Over 10 year some ens il code: History and latest developments

Pencil Code Philosophy

- Maximum freedom
- Alternatives possible
- Research-driven
- Can't expect service
- Minimum ties
- Acknowledge development work of others
- Only one version
- Minimal duplication

License agreement and giving credit

The content of all files under :pserver:\$USER@svn.nordita.org:/var/cvs/brandenb are under the GNU General Public License (http://www.gnu.org/licenses/gpl.html).

We, the Pencil Code community, ask that in publications and presentations the use of the code (or parts of it) be acknowledged with reference to the web site http://www.nordita.org/software/pencil-code/. As a courtesy to the people involved in developing particularly important parts of the program (use svn annotate src/*.f90 to find out who did what!) we suggest to give appropriate reference to one or several of the following papers (listed here in temporal order):

Dobler, W., Haugen, N. E. L., Yousef, T. A., \& Brandenburg, A.: 2003, "Bottleneck effect in three-dimensional turbulence simulations," Phys. Rev. E 68, 026304, 1-8 (astro-ph/0303324)
Haugen, N. E. L., Brandenburg, A., \& Dobler, W.: 2003, "Is nonhelical hydromagnetic turbulence peaked at small scales?" Astrophys. J. Lett. 597, L141-L144 (astro-ph/0303372)
Brandenburg, A., Käpylä, P., \& Mohammed, A.: 2004, "Non-Fickian diffusion and tau-approximation from numerical turbulence," Phys. Fluids 16, 1020-1027 (astro-ph/0306521)
Johansen, A., Andersen, A. C., \& Brandenburg, A.: 2004, "Simulations of dusttrapping vortices in protoplanetary discs," Astron. Astrophys. 417, 361-371 (astro-ph/0310059)
Haugen, N. E. L., Brandenburg, A., \& Mee, A. J.: 2004, "Mach number dependence of the onset of dynamo action," Monthly Notices Roy. Astron. Soc. 353, 947-952 (astro-ph/0405453)

Free licence, but giving credit to research

Brandenburg, A., Rädler, K.-H., Rheinhardt, M., \& Käpylä, P. J.: 2008, "Magnetic diffusivity tensor and dynamo effects in rotating and shearing turbulence," Astrophys. J. 676, 740-751 (arXiv/0710.4059)

Lyra, W., Johansen, A., Klahr, H., \& Piskunov, N.: 2008, "Embryos grown in the dead zone. Assembling the first protoplanetary cores in low-mass selfgravitating circumstellar disks of gas and solids," Astron. Astrophys. 491, L41-L44
Lyra, W., Johansen, A., Klahr, H., \& Piskunov, N.: 2009, "Standing on the shoulders of giants. Trojan Earths and vortex trapping in low-mass selfgravitating protoplanetary disks of gas and solids," Astron. Astrophys. 493, 1125-1139
Lyra, W., Johansen, A., Zsom, A., Klahr, H., \& Piskunov, N.: 2009, "Planet formation bursts at the borders of the dead zone in 2D numerical simulations of circumstellar disks," Astron. Astrophys. 497, 869-888 (arXiv/0901.1638)
Mitra, D., Tavakol, R., Brandenburg, A., \& Moss, D.: 2009, "Turbulent dynamos in spherical shell segments of varying geometrical extent," Astrophys. J. 697, 923-933 (arXiv/0812.3106)
Haugen, N. E. L., \& Kragset, S.: 2010, "Particle impaction on a cylinder in a crossflow as function of Stokes and Reynolds numbers," J. Fluid Mech. 661, 239-261
Rheinhardt, M., \& Brandenburg, A.: 2010, "Test-field method for mean-field coefficients with MHD background," Astron. Astrophys. 520, A28 (arXiv/1004.0689)

Using ADSlab; search for "Pencil Code"

ces System

(0) ADS 2.0 - Search Results: "Penci...

\}

"Pencil Code"		
Trending	Useful	Instructive
Limit your search		
> Top papers		
\checkmark A	hors	apply
> \square Code, A (223)		
> \square Brandenburg, A (140)		
> \square Anderson, C (51)		
$>\square$ Meade, M (47)		
> \square Babler, B (42)		
		more..

- Database apply
\square astronomy (503)
\square physics (115)
\square general (3)

> Keywords

> Publications

Database : astronomy OR physics $\odot \quad$ Clear

『 1. 2014FIDyR..46d1401L Cited by 1 [E LX RC]

Rossby wave instability in astrophysical discs

Lovelace, R. V. E.; Romanova, M. M.
Published in Aug 2014
. and the dust described by a large number of Lagrangian particles (typically11105) using the Pencil code.

Planetesimal formation in self-gravitating discs - the effects of particle self-gravity and back-reaction

Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.
Published in Jul 2014
to see how these particle overdensities evolve. We use the PENCIL code to solve the local shearing sheet equations for gas .
... properties. As a main numerical tool, we employ the pencil code. 1 The pencil code is a sixth-order spatial.
and third-order temporal finite difference code (see Brandenburg 2003 for full details). The pencil code
. where pencil code it also includes a diffusion term, $f \mathrm{D}$, to ensure numerical stability and capture shocks,
> Refereed status

Assemble bibtex file

Scientific usage of the Pencil Code

Search results using http://adslabs.org

July 6, 2014

A search using http://adslabs.org indicates the papers where the Pencil Code is being quoted. In the following we quote the papers that are directly making use of the code either for their own scientific work of those authors, or for code comparison purposes. We include conference proceedings, which make about $15-20 \%$ of all papers. We classify the references by year and by topic, although the topics are often overlapping. The primary application of the PENCIL CODE lies in astrophysics, in which case we classify mostly by the field of research.

1 Papers by year

As of July 2014, the Pencil Code has been used for a total of 355 research papers.
19 times in 2014 (Gibbons et al., 2014a; Pan et al., 2014; Lyra, 2014; Bhat et al., 2014; Losada et al., 2014; Rheinhardt et al., 2014; Mitra et al., 2014; Turner et al., 2014; Jabbari et al., 2014; Brandenburg and Stepanov, 2014; Chian et al., 2014; Brandenburg, 2014; Gibbons et al., 2014b; Brandenburg et al., 2014; Park, 2014; Käpylä et al., 2014; Modestov et al., 2014; Cole et al., 2014; Rüdiger and Brandenburg, 2014),

2 Papers by topic

The Pencil Code has been used for the following research topics

1. Interstellar and intercluster medium as well as early Universe
(a) Interstellar and intercluster medium (Chamandy et al., 2013; Gent et al., 2013a,b; Bykov et al., 2013; Yang and Krumholz, 2012; Mantere and Cole, 2012; Rogachevskii et al., 2012; Ruoskanen et al., 2011; Piontek et al., 2009; Ruszkowski et al., 2008, 2007; Brandenburg et al., 2007b; Gustafsson et al., 2007, 2006; Brandenburg et al., 2005a; Haugen et al., 2004b; Brandenburg et al., 2003).
(b) Small-scale dynamos and reconnection (Bhat and Subramanian, 2013; Brandenburg, 2011c; Baggaley et al., 2009, 2010; Schekochihin et al., 2005, 2007; Haugen and Brandenburg, 2004b; Haugen et al., 2004c,a, 2003; Dobler et al., 2003).
(c) Primordial magnetic fields and decaying turbulence (Brandenburg et al., 2014; Kahniashvili et al., 2012, 2013; Tevzadze et al., 2012; Candelaresi and Brandenburg, 2011a; Kahniashvili et al., 2010; Del Sordo et al., 2010; Christensson et al., 2005; Yousef et al., 2004).
2. Planet formation and inertial particles
(a) Planet formation (Gibbons et al., 2014b; Turner et al., 2014; Gibbons et al., 2014a; Lyra and Kuchner, 2013; Dittrich et al., 2013; Gibbons et al., 2012; Hubbard, 2012; Horn et al., 2012; Lyra and Kuchner, 2012; Yang et al., 2012; Lambrechts and Johansen, 2012; Johansen et al., 2012; Fromang et al., 2011; Johansen et al., 2011; Lyra and Klahr, 2011; Lyra et al., 2010; Johansen and

Bhat, P. and Subramanian, K. (2013). Fluctuation dynamos and their Faraday rotation signatures. Month. Not. Roy. Astron. Soc., 429:2469-2481.
Bingert, S. and Peter, H. (2011). Intermittent heating in the solar corona employing a 3D MHD model. Astron. Astrophys., 530:A112.
Bingert, S. and Peter, H. (2013). Nanoflare statistics in an active region 3D MHD coronal model. Astron. Astrophys., 550:A30.

Bingert, S., Zacharias, P., Peter, H., and Gudiksen, B. V. (2010). On the nature of coronal loops above the quiet sun network. Advances in Space Research, 45:310-313.

Bonanno, A., Brandenburg, A., Del Sordo, F., and Mitra, D. (2012). Breakdown of chiral symmetry during saturation of the Tayler instability. Phys. Rev. E, 86(1):016313.

Børve, S., Speith, R., and Trulsen, J. (2009). Numerical Dissipation in RSPH Simulations of Astrophysical Flows with Application to Protoplanetary Disks. Astrophys. J., 701:1269-1282.

Bourdin, P.-A., Bingert, S., and Peter, H. (2013a). 3D-MHD model of a solar active region corona (Bourdin+, 2013). VizieR Online Data Catalog, 355:59123.
Bourdin, P.-A., Bingert, S., and Peter, H. (2013b). Observationally driven 3D magnetohydrodynamics model of the solar corona above an active region. Astron. Astrophys., 555:A123.
Brandenburg, A. (2003). Computational aspects of astrophysical MHD and turbulence, pages 269-344.
Brandenburg, A. (2005a). Distributed versus tachocline dynamos. ArXiv Astrophysics e-prints.

RDITA - Nordic In... ¿Veference and Progr... Google Translate Reference and Progr... G Internationella Engel...

The Pencil Code

a high-order finite-difference code for compressible MHD

Highlights

The document about the Scientific Usage of the Pencil Code lists currently 352 research papers quoting the Pencil Code.

Currently, we have the following highlights planned:

- Helical MHD Dynamo [AB]
- Isotropic turbulence [AB]
- Stellar convection [BD/DB]
- Magnetorotational instability [AJ]
- Streaming instability [DC/ML/AJ]
- Global cartesian discs [WL]
- Particle flow around objects [NH/DM]

This is a test page / template for the highlights subdirectory.

SIICAL BACKGROUI MERICAL SETUP ULTS
Saturation Values a回圆pı
tract1, png
tract1, png act1, png
tract 2. png
act2. png

1, png
the right regime
We model b separately beca or the other don the shorter time ambient gas.

3. NUMERICAL SETUP

Our simulations were conducted with the PENCII. Code. ${ }^{6}$ We use a two-dimensional, local shearing sheet approach. We consider a sheet in the mid-plane that co-rotates with the corotational radius R_{0}. This is a 2D version of the model used in Lyra \& Klahr (2011). To include the baroclinic term they define a global entropy gradient β. Note that in our approximation the gradients for entropy (s) and pressure (p) are the same. Therefore we do not distinguish between them in our notation and call both β. However, in real disks both may easily differ.
The total pressure $p_{\text {ace }}=\bar{p}+p$ consist of a local fluctuation p and a time-independent part that follows a large scale radial pressure gradient β

$$
\begin{equation*}
\bar{p}=p_{0}\left(r / R_{0}\right)^{-\beta}, \tag{4}
\end{equation*}
$$

where r is the cylindrical radius. The full set of linearized equations used in our simulations is

$$
\begin{align*}
& \frac{\mathcal{D} \rho}{\mathcal{D} t}+(\boldsymbol{u} \cdot \nabla) \rho=-\rho \nabla \cdot \boldsymbol{u}+f_{D}(\rho) \tag{5}\\
& \frac{\mathcal{D} \boldsymbol{u}}{\mathcal{D} t}+(\boldsymbol{u} \cdot \nabla) \boldsymbol{u}=-\frac{1}{\rho} \nabla p-2 \Omega_{0}(\hat{z} \times \boldsymbol{u}) \\
& \quad+\frac{3}{2} \Omega_{0} u_{x} \hat{\boldsymbol{y}}+\frac{\beta p_{0}}{R_{0}}\left(\frac{1}{\rho}-\frac{1}{\rho_{0}}\right) \hat{\boldsymbol{x}}+f_{v}(\boldsymbol{u}, \rho) \tag{6}\\
& \frac{\mathcal{D} s}{\mathcal{D} t}+(\boldsymbol{u} \cdot \nabla) s=\frac{1}{\rho T}\left\{\nabla \cdot(K \nabla T)-\rho c_{v} \frac{\left(T-T_{0}\right)}{\tau_{\text {coal }}}\right. \\
& \left.+\frac{\beta p_{0}}{R_{0}} \frac{u_{x}}{(\gamma-1)}\right\}+f_{K}(s) . \tag{7}
\end{align*}
$$

[^0]obiect) terms on the right hand side of the entropy equation. As e diffusion coefficient)), constant and define tex has a radius of H, diffusion time $\tau_{\text {diff }}$ has the value we quote m , e.g., lable 1. It the vortex is smaller than H relaxation will be much faster.

To clarify that it is indeed the global entropy gradient that produces the vorticity, we take the curl of the Navier-Stokes Equation (6) and assume an equilibrium state, $u_{x}=0$, and $\nabla P=0$ so that

$$
\begin{equation*}
\frac{\mathcal{D} \omega_{z}}{\mathcal{D} t}=\frac{\beta p_{0}}{\rho^{2} R_{0}} \partial_{y} \rho \tag{9}
\end{equation*}
$$

Here we see that the negative azimuthal density gradient across the vortex is the source for vorticity production proportional to the global entropy gradient.
Shearing sheet simulations with Zeus ${ }^{7}$ like finite volume codes without explicit viscosity, e.g., the TRAMP code, have shown a weak amplification of kinetic energy for the pure adiabatic case, i.e., infinite cooling time (Klahr 2013, private communication). This numerical artifact does not occur with simulations performed by the Pencil. Code. See the Appendix for a one-dimensional (1D) radial test/comparison simulation.

Initially we apply a finite perturbation in the density so that

$$
\begin{equation*}
\rho(x, y)=\rho_{0}+\rho^{\prime} \tag{10}
\end{equation*}
$$

with ρ_{0} the constant background density and ρ^{\prime} the actual perturbation of the form

$$
\rho^{\prime}=\rho_{0} C e^{-(x / 2 \Delta)^{2}} \times \sum_{i=-k_{x}}^{k_{x}} \sum_{j=0}^{k_{y}} \sin \left\{2 \pi\left\{i \frac{x}{L_{x}}+j \frac{y}{L_{y}}+\phi_{i j}\right\}\right\},
$$

where C describes the strength of the perturbation. We perturb the density in a way that $\rho_{\operatorname{mss}}=5 \%$ for $\beta=1.0,2.0$ (runs A-I) and $\rho_{\text {rms }}=10 \%$ for $\beta=0.5$ (runs J-P). To achieve a random perturbation we apply an arbitrary phase $\phi_{i j}$ between 0 and 1 . The initial state is non-vortical. Again, this is the identical initial condition as used in Lyra \& Klahr (2011) as well as the same amplitude, C, for simulations with $\beta=2.0$, as was used in their simulations.

[^1]$1 \square$ 2012sf2a.conf..329F
Félix, S.; Audit, E.;
Dintrans, B.
$1.000 \quad 12 / 2012 \quad \underline{A} \quad \underline{F}$
Pulsations-convection combination in stars2012MNRAS.426.1444G
Gibbons, P. G.;
Rice, W. K. M.;
Mamatsashvili, G. R.

3
2012ApJ...756...62L
Lyra, Wladimir;
Mac Low, Mordecai-Mark
1.000 09/2012 A E F L X

R \underline{C}
U
Rossby Wave Instability at Dead Zone Boundaries in Three-dimensional Resistive Magnetohydrodynamical Global Models of Protoplanetary Disks
$4 \square$ 2012PhDT........18M
McNally, Colin P.
1.000 08/2012 $\underline{\text { A }}$ F $\underline{\text { C }}$

A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks
$5 \square$ 2012ApJS..201...18M
McNally, Colin P.;
Lyra, Wladimir;
Passy, Jean-Claude
1.000 10/2012 $\underline{A} \quad \underline{E}$ F X $\underline{\text { X }}$

U
Planetesimal formation in self-gravitating discs

R
U

Title:	Planetesimal formation in self-gravitating discs
Authors:	Gibbons, P. G.; Rice, W. K. M.; Mamatsashvili, G. R.
Affiliation:	AA(SUPA, Institute for Astronomy, Royal Observatory, Blackford Hill Edinburgh, EH9 3HJ), AB(SUPA, Institute for Astronomy, Royal Observatory, Blackford Hill Edinburgh, EH9 3HJ), AC(INAF, Osservatorio Astronomico di Torino, via Osservatorio 20 Pino Torinese, 10025 Italy; Faculty of Exact and Natural Sciences, Tbilisi State University, Il. Chavchavadze ave. 1 Tbilisi, 0128 Georgia)
Publication:	Monthly Notices of the Royal Astronomical Society, Volume 426, Issue 2, pp. 1444-1454 (MNRAS Homepage)
Publication Date:	10/2012
Origin:	WILEY
Astronomy Keywords:	accretion, accretion discs, gravitation, hydrodynamics, instabilities, planets and satellites: formation
DOI:	10.1111/j.1365-2966.2012.21731.x
Bibliographic Code:	2012MNRAS.426.1444G

Abstract

We study particle dynamics in local two-dimensional simulations of self-gravitating accretion discs with a simple cooling law. It is well known that the structure which arises in the gaseous component of the disc due to a gravitational instability can have a significant effect on the evolution of dust particles. Previous results using global simulations indicate that spiral density waves are highly efficient at collecting dust particles, creating significant local overdensities which may be able to undergo gravitational collapse. We expand on these findings using a range of cooling times to mimic the conditions at a large range of radii within the disc. Here we use the PENCIL code to solve the 2D local shearing sheet equations for gas on a fixed grid together with the equations of motion for solids coupled to the gas solely through aerodynamic drag force. We find that spiral density waves can create significant enhancements in the surface density of solids, equivalent to 1-10 cm sized particles in a disc following the profiles of Clarke around an " $1 \mathrm{M}_{\odot}$ star, causing it to reach concentrations

Rate of src/ check-ins

H-index of check-ins

Automatic validation tests

$\overline{\overline{\bar{~}}}$
 Pencil Code -- Tests

Automatic test results

To ensure reproducability, the Pencil Code is tested daily for a number of sample applications. This is important for us in order to make sure certain improvements in some parts of the code do not affect the functionality of other parts. For other users who suspect that a new problem has emerged it could be useful to first see whether this problem also shows up in our own tests.
The latest test results for a can be seen online:

- opto3 (Linux on $4 \times$ Opteron 2.2GB, ifort 9.1 compiler with MPICH, by Anders Johansen)
- GNU Fortran (Ubuntu 4.4.1-4ubuntu9) 4.4.1 (by Philippe Bourdin)
- Shal (Linux on $2 \times$ Quadcore Intel Xeon E5320@1.86GHz, ifort 64 bits v11.1.064, by Boris Dintrans, regular level 2 test)
- Shal (Linux on $2 \times$ Quadcore Intel Xeon E5320@1.86GHz, ifort 64 bits v11.1.064, by Boris Dintrans, 16 separate tests)
- Linux/Ubuntu10.4 on Intel Core 2 Quad Q9000@2.00GHz, ifort 64bit v11.1 (Sven Bingert, standard + personal tests)
- Nordita Big Test (norlx51, gfortran, openmpi, by Wolfgang/Axel)
- Nordita Hourly Test (norlx51, gfortran, openmpi, by Wolfgang/Axel)
- Nordita PowerMac (os10, g95, ompi, by Axel) [previous]

Note: before checking in your own changes, you should at least do the very minimal auto-test:

```
pc_auto-test --level=0 --no-pencil-check -c
```

/data/bourdin/Korona/Recent/pencil-code/samples/2d-tests/field-loop-fargo: (34/34) Compiling. ok
No data directory; generating data -> /tmp/pencil-tmp-philippe-10473
Starting. . ok Running. . ok Validating results.. ok
\#\#\# auto-test failed \#\#\#
Failed 2 test(s) out of 48:
/home/brandenb/pencil-weekly-tests/samples/corona (compilation) /home/brandenb/pencil-weekly-tests/samples/most-modules (running)

CPU time (including compilation): 02:29:20u 30:35s
Total wall-clock time:
02:56:19 = 01:45:10 + 01:09:12 Maintainers of failed tests: anders/astro:lu:se,wlyra/amnh:org,nbabkovsḱ
Wed Apr 6 14:46:39 2011

All 34 tests succeeded.

Validation check-ins

Checkout Browse Changes Request code review

Committed Changes

20483-20459 of 20483 old

Rev	Scores	Commit log message	Date	Author
it r20483		automatic validation completed: auto-test on norlx51 by	Today (117 minutes ago)	AxelBrandenburg
is r20482		Still not perfect, but produces what is espected: a freely oriented 2D slice from a	Today (12 hours ago)	Bourdin.KIS
is $\underline{\text { r20481 }}$		added Michiel Lambrechts michiel.lambrechts/gmail.com , , +46736137111 P/s	Yesterday (21 hours ago)	AxelBrandenburg
is $\underline{\mathrm{r} 20480}$		automatic validation completed: auto-test on norlx51 by	Yesterday (26 hours ago)	AxelBrandenburg
is $\underline{\text { r20479 }}$		Added a slicer GUl tool to get any possible 2D cut of the 3D data cube. Known iss	Yesterday (35 hours ago)	Bourdin.KIS
is $\underline{\text { r20478 }}$		automatic validation completed: auto-test on norlx51 by	Jun 15 (2 days ago)	AxelBrandenburg
is $\underline{\text { r20477 }}$		Reduced computation to the very minimu, added some comments.	ago)	Bourdin.KIS
$\underline{\mathrm{r} 20476}$		Change the hostname of my desktop.	Jun 14 (2 days ago)	ccyang@astro.lu.se
is $\underline{\text { r20475 }}$		automatic validation completed: auto-test on norl $\times 51$ by	Jun 14 (3 days ago)	AxelBrandenburg
is r20474		option of symmetry of forcing function about z direction	Jun 13 (3 days ago)	AxelBrandenburg
is r20473		commented out ! N NEMPI_correction=T! (is now the default)	Jun 11 (6 days ago)	AxelBrandenburg
\% $\underline{\text { r20472 }}$		changed now the default to INEMPI_correction=.true.	Jun 11 (6 days ago)	AxelBrandenburg
is r20471		automatic validation completed: auto-test on norlx51 by	Jun 10 (6 days ago)	AxelBrandenburg
is r20470		added the README file.	Jun 10 (6 days ago)	dhruba.mitra
is r20469		Adding a sample that used particles_potential sample.	Jun 10 (6 days ago)	dhruba.mitra
is r20468		inserted logical variable linsert_particles_continiously	Jun 10 (6 days ago)	dhruba.mitra
is r20467		New sample ChargedPaerticle_in_MHDturb.	Jun 10 (6 days ago)	dhruba.mitra 15

Check-ins since last meeting

... same, by module

r20705 I ccyang@astro.lu+se | 2013-06-26 15 $+55 \div 02$ +0200 (Wed, 26 Jun 2013) | 3 lines

 Prototype for directly evolving the magnetic field.r20781 | ccyang@astro+lu.se | 2013-07-09 18:04:02 +0200 (Tue, 09 Jul 2013) | 3 lines

bfield. 990

Add mesh hyper-resistivity, unfortunately a divergence generator. This is to be worked on later.

```
! MVAR CONTRIBUTION 3
```

!
if (lroot) call svn_id("\$Id: bfield.f90 21886 2014-06-18 11:03:122 ccyang@astro.lu.se \$")
Request variable for the magnetic field.
call farray_register_pde('bb'. ibb, vector $=3$, ierr $=$ istat $)$
if (istat $/=0$) call fatal_error('register_magnetic'. 'cannot register the variable bb. ')
$i b x=i b b$
$i b y=i b x+1$
$i b z=i b y+1$
Request auxiliary variable for the effective electric field.
call farray_register_auxiliary('ee'. iee, vector=3, communicated=.true.. ierr=istat)
if (istat /= 0) call fatal_error('register_magnetic'. 'cannot register the variable ee. ')
ieex $=$ iee
ieey = ieex + 1
ieez $=$ ieey +1
Request auxiliary variable for the current density.
call farray_register_auxiliary('jj'. ijj, vector=3, communicated=.true., ierr=istat)
if (istat /= 0) call fatal_error('register_magnetic'. 'cannot register the variable jj. ')
$\mathbf{i j x}=\mathbf{i j} j$
$\mathbf{i} \mathbf{j} \mathbf{y}=\mathbf{i} \mathbf{j} x+1$
$\mathbf{i} \mathbf{j} \mathbf{z}=\mathbf{i} \mathbf{j} \mathbf{y}+\mathbf{1}$
!
endsubroutine register_magnetic
corrected battery term and inserted new initial condition under hydro
r21238 | AxelBrandenburg | 2013-10-27 21:34:40 +0100 (Sun, 27 0ct 2013) | 5 lines
Fixed a wrong minus sign that I must have introduced (\& checked in) during testing in:
call beltrami(amplaa(j),f,iaa,KY=-ky_aa(j), phase=phasey_aa(j))
r21039 I mreinhardt@nordita.org I 2013-09-08 01:49:50 +0200 (Sun. 08 Sep 2013) I 3 lines
MR: introduced vector lresi_dep for all possible eta profiles
r20462 | dhruba.mitra | 2013-06-08 09:27:26 +0200 (Sat, 08 Jun 2013) | 23 lines
Changes to solve for charged particles in an MHD dynamo. The particles do not have drag. For them we solve the equations,
$d v / d t=q / m(E+v X B)$, where
the electric field, $E=-d A / d t$ and B is the magnetic field.
A sample in the samples directory: ChargedParticle_in_MHDturb
is going to be checked in after this check in.
However, all these works now only for periodic boundary condition on E and B which are stored as auxiliary variables.
boundcond: added subroutine set_periodic_boundary_on_aux particles_dust : dummy routine periodic_boundary_on_aux particles.h : public entry of the same

magnetic.log

 cdata : iEE to iEEz for electric fieldmagnetic : MAJOR CHANGES : added a 1-d array (same size and pencils) called dAdt which stores all the changes to $\mathrm{df}(., \ldots, i a x: i a z)$. Before the mean-field contributios are added this array is then added to df (...) and also (with negative sign) stored into auxiliary array f(......iEEx:iEEz) (if asked) particles_cdata: additional variables for interpolation of E and B
particles_tracer : dummy routine periodic_boundary_on_aux

param_io.log

param_io.f90, cdata.f90, grid.f90: added pipecoords (pipe coordinate) equ.f90: now call get_grid_mn for all non-Cartesian coordinates sub.f90: added pipe coordinates (at least for 1-D) in div operator
r21497 I mreinhardt@nordita.org | 2014-02-11 17:06:40 +0100 (Tue. 11 Feb 2014) | 2 lines
MR: preparations for downsampled output
r20551 | sven.bingert | 2013-06-18 17:09:54 +0200 (Tue, 18 Jun 2013) | 1 line changed from use entropy to use energy

mpicomm.log

r21796 | alexrichert | 2014-05-15 04:24:16 +0200 (Thu, 15 May 2014) | 2 lines
Added general-purpose MPI_SEND_RECV subroutines for real scalars and arrays of dim 1-4 (used in experim ental/barneshut.f90).

```
r21662 | Bourdin.KIS | 2014-04-06 15:34:56 +0200 (Sun. 06 Apr 2014) | 2 lines
```

Found a way to circumvent the missing $F 95$ functionality to write one binary buffer as a block to an unf ormatted file. This should allow Cray compilers to use 'true_parallel_open' reliably.
r21467 | mreinhardt@nordita.org | 2014-01-29 19:39:47 +0100 (Wed, 29 Jan 2014) | 2 lines
MR: changed calls to write_by_ranges_2d_*

spherical_convection.log

r21013 | pkapyla | 2013-09-02 22:31:43 +0200 (Mon. 02 Sep 2013) | 4 lines
First iteration of initial condition for spherical convection (previously initialized by running an IDL script and generating the stratification). Currently unsafe for nprocx/ $/=1$.
r21155 | joern.warnecke@gmail.com | 2013-10-08 23:45:54 +0200 (Tue, 08 0ct 2013) | 2 lines use a different profile for the hcond in the coronal layer
r21237 I pkapyla | 2013-10-27 20:56:43 +0100 (Sun. 27 Oct 2013) | 4 lines
Corrected computation of physical temperatures at the bottom and top of the convection zone and in the corona, assuming solar temperature at the base of the convection zone.
r21652 | joern.warnecke | 2014-04-05 01:19:43 +0200 (Sat, 05 Apr 2014) | 3 lines
add adaptation for computing the total using a corona. add small correction to the corona related part $\stackrel{\square}{\square}$

Faster and bigger machines

In numbers

- Current validated: 21,940 (quick-start.tex)
- At last meeting: 20,483
- At previous meeting: 18,992
- Lines in src/*.f90 currently 245,994 (8.0 MB)
- At last meeting 238,340 (7.9 MB) $\quad 355,499 \mathrm{w}$ s rc/f
- At previous meeting 225,961 (7.8 MB)
- Number of auto-tests? Currently 62
- w/README files from $43 \rightarrow 48 \rightarrow 49$ (in 3-D)
- and from $20 \rightarrow 22 \rightarrow 25$ (in 2-D)

```
ncil Journals * Meetings * Other _ sök &Translate AP Axel AP AstroDyn O Solar physics OProg
```

ople - pencil-code - A high... $\mathbb{\square}$ 四 pencil-code
ohloh
Home People Projects Forums Tools Blog $\quad \square$

pencil-code

GENERAL

Summary

Journal Entries
Reviews
Links
News
Managers
Widgets

DEVELOPMENT
Code Analysis
Contributors
Commits
Enlistments

EDIT
Permissions
History

The Pencil Code is primarily designed to deal with weakly compressible turbulent flows, which is why we use high-order first and second derivatives. To achieve good parallelization, we use explicit (as opposed to compact) finite differences. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used.

The code is written in well-commented Fortran90.

For a more detailed description and a full introduction see the manual.pdf file (see under links on the right).

Remember to sign up for the Pencil Code User Meeting (see link on the right)!

Where's the download?

- Homepage
htlp://code google.com/p/pencil-code
- Licensed under

GNU General Public License 3 or later

- Tagged as
F) flow fortran90 flowanalysis gpl mpi turbulent mhd | edittags

Who uses pencil-code?

Who contributes to pencil-code?

Olhoh.net analysis

Journal Entries

0 followers \rightarrow follow TIMELINE VIEW
No entries yet. Link your entries with 'pencil-code' to include this project.
Ohloh Analysis Summary
(1) Mostly written in Fortran (Fixed-format)
Mature, well-e stablished codebase
Very large, active development team
A Very few source code comments
Uiew All Poss ble Factoids
Updaled 06 Apr 2011 05:43 UTC

Ratings \& Reviews

Community Rating
 Based on 2 user ratings.

Your Rating
जnnmwn
Click to rate this project.

Who manages pencil-code?

I'm a manager

Where in the world?

[^2]
Related Projects by Tags

Cecil.FlowAnalysis, imhd-mobile, mplabs, PPIV. wingcfd

Project Cost

This calculator estimates how much it would cost to hire a team to write this project from scratch. More n

Include

Codebase
Markup And Code $\stackrel{\star}{\boldsymbol{*}}$

402,279

Effort (est.)

Avg. Salary \square year
$\$ 5,931,082$

Widgets

Learn how to embed this and other widgets on your site.

```
File Edit View History Bookmarks Tools Help
```


People - pencil-code - A high... 区 Numerical Experiments

Numerical Experiments

Numerical Experiments, School on Astrophysical Turbulence and Dynamos, ICTP Trieste, 20-30 April 2009, by Axel Brandenburg \& Boris Dintrans
\rightarrow Working link, stable link (less frequently updated)

- Schedule for Trieste, April 2009
- Solar Physics and MHD course (Stockholm, May 2009)
- Evry Schatzman school'09 in Aussois, September 2009 (PowerPoint Presentation)

Pencil Code home page, Manual, PowerPoint Presentation, http://pencil-code.googlecode.com/
Python with the Pencil Code
Additional reading:
Brandenburg, A.: 2003, ' ${ }^{\text {Computational aspects of astrophysical MHD and turbulence," in Advances in nonlinear dynamos (The Fluid Mechanics of }}$ Astrophysics and Geophysics, Vol. 9), ed. A. Ferriz-Mas \& M. Núñez, Taylor \& Francis, London and New York, pp. 269-344 (astro-ph/0109497. ADS, PDF)

Brandenburg, A., \& Subramanian, K.: 2005, " Astrophysical magnetic fields and nonlinear dynamo theory," Phys. Rep. 417, 1-209 (astro-ph/0405052, ADS. PDF)

Brandenburg, A.: 2007, ' 'The solar interior - radial structure, rotation, solar activity cycle," in Handbook of Solar-Terrestrial Environment, ed. Y. Kamide \& A. C.-L. Chian, Springer, pp. 27-54(astro-ph/0703711)

Notes on Solar Physics and Magnetohydrodynamics [pdff (over 100 pages, most of which is not covered in the course)
Links:
Astrophysical Dynamos (ERC project page)
Homepages of Axel Brandenburg and Boris Dintrans
\$Date: 2010-09-15 08:20:56 \$, \$Author: brandenb \$, \$Revision: 122 \$
Jumerical Exper... \square pencil-code@nl6... \square [xterm] \square xterm \square xterm \square erm

陌 People - pencil-code - A high... $\mathbb{\Sigma}$ Schedule

```
*
```


Numerical Experiments: Schedule

- Mon 20 Apr: Setting up your account and downloading the Pencil Code

Setting up the Pencil Code

- Tue 21 Apr: High order numerical schemes and Pencil Code

Effective wavenumbers, exercise [pdf, 1 page] Advection tests, exercise [pdf, 1 page]

- Wed 22 Apr: Nonlinear sound waves and Burgers shock

Nonlinear sound waves
Nonlinear Alfven waves
Burgers shock

- Mon 27 Apr: Brunt-Väisälä oscillations

Brunt-Väisälä oscillations

- Tue 28 Apr: Helical dynamos

Helical dynamos, exercise [pdf, 1 page]

- Wed 29 Apr: Setting up new experiments

MixedTopics

Numerical Experiments homepage
\square

Energetics

dynamo term equal
to dissipation term

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\rho \boldsymbol{u}^{2} / 2\right\rangle=\langle p \boldsymbol{\nabla} \cdot \boldsymbol{u}\rangle+\langle\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})\rangle+\langle\rho \boldsymbol{u} \cdot \boldsymbol{f}\rangle-\left\langle 2 \rho \nu \mathbf{S}^{2}\right\rangle \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\boldsymbol{B}^{2} / 2 \mu_{0}\right\rangle=-\langle\boldsymbol{u} \cdot(\boldsymbol{J} \times \boldsymbol{B})\rangle-\left\langle\eta \mu_{0} \boldsymbol{J}^{2}\right\rangle \tag{7}
\end{array}
$$

Pr_{M} dependence of conversion

Hyperviscous, Smagorinsky, normal

Inertial range unaffected by artificial diffusion

Goals/questions for 2015

and goals for this week

- Go through UserMeetings/2014/agenda.txt
- Is there still a need for a paper?
- Is there a good way to trace papers using pc
- Editing webpage
- Photos?

Photos

Photos

Meetings

07-11 Jul, 2014: 10th meeting [notes] in Gōttingen, Max Planck Institute for Solar System Research (Germany).
17-20 Jun, 2013: 9th meeting [notes] in Lund, Lund Observatory (Sweden).
18-21 Jun, 2012: 8th meeting [notes] in Helsinki, Physics Department (Finland).
24-28 Oct, 2011: 7th meeting [notes] in Toulouse, Observatoire Midi-Pyrenees (France).
26-30 Jul, 2010: 6th meeting [notes] in New York, American Museum of National History (USA).

Vector potential (in view of new B-module)

- $\mathbf{B}=$ curl \mathbf{A}, advantage: $\operatorname{div} \mathbf{B}=0$
- $\mathbf{J}=\operatorname{curlB}=\operatorname{curl}(\operatorname{curl} \mathbf{A})=\operatorname{curl2A}$
- Not a disadvantage: consider Alfven waves

B-formulation

$$
\frac{\partial u}{\partial t}=B_{0} \frac{\partial b}{\partial z}, \quad \text { and } \quad \frac{\partial b}{\partial t}=B_{0} \frac{\partial u}{\partial z}
$$

A-formulation

$$
\frac{\partial u}{\partial t}=B_{0} \frac{\partial^{2} a}{\partial z^{2}}, \quad \text { and } \quad \frac{\partial a}{\partial t}=B_{0} u
$$

$2^{\text {nd }}$ der once is better than
$1^{\text {st }}$ der twice!

Comparison of A and B methods

$\frac{\partial u}{\partial t}=B_{0} \frac{\partial^{2} a}{\partial z^{2}}+v \frac{\partial^{2} u}{\partial z^{2}}, \quad$ and $\quad \frac{\partial a}{\partial t}=B_{0} u+\eta \frac{\partial^{2} a}{\partial z^{2}}$

$\frac{\partial u}{\partial t}=B_{0} \frac{\partial b}{\partial z}+v \frac{\partial^{2} u}{\partial z^{2}}, \quad$ and $\quad \frac{\partial b}{\partial t}=B_{0} \frac{\partial u}{\partial z}+\eta \frac{\partial^{2} b}{\partial z^{2}}$
$B-$ method, $n z=128$

B-method, $n z=64$

[^0]: ${ }^{6}$ See http://www.nordita.org/sof tware/pencil-code/

[^1]: T http://wwwastro.princeion.edu/~jstone/zeus.html

[^2]: Related Projects by Tags
 Cecil.FlowAnalysis, imhd-mobile, mplabs, PPIV, wingotd

