Status of the ionization module/model

with Pallavi Bhat (Pune)

Use temperature

-*-Makefile-*### Makefile for modular pencil code -- local part
Included by `Makefile'
###

- MPICOMM = mpicomm
- HYDRO = hydro
- DENSITY = density
- ENTROPY = temperature_ionization
- MAGNETIC = magnetic
- RADIATION = radiation_ray
- EOS = eos_temperature_ionization
- SHOCK = shock
- FORCING = forcing
- GRAVITY = gravity_simple

REAL_PRECISION = double

Useful units,	-*-f90-*- (for Emacs) vim:set filetype=fortran: (for vim) ! ! Convection in vertically stratified atmosphere/solar convection zone ! Run parameters
etc	<pre>! srun_pars cvsid='\$Id: run.in,v 1.1 2014/07/03 07:34:12 palvi Exp \$' nt=5000000, it1=20, isave=10, itorder=3, cdt=.7 dsnap=50., dvid=100. iz=100</pre>
-*-f90-*- (for Emacs) vim:set filetype=fortran: (! ! Convection in vertically stratified atmosphere/solar cor ! Initialisation parameters !	<pre>bcz = 's','s','a','a2','f:a2','s','s','a','s' bcz = 's','s','a','a2','f:a2','s','s','a','s' lwrite_aux=T // &eos_run_pars lss_as_aux=T, lpp_as_aux=T, lcp_as_aux=T, lcv_as_aux=T, lgamma_as_aux=T lHminus_opacity_correction=T</pre>
<pre>&init_pars cvsid='\$Id: start.in,v 1.1 2014/07/03 07:34:12 palvi Exp unit_length=1e8, unit_velocity=1e5, unit_density=1e0, ur xyz0=-2.,-2., 0.0 xyz1= 2., 2., 9.0 lperi= T, T, F</pre>	/ hydro_run_pars tdamp=1.0 dampu=10.0 ldamp_fade=T
<pre>lwrite_aux=T lwrite_ic=F / &eos_init_pars lss_as_aux=T, lpp_as_aux=T, lcp_as_aux=T, lcv_as_aux=T, xHe=0.1, yMetals=1e-4</pre>	<pre> density_run_pars lreinitialize_lnrho=F, initlnrho='rescale', rescale_rho=1.03 lupw_lnrho=T kforcing_run_pars </pre>
<pre>// IlHminus_opacity_correction=T // lconst_yH=T, yH_const=.99 // &hydro_init_pars</pre>	/ &grav_run_pars / &entropy_run_pars chi=1e-6 lupw_lnTT=T
<pre>&density_init_pars initlnrho='exp_zbot', rho_left=2e-3, Hrho=4, / &grav_init_pars gravz_profile='const', gravz=-274,</pre>	/ magnetic_run_pars iresistivity='eta-const','eta-shock' lweyl_gauge=F eta=1e-2, eta_shock=5, va2max_jxb=2500,, va2power_jxb=4
&entropy_init_pars &magnetic_init_pars	<pre>kradiation_run_pars kviscosity_run_pars</pre>
<pre>% radiation_init_pars bc_rad='p:p','p:p','S:0' radx=0, rady=0, radz=1, rad2max=1 opacity_type='Hminus', scalefactor_kappa=1e=5</pre>	ivisc='nu-const','nu-shock' nu=1e-2, nu_shock=5, / &shock_run_pars lshock_first=F
	1,1

A11

Basic equations

$$\begin{split} &\frac{\mathrm{D}\ln\rho}{\mathrm{D}t} &= -\boldsymbol{\nabla}\cdot\boldsymbol{u}, \\ &\rho\frac{\mathrm{D}\boldsymbol{u}}{\mathrm{D}t} &= -\boldsymbol{\nabla}(p+\phi) + \rho\boldsymbol{g} + \boldsymbol{J}\times\boldsymbol{B} + \boldsymbol{\nabla}\cdot(2\rho\nu\boldsymbol{\mathsf{S}}), \\ &\rho T\frac{\mathrm{D}s}{\mathrm{D}t} &= -\boldsymbol{\nabla}\cdot\boldsymbol{F}_{\mathrm{rad}} + 2\rho\nu\boldsymbol{\mathsf{S}}^{2}, \\ &\frac{\partial\boldsymbol{A}}{\partial t} &= \boldsymbol{u}\times\boldsymbol{B} + \eta\nabla^{2}\boldsymbol{A}, \end{split}$$

Working with temperature

$$p = rac{\mathcal{R}}{\mu} T
ho, \quad \mathcal{R} = k_{
m B}/m_{
m u}$$

 $\mu(
ho, T) = \mu_Y/(1 + y_{
m H} + x_{
m He})$
 $\mu_Y = 1/(1-Y), \quad Y \approx 1/(1 + 1/4x_{
m He})$

$$\rho T \frac{\mathrm{D}s}{\mathrm{D}t} = \rho \frac{\mathrm{D}e}{\mathrm{D}t} + p \boldsymbol{\nabla} \cdot \boldsymbol{u} = \rho c_v T \left(\frac{\mathrm{D}\ln T}{\mathrm{D}t} + \frac{\gamma - 1}{\delta} \boldsymbol{\nabla} \cdot \boldsymbol{u} \right)$$

Pressure gradient

$$\frac{1}{\rho} \boldsymbol{\nabla} p = \frac{c_{\rm s}^2}{\gamma} (\boldsymbol{\nabla} \ln \rho + \delta \boldsymbol{\nabla} \ln T),$$

 $c_{\rm s}^2 = \gamma p / \rho \alpha$

$$\alpha = (\partial \ln \rho / \partial \ln p)_T$$
$$\delta = (\partial \ln \rho / \partial \ln T)_p$$
$$c_p = (\partial e / \partial T)_p$$
$$c_v = (\partial e / \partial T)_v$$
$$\gamma = c_p / c_v$$

Saha equation

$$\frac{y_{\rm H}^2}{1-y_{\rm H}} = \frac{\rho_{\rm e}}{\rho} \left(\frac{\chi_{\rm H}}{k_{\rm B}T}\right)^{-3/2} \exp\left(-\frac{\chi_{\rm H}}{k_{\rm B}T}\right)$$
$$\chi_{\rm H} = 13.6 \,\mathrm{eV}$$

$$\rho_{\rm e} = \mu_Y m_{\rm u} (m_{\rm e} \chi_{\rm H} / 2\pi \hbar^2)^{3/2}$$

Opacity: either Kramers or Hminus

$$\kappa = \kappa_0 \rho^a T^b$$

$$\kappa = \kappa_0 (y_{\rm H} + x_Z) (1 - y_{\rm H}) \frac{\rho}{\rho_{e^-}} \left(\frac{\chi_{\rm H^-}}{k_{\rm B}T}\right)^{3/2} \exp\left(\frac{\chi_{\rm H^-}}{k_{\rm B}T}\right)$$

$$\chi_{\rm H^-} = 0.754 \,\text{eV}, \quad \kappa_0 = \sigma_{\rm H^-} / 4m_{\rm u} \mu_Y,$$

$$\sigma_{\rm H^-} = 4 \times 10^{-17} \,\text{cm}^2, \quad x_Z = 10^{-4}$$

$$\rho_{e^-} = \mu_Y m_{\rm u} (m_{\rm e} \chi_{\rm H^-} / 2\pi \hbar^2)^{3/2}$$
7

Thermodynamic coefficients

$$c_p = \left(\frac{5}{2} + A_p B_p^2\right) \frac{\mathcal{R}}{\mu},$$
$$c_v = \left(\frac{3}{2} + A_v B_v^2\right) \frac{\mathcal{R}}{\mu}$$

$$\alpha = A_p / A_v,$$

$$\delta = 1 + A_p B_p$$

where:

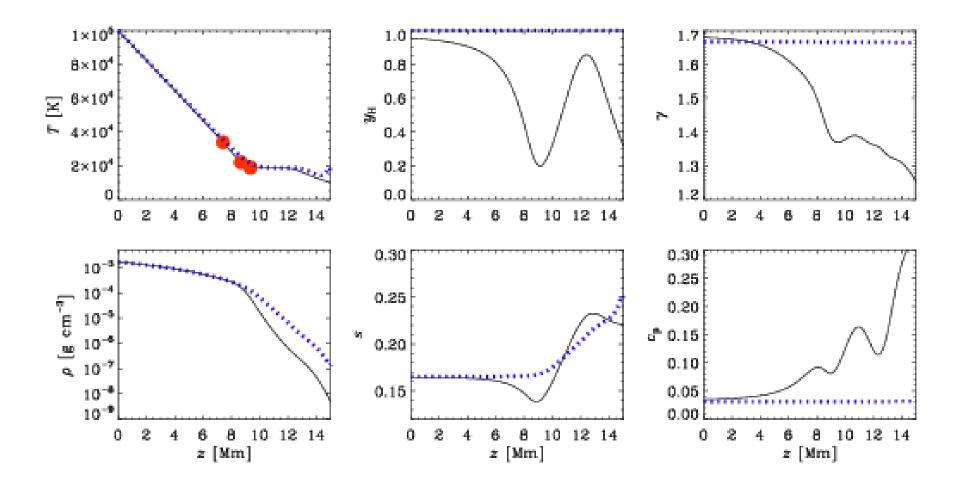
$$A_p = \frac{y_{\rm H}(1 - y_{\rm H})}{(2 - y_{\rm H})x_{\rm He} + 2}, \qquad B_p = \frac{5}{2} + \frac{\chi_{\rm H}}{k_{\rm B}T},$$

$$A_v = \frac{y_{\rm H}(1 - y_{\rm H})}{(2 - y_{\rm H})(1 + y_{\rm H} + x_{\rm He})}, \qquad B_v = \frac{3}{2} + \frac{\chi_{\rm H}}{k_{\rm B}T}.$$

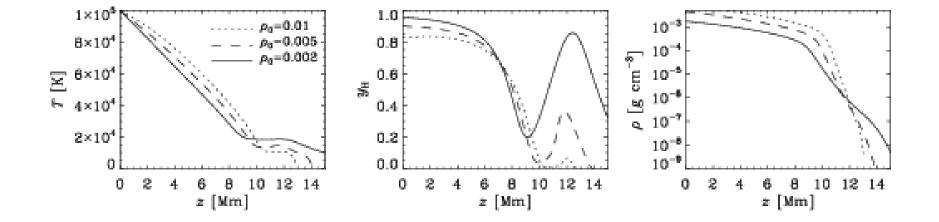
Run parameters

$$g = 274 \,\mathrm{km}^2 \,\mathrm{s}^{-2} \,\mathrm{Mm}^{-1} = 2.74 \times 10^4 \,\mathrm{cm} \,\mathrm{s}^{-2}$$

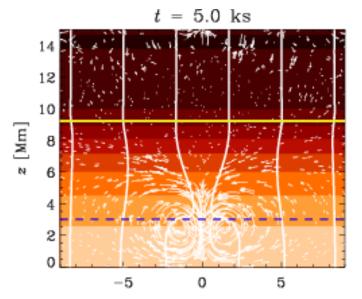
$$a = 1, \, b = 0, \, \tilde{\kappa}_0 = 10^5 \,\mathrm{Mm}^{-1} \,\mathrm{cm}^3 \,\mathrm{g}^{-1}$$

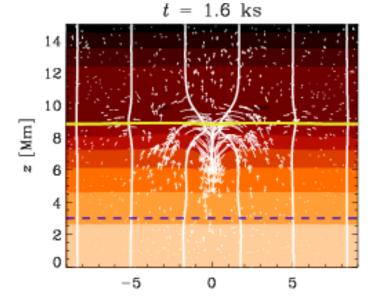

$$\nu = \eta = 10^{-3} \,\mathrm{Mm} \,\mathrm{km} \,\mathrm{s}^{-1} \,(10^{10} \,\mathrm{cm}^2 \,\mathrm{s}^{-1})$$

$$R = 1 \,\mathrm{Mm}, \, B_0 = 1 \,\mathrm{kG}.$$

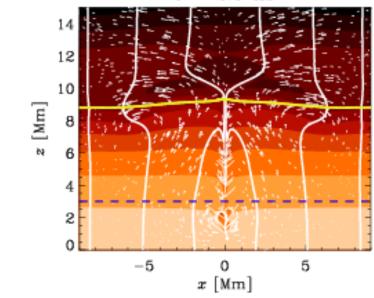

suction:
$$\phi = \phi_0 e^{-[x^2 + (z - z_0)^2]/2R^2}$$

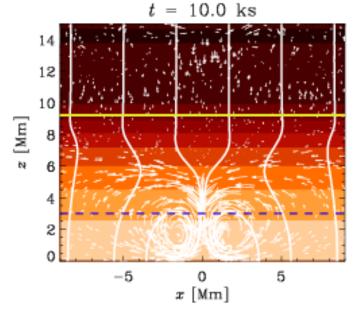
Run	opacity	z_0	ϕ_0	$p(z_0)$	$\max u_z $
F3	(1,0)	3	3×10^{-3}	1	1.1
K3a	(1,0)	3	$3 imes 10^{-3}$	1	45
K3b	(1,0)	3	$3 imes 10^{-4}$	1	40
H10	H^{-}	10	3×10^{-2}	0.07	15

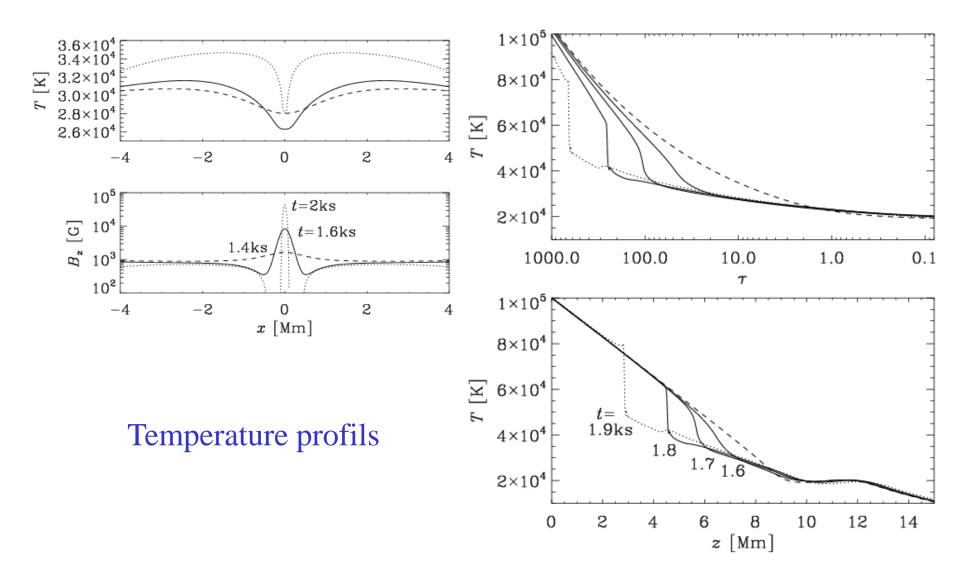

With/without ionization



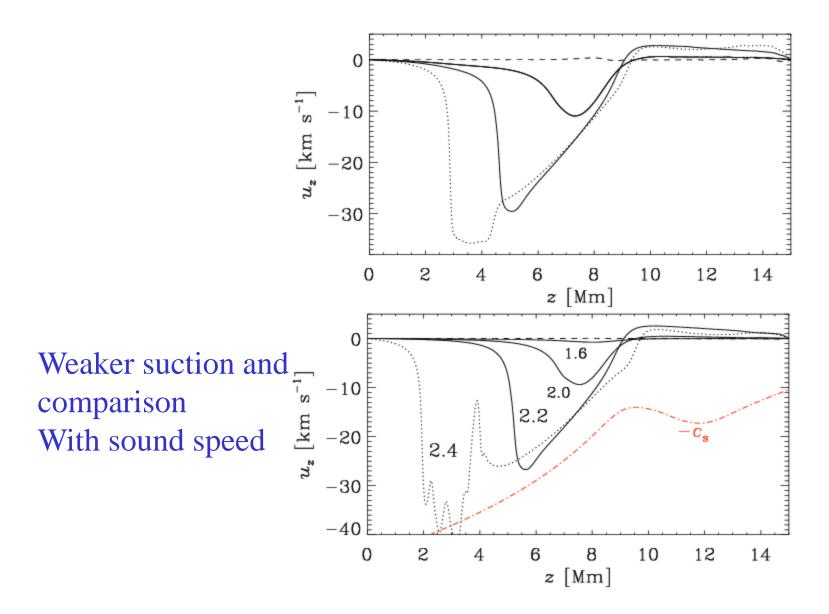
Different bottom density

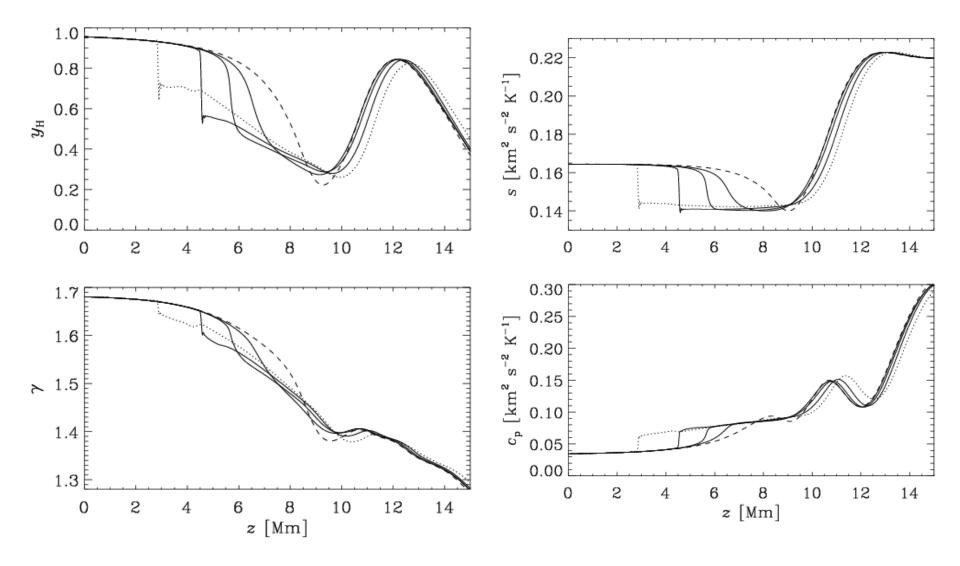


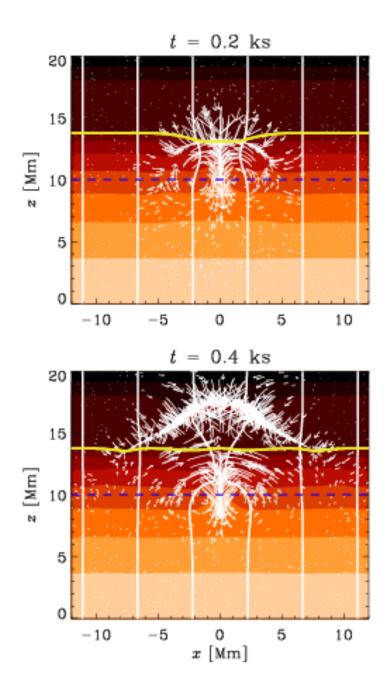

Fixed/variable ionization

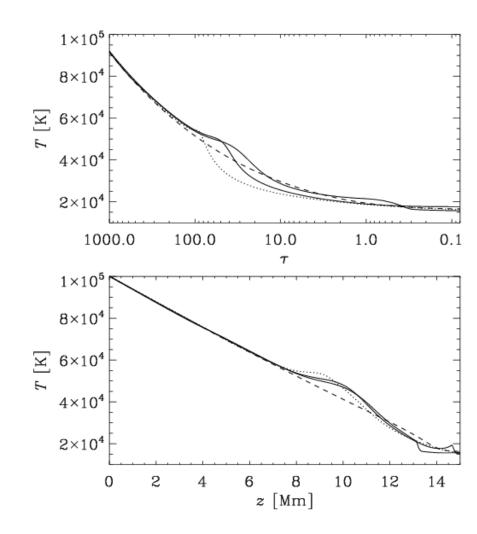


 $t = 2.0 \ {\rm ks}$




Suction in action


Velocity evolution


Evolution of thermodynamic coeffients

Carries stuff with it...

Same with Hminus

Stably stratified deeper parts...