Using theoretical structure to sharpen observations

arXiv:1406.2301

with Doddy Marsh, Pedro Ferreira & Andrew Pontzen

Phil Bull

How to constrain dark energy?

Look at individual models

- Physical insight can target certain observables/features
- Structure: only certain values of observables are viable
- Complicated! Many available models, lots of work

Constrain phenomenological parametrisations

- Parametrise ignorance let the data speak for itself?
- Simple: Represent many (all?) theories at once
- Lots of freedom, little structure

E. Tarrant et al., arXiv:1304.5532

E. Tarrant et al., arXiv:1304.5532

Same data

Parametrisation too broad – data says nothing

Models too specific – which to believe?

Quintessence models

 $n_{\rm max}$ $\mathsf{V}(\boldsymbol{\phi}) = c_{\Lambda}\xi_{\Lambda} + f(\boldsymbol{\phi}) + \sum_{n=1}^{n} c_{n}\xi_{n}b_{n}(\boldsymbol{\phi})$ $n_{\rm min}$

Quintessence models

$$V(\phi) = c_{\Lambda}\xi_{\Lambda} + f(\phi) + \sum_{n_{\min}}^{n_{\max}} c_{n}\xi_{n}b_{n}(\phi)$$

Random variables

Quintessence models

$$\nabla(\phi) = c_{\Lambda}\xi_{\Lambda} + f(\phi) + \sum_{n_{\min}}^{n_{\max}} c_n\xi_n b_n(\phi)$$

Model	$b_n(\phi)$	Cn	n _{min}	$f(\pmb{\phi})$	ϕ_i
Kac	ϕ^n	1	1	0	[-1, 1]
Weyl	ϕ^n	$1/\sqrt{n!}$	1	0	[-1, 1]
Mono.	0	_	_	ϕ^N	[0, 4]
EFT	ϕ^n	$(\epsilon_{\rm F})^n$	<i>p</i> _E	$egin{array}{l} \xi_2 arepsilon_{ m F}^2 \phi^2 \ + \xi_4 arepsilon_{ m F}^4 \phi^4 \end{array} \end{array}$	$[-oldsymbol{arepsilon}_{ m F}^{-1},oldsymbol{arepsilon}_{ m F}^{-1}]$
Axion	$\cos(n\varepsilon_{\rm F}\phi)$	$(\varepsilon_{\rm NP})^{n-1}$	2	$1+\cos\varepsilon_{\rm F}\phi$	$[-rac{\pi}{arepsilon_{ m F}},rac{\pi}{arepsilon_{ m F}}]$
Modulus	$e^{\alpha(p_D-n)\phi}$	$(\varepsilon_{\mathrm{D}})^n$	0	0	[-1, 1]

Theory priors

Parameter	Model	Dist.
$\log_{10} A$	All	U(-1,1)
N	Monomial	$\mathrm{U}_{\mathbb{Z}}(1,7)$
<i>n</i> _{max}	Kac, Weyl, Ax., Mod.	$\mathrm{U}_{\mathbb{Z}}(10,20)$
$n_{\rm Q}, p_E$	EFT	$\mathrm{U}_{\mathbb{Z}}(5,10)$
$\log_{10}\epsilon_{\!F,NP,D}$	EFT, Ax., Mod.	U(-3, -1)
p_D	Modulus	$\mathrm{U}_{\mathbb{Z}}(1,5)$
α	Modulus	U(0, 1)

Theory priors

Overall scale of potential

(should be vaguely close to obs. DE density)

Parameter	Model	Dist.
$\log_{10}A$	All	U(-1,1)
N	Monomial	$\mathrm{U}_{\mathbb{Z}}(1,7)$
n _{max}	Kac, Weyl, Ax., Mod.	$\mathrm{U}_{\mathbb{Z}}(10,20)$
$n_{\rm Q}, p_E$	EFT	$\mathrm{U}_{\mathbb{Z}}(5,10)$
$\log_{10} \varepsilon_{\mathrm{F,NP,D}}$	EFT, Ax., Mod.	U(-3,-1)
<i>PD</i>	Modulus	$\mathrm{U}_{\mathbb{Z}}(1,5)$
α	Modulus	U(0,1)

Theory priors

Overall scale of potential

(should be vaguely close to obs. DE density)

Parameter	Model	Dist.
$\log_{10} A$	All	U(-1,1)
N	Monomial	$\mathrm{U}_{\mathbb{Z}}(1,7)$
n _{max}	Kac, Weyl, Ax., Mod.	$U_{\mathbb{Z}}(10,20)$
$n_{\rm Q}, p_E$	EFT	$\mathrm{U}_{\mathbb{Z}}(5,10)$
$\log_{10} \epsilon_{F,NP,D}$	EFT, Ax., Mod.	U(-3,-1)
p_D	Modulus	$\mathrm{U}_{\mathbb{Z}}(1,5)$
α	Modulus	U(0, 1)

Very general – allow lots of terms etc.

Observational cuts

$\Omega_{\rm DE} \in [0.6, 0.8]$ $h \in [0.6, 0.8]$ $z_{\rm eq} \in [2000, 4000]$

Observational cuts

$\Omega_{\rm DE} \in [0.6, 0.8]$ $h \in [0.6, 0.8]$

 $z_{\rm eq} \in [2000, 4000]$

(Very weak compared to current best estimates)

(1) Monte Carlo millions of random potentials(2) Apply weak, sensible observational cuts (no real data; only priors)

→ Broad, generic model structure → tight restrictions on obs. parameters

Even **very generic** theory structure disfavours vast regions of pheno. parameter space

Putting flat priors on pheno parameters favours **extremely weird** models

Data alone don't provide enough info

Even **very generic** theory structure disfavours vast regions of pheno. parameter space

Data alone don't provide enough info

Putting flat priors on pheno parameters favours **extremely weird** models

Details in <u>arXiv:1406.2301</u>

Title picture: ppix/Flickr (CC-BY-NC-SA 2.0)

Thanks

"Physical" models

"Physical" models

