0.8Mpc−1 (from eq. (4.8)). The grey band corresponds to the expected
errors on the power spectrum measurements for the considered FFTT experiment.
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constrain |∆α|/α ! 10−3 and a bound on the parameter βγ can be derived. From eq. (4.11),
one gets
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where ∆φ is the scalar field variation during the redshift range of observation of the 21 cm sig-
nal. It can be calculated from eq. (3.44). For the f(R), dilaton and chameleon model, one gets
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the f(R) model, one can obtain
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With m0/H0 ≈ 103, one gets βγ ! 106, which is an intermediate value between the present
observational bound βγ0 ! 1011 and the much tighter bound βγ0 ! 0.1 derived in [58] from
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errors on the power spectrum measurements for the considered FFTT experiment.

established from 21 cm observations with the FFTT, under the assumption that the mass
variation of fermions can be neglected in the brightness temperature.

Assuming that the background reionisation model will be reconstructed and that the
21 cm power spectrum amplitude will be measured with a percent level accuracy, one can
constrain |∆α|/α ! 10−3 and a bound on the parameter βγ can be derived. From eq. (4.11),
one gets

|βγ | ! 10−3 ×
1

κ4∆φ
, (4.13)

where ∆φ is the scalar field variation during the redshift range of observation of the 21 cm sig-
nal. It can be calculated from eq. (3.44). For the f(R), dilaton and chameleon model, one gets
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where amax and amin are respectively the maximal and minimal value of the scale factor in
the range of the 21 cm observations. For instance, for the redshift range given above and
the f(R) model, one can obtain

|βγ | ! 0.3
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With m0/H0 ≈ 103, one gets βγ ! 106, which is an intermediate value between the present
observational bound βγ0 ! 1011 and the much tighter bound βγ0 ! 0.1 derived in [58] from
the best experimental bound on the variation of α. The bound on βγ remains at a similar
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.

– 19 –

JCAP01(2013)003
0.5000.1000.0500.0100.0050.001

!0.2

0.0

0.2

0.4

0.6

0.8

k !Mpc!1"

P 2
1
f"#
R$

!
P 2
1#

!
C
D
M

P 2
1#

!
C
D
M

Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
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(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√

Ωm104s−4r+18

3− s
(4.8)

(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√
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(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√
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(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√
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(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√
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(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from

– 21 –

JCAP01(2013)003

0.5000.1000.0500.0100.0050.001
!0.1

0.0

0.1

0.2

0.3

0.4

k !Mpc!1"

P 2
1s
ym
. !

P 2
1"

!
C
D
M

P 2
1"

!
C
D
M

Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
left to bottom right, m0 takes the values 10−2Mpc−1 (red), 0.1Mpc−1 (green), 1Mpc−1 (yellow) and
10Mpc−1 (blue). The two dashed curves are for β0 = 1, m0 = 0.1Mpc−1 with z⋆ varying. The top
yellow one is for z⋆ = 17, the bottom green one is for z⋆ = 14. The dotted curve is for z⋆ = 20,
m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.

If we impose s = 0 and r = 3 together with m0 = 0.1Mpc−1 (i.e. about the limiting
value imposed by galaxy constraints), we have found that the coupling to matter today
needs to be β0 ! 20 to lead to potentially detectable effects in the 21 cm power spectrum
with k∥ = 0. This limit is lowered to β0 ≈ 2 for modes with k⊥ = 0.1Mpc−1 and k∥ varying.
For negative values of s, the limit on β0 increases. If we take positive values of s and impose
β0 = 1 as well as r = 3 and take

m0 = H0

√

Ωm104s−4r+18

3− s
(4.8)

(i.e. the minimal value for the solar system constraints to be respected), the effects on the
21 cm power spectrum are never observable. An identical conclusion can be drawn for the
matter power spectrum. Increasing the value of r while the other parameters remain fixed
reduces the relative difference with the Λ-CDM model. Taking r < 3 increases this difference
but it is compensated by the fact that larger values of m0 are required to respect the bounds
from cavity experiments.

To summarise, it appears that the case r = 3 and s = 0 is the configuration for which
the 21 cm signal could reach the sensitivity of the local tests, and signatures could be detected
with a coupling to matter β0 ! 2. Varying r and s leads to more stringent constraints from
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Figure 4. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models.
As in figure 2, the power spectra are calculated at z = 11, assuming xH = 0.9, for wavelength modes
orthogonal to the line of sight. Plain curves are for z⋆ = 20, β0 = 1, with m0 varying. From top
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m0 = 0.1Mpc−1, β0 = 0.5. The parameters β0 and z⋆ are observed to control the magnitude of the
shift between symmetron and Λ-CDM at small scales, whereas the parameter m0 controls the scale
of the transition regime. The grey band corresponds to the expected errors on the power spectrum
measurements for the considered FFTT experiment.
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Figure 5. Relative differences between the 21 cm power spectra for Λ-CDM and symmetron models,
at z = 11, assuming xH = 0.9, for wavelength modes with k⊥ = 0.1 Mpc−1. Plain curves are for
z⋆ = 20, β0 = 1 and m0 = 10/100/1000 Mpc−1 (respectively the blue, red and yellow plain curves).
The two dashed curves are for β0 = 1, m0 = 10 Mpc−1, z⋆ = 14 (top blue) and z⋆ = 12 (bottom
green). The grey band corresponds to the expected errors on the power spectrum measurements for
the considered FFTT experiment.

local tests so that such configurations should be very difficult to probe efficiently with 21 cm
experiments if the coupling to matter today is of the order of unity or lower.

4.3 Probing βγ via the variation of α

Due to quantum effects such as the presence of heavy fermions, the scalar field φ can be
coupled to photons

Sgauge = −
1

4g2

∫

d4x
√
−gBF (φ)FµνF

µν , (4.9)

where g is the bare coupling constant and BF (φ) = 1 + βγκ4φ + . . . . We consider the
coefficients β and βγ as free parameters, even if they can be related depending on the model.
The coupling to the electromagnetic field leads to a time dependence of the fine structure
constant α [57, 58],

1

α0
=

1

α
BF (φ) , (4.10)

so that if we assume that BF (φ) ≈ 1, we get

α̇

α
≈ −βγκ4φ̇ . (4.11)

The 21 cm radiation is very sensitive to the variation of the fine structure constant, as noticed
in ref. [85].3 Indeed, the brightness temperature depends on the Einstein coefficient A10, itself

3Notice however that the results of ref. [85] has been disputed and have lead to a dispute on how to calculate
consistently the effects of the time variation of α on the 21 cm signal [86, 87].
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- For           ,  the symmetron could be detected by FFTT up to 

- The 21cm signal probe different ranges of parameters than LSS at lower redshifts

- Smaller linear scales, and thus larger values of         can be probed

- About 3 order of magnitudes better than local tests 
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This limit on the scalar field mass corresponds to a ratio m0/H0 ≃ 90, i.e. lower than
the constraint obtained with local tests [57], m0/H0 ! 103 (imposed to guarantee that
galaxies such as the Milky Way have a thin shell). However, it is comparable to the solar
system constraint [57],

m2
0

H2
0

!
β2
0Ωm010−4r+4s+12

(2r − s− 3)Φ⊙
, (4.7)

where Φ ∼ 10−6 is the solar Newtonian potential, giving rise for s = 0, r = 3, β0 = 1/
√
6

to the bound m0/H0 ! 100.

We have also calculated the non-biased matter power spectrum today for
m0 = 2 × 10−3Mpc−1 in the linear approximation. It is plotted in figure 8. Impor-
tant differences with the Λ-CDM model appear at small scales, that cannot be totally
absorbed by a normalisation factor and that can exceed the level of the 68% C.L. error bars
of the SDSS data. For increasing values of the scalar field mass, the difference with the
Λ-CDM matter power spectrum becomes undetectable. However, it must be noticed that
we did not take into account potentially important non-linear effects.

To summarise, we have found that future observations of the 21 cm signal at reionisation
with a FFTT-like radiotelescope could constrain more efficiently the f(R) model with r = 3
than the present matter power spectrum, mainly because the signal can probe smaller scales
in the linear regime. Modified gravity effects could be detectable up to a scalar field mass
value m0 ≃ 2×10−2Mpc−1, corresponding to m0/H0 ≃ 90. Although this value is lower than
the galaxy constraint from [57], it is competitive with the tests of gravity in the solar system
and better than the bounds from the CMB and other local tests of gravity. It will therefore
be interesting to study whether this situation could be improved by using multi-redshifts
measurements and by combining data from the whole 3D u-space, or made worse due to
possible degeneracies with cosmological and nuisance reionisation parameters. Such a study
will require ideally the use of more complex Fisher matrix or Monte-Carlo methods and is left
for future work. This last remark is also valid for the other models we consider in this paper.

4.2.2 Symmetron

The relative differences between the 21 cm power spectra at z = 11 for the symmetron and
the Λ-CDM models are plotted in figures 4 and 5, respectively for k∥ = 0 and k⊥ varying,

and for k⊥ = 0.1Mpc−1 and k∥ varying. At large scales, as for the f(R) model, one gets
β2/(1 +m2a2/k2) → 0 in eqs. (3.19) and (3.20) and the symmetron cannot be distinguished
from the Λ-CDM model. At small scales, β2/(1+m2a2/k2) → β2, inducing a scale invariant
shift of the 21 cm power spectrum amplitude.

In the case of orthogonal modes to the line of sight, figure 4 shows that the
transition between these two regimes occurs in the range of observable scales for
10−2Mpc−1 < m0 < 10Mpc−1. The magnitude of the shift is controlled by β0 and by the
redshift z∗ from which modifications of gravity are triggered. For β0 ≃ 1, modified gravity
effects could be detected by the FFTT up to z∗ ≃ 14, i.e. just before the reionisation.
However, only values of β0 of the order of unity or higher will be detectable.

When parallel modes are probed with k⊥ ≈ 0.1Mpc−1 and k∥ < 2Mpc−1, the transition

regime is in principle detectable up to m0 ≈ 200Mpc−1 (see figure 5). Moreover, the
amplitute of the shift increases since the 21-power spectrum goes like (1 + µ2)2 with µ ≈ 1.1
at the smallest scales (it is larger than unity due to modified gravity effects in eq. (2.11)).
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Figure 2. Relative differences between the 21 cm power spectra for Λ-CDM and f(R) models, with
µ = 0 (i.e. for modes orthogonal to the line of sight). Power spectra are calculated at z = 11, assuming
a neutral fraction xH = 0.9, accordingly to ref. [60]. From top to bottom curves, the model parameter
m0 is respectively 5×10−5Mpc−1 (red), 10−4Mpc−1 (dark blue), 5×10−4Mpc−1 (yellow), 10−3Mpc−1

(green) and 2× 10−3Mpc−1 (blue). The grey band corresponds to the expected errors on the power
spectrum measurements for the considered FFTT experiment. Errors are due to the cosmic variance
at large scales and grow exponentially at small scales due to the angular resolution of the telescope.

As a result, the model signatures could be detectable up to z∗ ≈ 12, i.e. just before the
redshit of observation, provided β0 ≈ 1 or higher.

Signatures on the matter power spectrum today can also be important for the
symmetron model, as shown in figure 8 for β = 0.5, m0 = 0.1Mpc−1 and z∗ = 20. Typically,
values of m0 < 10Mpc−1 with β0 ≃ 1 and z∗ ! 10 are already ruled out by observations.
Nevertheless, as noticed above for the f(R) model, the matter power spectrum is limited to
scales k " 0.3Mpc−1 and as a consequence its ability to probe large values of m0 is reduced
compared to the 21 cm signal.

Local constraints for the symmetron model are satisfied provided m0/H0 ! 103 [58].
The matter power spectrum in the linear approximation gives a bound on m0 for β0 ≈ 1
and z⋆ ≈ 20 that is of the same order of magnitude. This bound could be improved by
observations of the 21 cm signal.

To summarise, provided that symmetron effects are triggered at redshifts larger than
the redshifts of observation, the 21 cm signal is found to be promising to put stringent
constraints on the symmetron parameters, and especially the scalar field mass today, than
the matter power spectrum and the local test of gravity (m0 " 200 Mpc−1 for z⋆ = 20 and
β0 ∼ O(1), i.e. approximatively three order of magnitudes better than local test constraints).
Combining those signals and methods could be also a way to break the degeneracy between
the model parameters (especially β0 and z⋆) by probing different stages of the evolution of
the matter perturbations and different environments.
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Conclusion and perspectives

Signatures of MG on the 21cm power spectrum at reionization :

The 21cm is complementary to LSS and local tests  

Probes high redshifts (interesting for symmetron)

Smaller scales accessible in the linear regime, importance of parallel modes 

BUT: Assumptions about reionisation                               

Perspectives :

MCMC-multiple redshift analysis

Other models, other experiments (SKA, CHIME)

Other periods :  dark ages, post-reionisation 


