
Sébastien Clesse

Cosmology Group @ naXys Namur University, Belgium

Signatures of Modified Gravity

on the 21cm power spectrum at reionisation

Dark Energy Interactions workshop 1-3 October 2014

- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes

- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes

Spontaneous Emission

- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes

Spontaneous Emission

21cm photons
in the tail of the
CMB black-body
spectrum
Absorption or
stimulated Emission

- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes

Spontaneous Emission

21cm photons
in the tail of the
CMB black-body
spectrum
Absorption or
stimulated Emission

Spin-changing collisions with H atoms and electrons

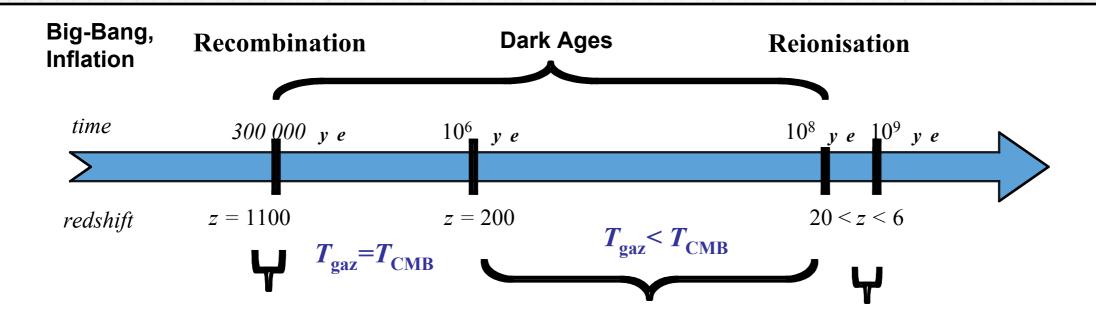
- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes

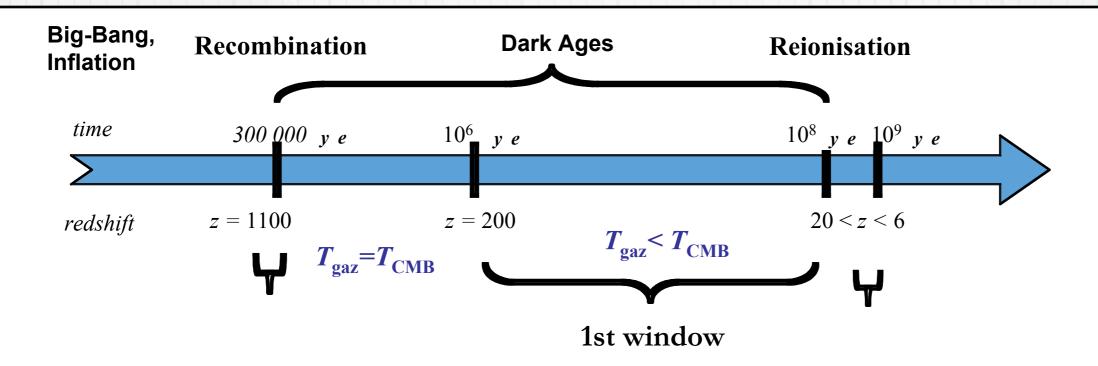
Spontaneous Emission

21cm photons
in the tail of the
CMB black-body
spectrum
Absorption or
stimulated Emission

Spin-changing collisions with H atoms and electrons

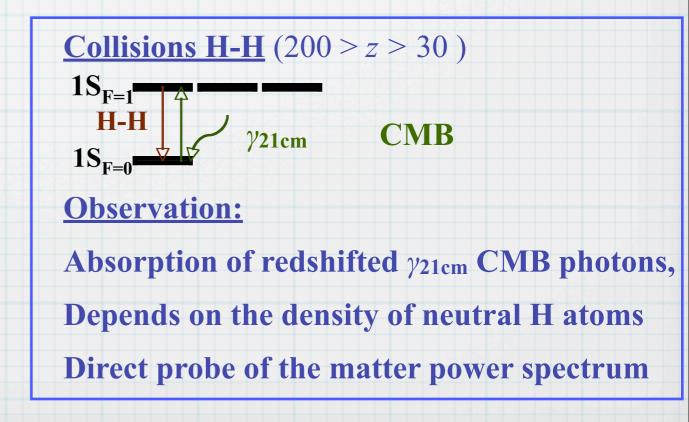
Wouthuysen-Field
effect:
Resonant scattering
of Ly-alpha photons
causing a spin-flip
via an intermediate
excited state

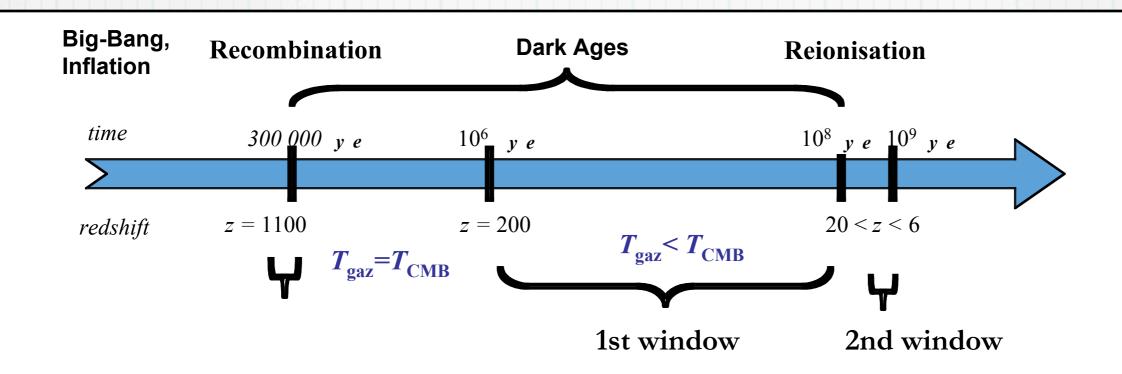

- * 21 cm? Transition between 1S hyperfine levels of neutral hydrogen atoms
- * Neutral H atoms? From recombination... until reionisation
- * Hyperfine Transitions? Several physical processes


Spont Spont

21cm photons
in the tail of the
CMB black-body
spectrum
Absorption or
stimulated Emission

Spin-changing collisions with H atoms and electrons

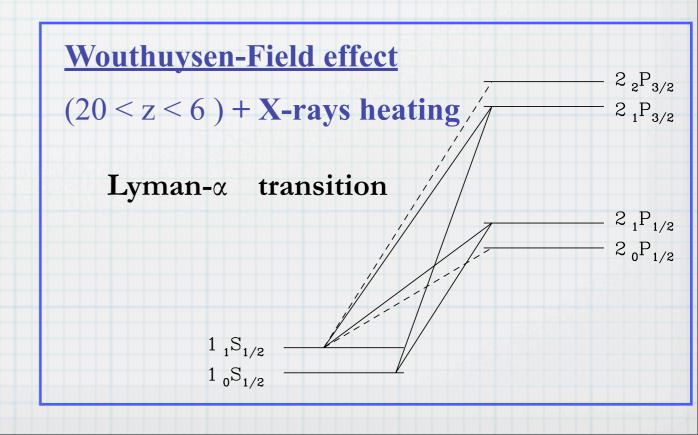

Wouthuysen-Field
effect:
Resonant scattering
of Ly-alpha photons
causing a spin-flip
via an intermediate
excited state



1st window: Dark ages

Signal driven by CMB and Collisions

1st window: Dark ages


Signal driven by CMB and Collisions

2nd window: Reionisation

Signal driven by CMB and

Wouthuysen-Field effect

(Ly-alpha radiation from the first stars)

Advantages-Disadvantages

- * Disadvantages:
 - * Low Signal to noise ratio
 - * Details of the reionisation era not known
 - * Ionospheric foregrounds: opacity for frequencies < 30 Mhz (z > 50)
- * Advantages:
 - * 3D Tomography of the Universe over the redshift range 200 < z < 2
 - ***** Dark ages: simple physics => direct probe of density perturbations
 - * Probe much smaller scales than with CMB anisotropies (no Silk damping)
 - * At high redshift, smaller scales are in the linear regime

The 21cm power spectrum at reionisation

Brightness temperature:

$$T_{\rm B}(E) = \frac{3c^3n_{\rm H}(a_E)A_{10}h_{\rm p}^3T_{21}}{32\pi E_{21}H(a_E)} \left. \frac{T_{\rm s} - T_{\gamma}}{T_s(1+z)} \right|_{\eta(a_E)}.$$

= 1/(1+z)

spin and photon temperature

perturbations are second order

Useful approximation: $T_{\rm s} \simeq T_{\rm g} \gg T_{\gamma}$

Power spectrum:

$$P_{T_{b}}(\mathbf{k}) = e^{-2\tau_{C}} T_{b}^{2} \left[P_{0}(k) + \mu^{2} P_{2}(k) + \mu^{4} P_{4}(k) \right]$$

$$P_{0}(k) \equiv x_{H}^{2} P_{b}(k) + x_{i}^{2} P_{ii} - 2x_{H} x_{i} P_{ib}(k),$$

$$P_{2}(k) \equiv 2 \left[x_{H} x_{i} P_{ib}(k) - x_{H}^{2} P_{ib}(k) \right],$$

$$P_{4}(k) \equiv x_{H}^{2} P_{b}(k),$$

The mu-dependance can be used to extract the cosmological signal

where $\mu \equiv \mathbf{k} \cdot \hat{\mathbf{n}}/k$ and $\widetilde{T}_{\rm b} \equiv T_{\rm b}/x_{\rm H}$

From k-space to u-space:

$$\mathbf{\Theta} = \frac{\mathbf{r}_{\perp}}{D_{\mathrm{A}}(z)}, \qquad F = \frac{r_{\parallel}}{y(z)} \qquad D_{\mathrm{A}}(z) = \int_{0}^{z} \frac{1}{H(z')} \mathrm{d}z'$$

$$\mathbf{u}_{\perp} = D_{\mathrm{A}}(z)\mathbf{k}_{\perp}, \qquad u_{\parallel} = y(z)k_{\parallel} \qquad y(z) = \frac{\lambda_{21}(1+z)^{2}}{H(z)}$$

$$P_{\delta T_{\mathrm{b}}}(\mathbf{u}) = \frac{P_{\delta T_{\mathrm{b}}}[\mathbf{k}(\mathbf{u})]}{D_{\mathrm{A}}^{2}(z)y(z)}$$

The 21cm signal to constrain DE-MG

Beyond the w and dw/da parametrization (ref), only a very few papers:

- Archidiacono, Lopez-Honorez, Mena, 1409.1802: forecasts for early dark energy with CHIME / FFTT experiments
- Duniya, Bertacca, Maartens, 1305.4509: Clustering of quintessence with 21cm intensity mapping
- Hall, Bonvin, Challinor, 1212.0728 : CHIME experiment, f(R) model, post-reionisation B0 < 7 x 10 $^{-7}$
- Brax, Clesse, Davis, 1207.1273: f(R), chameleon, symmetron, dilaton models

 FFTT experiment

Tomographic approach of MG

MG Models described by two scale-independent functions of the scale factor:

The scalar field mass m and the coupling to matter β

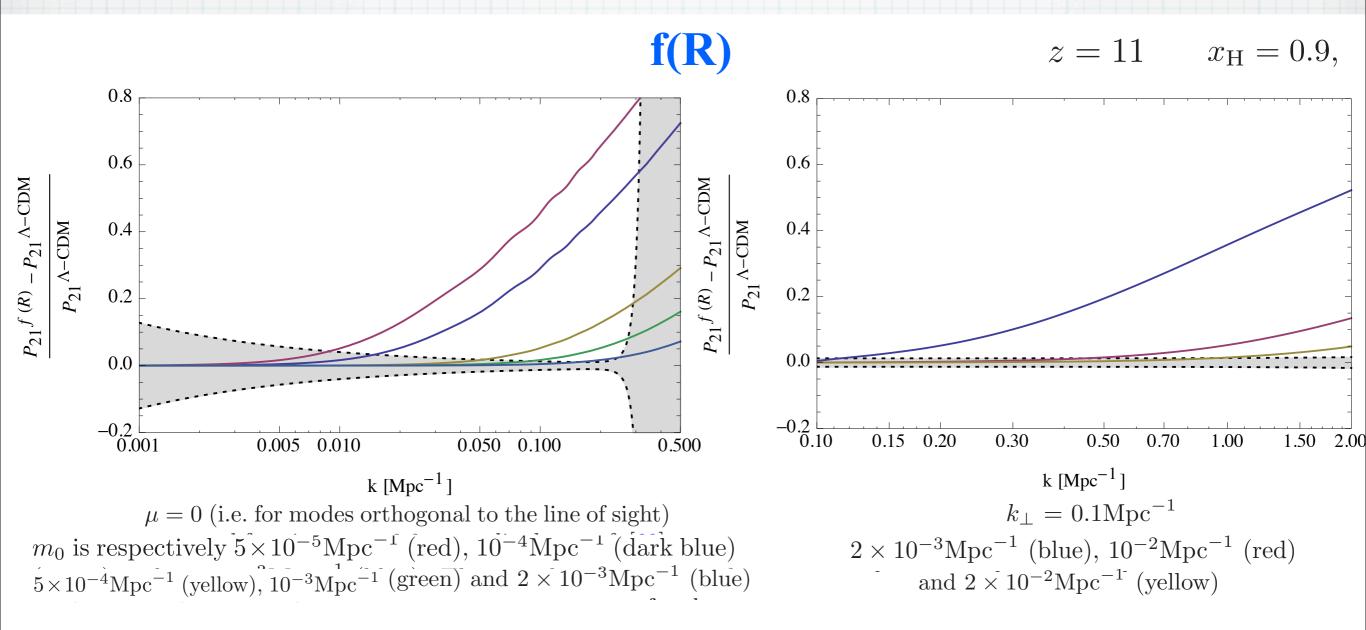
f(R):
$$\beta = 1/\sqrt{6}, \quad m = m_0 a^{-r}$$
 $r = 3(n+2)/2$

Symmetron:
$$\beta(a) = \beta_{\star} \sqrt{1 - \left(\frac{a_{\star}}{a}\right)^3}$$

$$m(a) = m_{\star} \sqrt{1 - \left(\frac{a_{\star}}{a}\right)^3}$$
 at $z < z_{\star}$

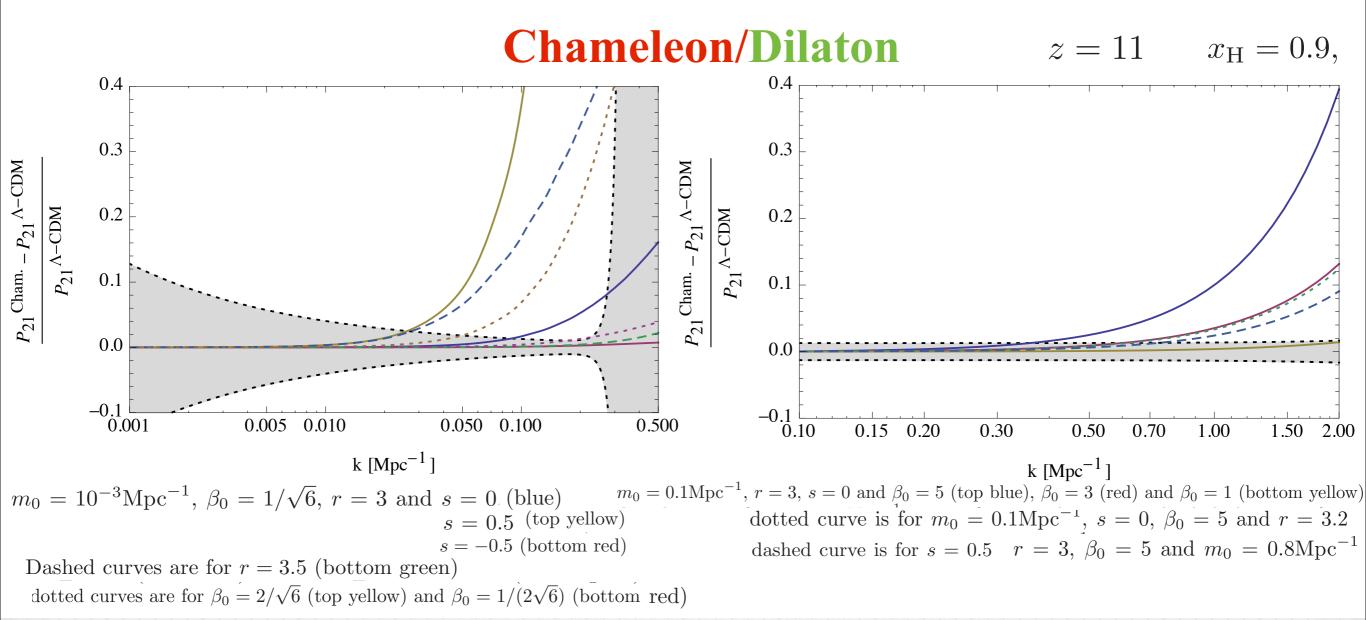
Chameleons:
$$\beta$$
 constant, $m = m_0 a^{-r}$
 $n = (2r - 6)/(2r - 3)$

Dilaton:
$$m = m_0 a^{-2}$$

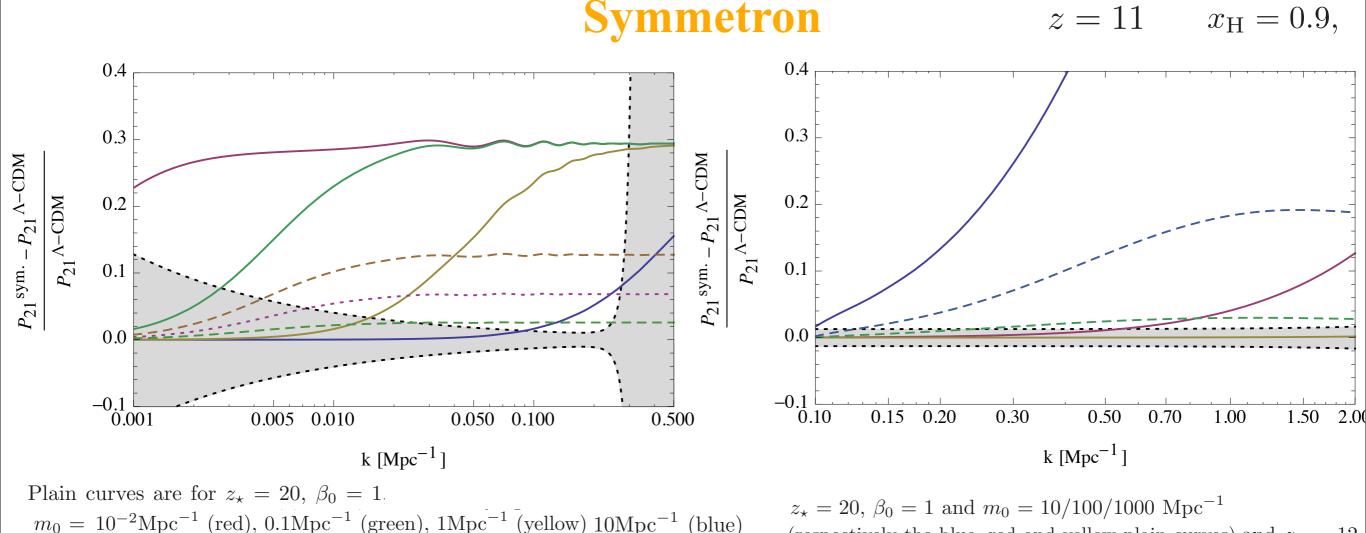

$$\beta = \beta_0 a^3$$

- 1. Background dynamics identical to LCDM
- 2. Compute linear perturbations
- 3. Compute the 21cm power spectrum at reionisation

21cm experiment: Fast Fourier Transform Telescope, Tegmark, Zaldarriaga, 0805.4414


1km x 1km array of dipole antennas

Signatures of MG on the 21cm spectrum


- $m_0 \simeq 2 \times 10^{-2} {
 m Mpc}^{-1}$ could be detected, for modes almost parallel to the line of sight
- Typically one order of magnitude better than LSS constraints (linear regime)
- Competitive with solar system constraints, but less stringent than galaxy constraints

Signatures of MG on the 21cm spectrum

- Dilaton: at reionisation, coupling to matter about 1000 times lower than today, so there is no visible signature in the 21cm spectrum
- Chameleon: Imposing s=0 and r=3 with $m_0=0.1 {\rm Mpc}^{-1}$, observable signatures down to $\beta_0 \approx 2$ for modes almost parallel to the line of sight

Signatures of MG on the 21cm spectrum

(respectively the blue, red and yellow plain curves) and $z_{\star} = 12$

The two dashed curves are for $\beta_0 = 1$, $m_0 = 10 \ \mathrm{Mpc^{-1}}$, $z_{\star} = 14$

- For $\beta_0 \simeq 1$, the symmetron could be detected by FFTT up to $z_* \simeq 14$
- The 21cm signal probe different ranges of parameters than LSS at lower redshifts
- Smaller linear scales, and thus larger values of m_0 can be probed
- About 3 order of magnitudes better than local tests

dashed curves are for $\beta_0 = 1$, $m_0 = 0.1 \mathrm{Mpc}^{-1}$ with z_{\star} varying $z_{\star} = 17$

Conclusion and perspectives

- * Signatures of MG on the 21cm power spectrum at reionization:
 - * The 21cm is complementary to LSS and local tests
 - * Probes high redshifts (interesting for symmetron)
 - * Smaller scales accessible in the linear regime, importance of parallel modes
 - ***** BUT: Assumptions about reionisation
- * Perspectives:
 - * MCMC-multiple redshift analysis
 - * Other models, other experiments (SKA, CHIME)
 - * Other periods: dark ages, post-reionisation