

Lagrangian Relaxation of Magnetic Fields

Simon Candelaresi

Force-Free Magnetic Fields

Solar corona: low plasma beta and magnetic resistivity

Force-free magnetic fields

Minimum energy state

$$(\nabla \times \mathbf{B}) \times \mathbf{B} = 0 \iff \nabla \times \mathbf{B} = \alpha \mathbf{B}$$

 $\mathbf{B} \cdot \nabla \alpha = 0$ Beltrami field

Problem: Find a force-free state for a magnetic field with given topology.

NASA

Here: Numerical method for finding such states.

Ideal Field Relaxation

Ideal induction eq.: $\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u} \times \mathbf{B}) = \mathbf{0}$ Frozen in magnetic field.

(Batchelor, 1950)

But: Numerical diffusion in finite difference Eulerian codes.

Solution: Lagrangian description of moving fluid particles:

 $\mathbf{x}(\mathbf{X},0) = \mathbf{X}$

Ideal Field RelaxationField evolution:
$$B_i(\mathbf{X}, t) = \frac{1}{\Delta} \sum_{j=1}^{3} \frac{\partial x_i}{\partial X_j} B_j(\mathbf{X}, 0)$$
 $\Delta = \det\left(\frac{\partial x_i}{\partial X_j}\right)$

Preserves topology and divergence-freeness.

Grid evolution:
$$\frac{\partial \mathbf{x}(\mathbf{X}, t)}{\partial t} = \mathbf{u}(\mathbf{x}(\mathbf{X}, t), t)$$

Magneto-frictional term: $\mathbf{u} = \gamma \mathbf{J} \times \mathbf{B}$ $\mathbf{J} = \nabla \times \mathbf{B}$

$$rac{\mathrm{d}E_{\mathrm{M}}}{\mathrm{d}t} < 0$$

(Craig and Sneyd 1986)

Numerical Curl Operator

Compute $\mathbf{J} = \nabla \times \mathbf{B}$ on a distorted grid:

$$\begin{aligned} \frac{\partial B_i}{\partial x_j} &= X_{\alpha,j} (x_{i,\alpha\beta} B^0_\beta \Delta^{-1} + x_{i,\beta} B^0_{\beta,\alpha} \Delta^{-1} - x_{i,\beta} B^0_\beta \Delta^{-2} \Delta_{,\alpha}) \\ B^0_i &= B_i(0) \end{aligned}$$
 (Craig and Sneyd 1986)

Multiplication of several terms leads to high numerical errors.

Current not divergence free: $\nabla \cdot \mathbf{J} \neq 0$

Only reaching a certain force-freeness. (Pontin et al. 2009)

Mimetic Numerical Operators $I = \int \mathbf{J} \cdot \mathbf{n} \, \mathrm{d}S = \oint \mathbf{B} \cdot \mathrm{d}\mathbf{r}$ n∏ **Discretized:** i+1 $I \approx \mathbf{J}(\mathbf{X}_{ijk}) \cdot \mathbf{n}A = \sum \mathbf{B}_r \cdot \mathrm{d}\mathbf{x}_r$ ∖ i−1 ХП r=1 $d\mathbf{x}_1$ $d\mathbf{x}_2$ i+1 $\mathbf{J}(\mathbf{X}_U) \approx \mathbf{J}(\mathbf{X}_{iik}), \quad \mathbf{X}_U \in U$ ХŢ **x**_{iik} ХШ dx₄ $d\mathbf{x}_3$ 3 planes will give 3 l.i. normal vectors: X_{IV} $I^p = \mathbf{J}(\mathbf{X}_{ijk}) \cdot \mathbf{n}^p = \sum_{r=1}^{p} \mathbf{B}_r^p \cdot \mathrm{d}\mathbf{x}_r / A^p$ **j**–1 $\nabla_{\mathrm{M}} \times \nabla_{\mathrm{M}} \phi = 0$ Inversion yields **J** with $\nabla \cdot \mathbf{J} = 0$. $\nabla_{\mathbf{M}} \cdot \nabla_{\mathbf{M}} \times \mathbf{A} = 0$ (Hyman, Shashkov 1997) 6

Simulations

- GPU code GLEMuR (Gpubased Lagrangian mimEtic Magnetic Relaxation)
- line tied boundaries
- mimetic vs. classic

(Candelaresi et al. 2014)

Nvidia Tesla K40

we know: $\lim_{t \to \infty} \mathbf{B}(t)$ $\lim_{t \to \infty} \mathbf{x}(t)$ we know: $\lim_{t \to \infty} \mathbf{B}(t)$ IBI

1.316

-1.3

-1.2

-1.1

Quality Parameters

Deviation from the expected relaxed state:

$$\sigma_{\mathbf{x}} = \sqrt{\frac{1}{N} \sum_{ijk} (\mathbf{x}(\mathbf{X}_{ijk}) - \mathbf{x}_{relax}(\mathbf{X}_{ijk}))^2}$$
$$\sigma_{\mathbf{B}} = \sqrt{\frac{1}{N} \sum_{ijk} (\mathbf{B}(\mathbf{X}_{ijk}) - \mathbf{B}_{relax}(\mathbf{X}_{ijk}))^2}$$

Free magnetic energy:

$$E_{\rm M}^{\rm free} = E_{\rm M} - E_{\rm M}^{\rm bkg}$$
$$E_{\rm M} = \int_V \mathbf{B}^2/2 \, \mathrm{d}V \quad \mathbf{B}^{\rm bkg} = B_0 \hat{e}_z$$

Quality Parameters

For a force-free field: $\nabla \times \mathbf{B} = \alpha \mathbf{B}$

$$\mathbf{B} \cdot \nabla \alpha = 0$$

Force-free parameter does not change along field lines. Measure the change of $\alpha^* = \frac{\mathbf{J} \cdot \mathbf{B}}{\mathbf{B}^2}$ along field lines: $\epsilon^* = \max_{i,j} \left(a_r \frac{\alpha^* (\mathbf{X}_i) - \alpha^* (\mathbf{X}_j)}{|\mathbf{X}_i - \mathbf{X}_j|} \right); \quad \mathbf{X}_i, \mathbf{X}_j \in s_{\alpha}$

Particular field line: $s_{\alpha} = \{(0, 0, Z) : Z \in [-L_z/2, L_z/2]\}$

Field Relaxation

Magnetic streamlines:

Grid distortion at mid-plane:

movie

Relaxation Quality

Closer to the analytical solution by 3 orders of magnitude.

Relaxation Quality

Closer to force-free state by 5 orders of magnitude.

Performance Gain

	mimetic vs. classic
floating point operations	1/2
computation time (gross)	1/2
previous code*	x100

*serial code using classical finite differences and an implicit solver (Craig and Sneyd 1986)

Limitations

red: convex blue: concave

For concave cells the method becomes unstable. **But**: results before crash better than classic method.

Code Details

written in C++

6th order Runge-Kutta time stepping

periodic and line-tied boundaries

post processing routines in Python

```
// compute the norm of JxB/B**2
global void JxB B2(REAL *B, REAL *J, REAL *JxB B2, int dimX, int dimY, int dimZ) {
       int i = threadIdx.x + blockDim.x * blockIdx.x:
       int j = threadIdx.y + blockDim.y * blockIdx.y;
       int k = threadIdx.z + blockDim.z * blockIdx.z;
       int p = threadIdx.x;
       int q = threadIdx.y:
       int r = threadIdx.z;
       int l;
       REAL B2;
       // shared memory for faster communication, the size is assigned dynamically
       extern shared REAL s[];
       REAL *Bs = s;
                                                   // magnetic field
       REAL *Js = \&s[3 * dimX * dimY * dimZ];
                                                   // electric current density
       REAL *JxBs = &Js[3 * dimX * dimY * dimZ];
                                                 // JxB
       // copy from global memory into shared memory
       if ((i < dev p.nx) \& (j < dev p.ny) \& (k < dev p.nz)) {
              for (l = 0; l < 3; l++) {
                      Bs[l + p*3 + q*dimX*3 + r*dimX*dimY*3] = B[l + (i+1)*3 + (j+1)*(dev p.nx+2)*3 + (k+1)*(dev p.nx+2)*(dev p.ny+2)*3];
                      Js[l + p*3 + q*dimX*3 + r*dimX*dimY*3] = J[l + i*3 + j*dev p.nx*3 + k*dev p.nx*dev p.ny*3];
              }
              cross(&Js[0 + p*3 + q*dimX*3 + r*dimX*dimY*3],
                             Bs[0 + p*3 + q*dimX*3 + r*dimX*dimY*3],
                             &JxBs[0 + p*3 + q*dimX*3 + r*dimX*dimY*3]);
              B2 = dot(\&Bs[0 + p*3 + q*dimX*3 + r*dimX*dimY*3], \&Bs[0 + p*3 + q*dimX*3 + r*dimX*dimY*3]);
              // return result into global memory
              JxB B2[i + j*dev p.nx + k*dev p.nx*dev p.ny] = norm(&JxBs[0 + p*3 + q*dimX*3 + r*dimX*dimY*3])/B2;
       }
}
```

GLEMuR vs. PencilCode

	GLEMuR	PencilCode
data format	VTK	PC
language	C++	Fortran
change # cores	\checkmark	×
compile once	\checkmark	×
post processing	Python	IDL/Python
bash tools	\checkmark	\checkmark
GPU	\checkmark	×
CPU	×	\checkmark
general MHD	×	\checkmark

Similarities with the PencilCode

Fortran name lists

Bash commands

gm_ci_run gm_inspectrun gm_newrun

time_series.dat

#	it	t	dt	maxDelta	JxB_B2Max	epsilonStar	B2	convex
	0	1.29540e-06	1.29540e-06	1.78814e-07	1.50932e+02	2.81160e+02	7.12394e-01	-1.00000e+00
	1	3.08508e-06	1.78967e-06	1.19209e-07	1.13175e+02	2.96738e+02	7.12170e-01	-1.00000e+00
	2	5.76647e-06	2.68139e-06	1.78814e-07	8.83429e+01	3.15884e+02	7.11882e-01	-1.00000e+00
	3	9.47096e-06	3.70449e-06	1.19209e-07	7.67879e+01	3.36120e+02	7.11536e-01	-1.00000e+00
	4	1.50212e-05	5.55028e-06	1.78814e-07	6.44194e+01	3.57402e+02	7.11085e-01	-1.00000e+00
	5	2.13638e-05	6.34253e-06	7.74860e-07	5.44002e+01	3.73753e+02	7.10636e-01	-1.00000e+00

Post-Processing

Outlook

- GLEMuR to PC data conversion
- More physics (multi purpose)
- Run on GPU clusters
- PencilCode on GPUs?

Conclusions

- Lagrangian numerical scheme for ideal evolution.
- Preserving field line topology.
- Mimetic methods more capable of producing force-free fields.
- GLEMuR code running on GPUs.
- Performance gain of x2 compared to classical approach.
- GLEMuR vs. PencilCode
- Design features from the PencilCode