Implementation of reactive particles into Pencil Code DNS

Jonas Krüger, EPT NTNU, Norway
Nils Haugen, Sintef, Norway

Göttingen, 2014/07/08

Solid fuel reactions

Stand-alone model (or sub model for CFD)

Stand-alone model

Gas phase:

- GRI-Mech 3.0 for homogeneous chemistry

Particle phase equations:

1. Temperature
2. Mass
3. Adsorbed species

Heterogeneous reaction mechanism

Nr	Reaction	A_{k}	E_{k}	σ_{k}
1	$2 \mathrm{Cf}+\mathrm{H} 2 \mathrm{O} \Leftrightarrow C(O H)+C(H)$	2.10 e 12	105.	
2	$\mathrm{C}(\mathrm{OH})+\mathrm{Cf} \Leftrightarrow C(O)+C(H)$	4.10 e 14	80.	
3	$2 \mathrm{C}(\mathrm{H}) \Leftrightarrow 2 C f+H 2$	1.40 e 14	67.	
4	$\mathrm{C}(\mathrm{O}) \Rightarrow C f+C O$	1.00 e 13	353.	28 e 6
5	$\mathrm{C}(\mathrm{OH}) \Leftrightarrow H C O+C f$	1.00 e 13	393.	28 e 6
6	$\mathrm{Cf}+\mathrm{C}(\mathrm{H})+\mathrm{H} 2 \mathrm{O} \Leftrightarrow C H 3+C(O)+C f$	1.00 e 19	300.	
7	$\mathrm{Cf}+\mathrm{C}(\mathrm{H})+\mathrm{H} 2 \Leftrightarrow C H 3+2 C f$	1.00 e 19	300.	
8	$\mathrm{Cf}+\mathrm{C}(\mathrm{H})+\mathrm{CO} \Rightarrow H C O+2 C f$	1.00 e 19	300.	
9	$2 \mathrm{C}(\mathrm{H}) \Rightarrow C H 2+C f$	3.00 e 14	426.	
10	$\mathrm{Cf}+\mathrm{CO} 2 \Leftrightarrow C(O)+C O$	3.70 e 06	161.	
11	$\mathrm{C}(\mathrm{O})+\mathrm{CO} 2 \Rightarrow C(O)+2 C O$	1.26 e 11	276.	
12	$\mathrm{Cf}+\mathrm{CO} \Leftrightarrow C(C O)$	1.00 e 16	455.	53 e 6
13	$\mathrm{CO}+\mathrm{C}(\mathrm{CO}) \Rightarrow C O 2+2 C f$	9.80 e 09	270.	
14	$2 \mathrm{Cf}+\mathrm{O} 2 \Rightarrow C(O)+C O$	5.00 e 16	150.	
15	$2 \mathrm{Cf}+\mathrm{O} 2 \Rightarrow C 2(O 2)$	4.00 e 13	93.	
16	$\mathrm{Cf}+\mathrm{C}(\mathrm{O})+\mathrm{O} 2 \Rightarrow C O 2+C(O)+C f$	1.50 e 13	78.	
17	$\mathrm{Cf}+\mathrm{C}(\mathrm{O})+\mathrm{O} 2 \Rightarrow C O+2 C(O)$	2.10 e 13	103.	
18	$\mathrm{C} 2(\mathrm{O} 2) \Rightarrow C O 2+2 C f$	1.00 e 13	304.	33 e 6

Reversible reactions are calculated by using the equilibrium constant

The project

Quiescent gas, uniform behaviour for all particles

Flow turbulence coupling, behaviour unique for each particle

Conversion regimes

Reactions on the surface, mass loss by decrease in apparent density mass loss due to radius decrease

Case simulated in standalone model

Property		Case A	Case B
Carbon to gas mass ratio	m_{p} / m_{g}	0.3	0.2
Particle number density	n_{p}	3.1×10^{9}	2.1×10^{9}
Equivalence ratio	ϕ	2.76	1.84

Case A

Case B

Results

Particle conversion over time
Conversion for smaller load 5x faster

Results

Particle radius over time
Different modes of conversion

Particle and gas temperature over time

Adding of source terms into the equations

- Mass

$$
\frac{\mathrm{D} \ln \rho}{\mathrm{D} t}=-\nabla \cdot u+S_{\rho}
$$

- Momentum

$$
\frac{\mathrm{D} \boldsymbol{u}}{\mathrm{D} t}=\frac{1}{\rho}\left(-\nabla p+\boldsymbol{F}_{v s}\right)+f+S_{u}
$$

- Species

$$
\rho \frac{\mathrm{D} Y_{k}}{\mathrm{D} t}=-\nabla \cdot \boldsymbol{J}_{k}+\dot{\omega}_{k}+S_{y, k}
$$

- Energy

$$
\left(c_{p}-\frac{R}{m}\right) \frac{\mathrm{D} \ln T}{\mathrm{D} t}=\sum_{l} \frac{\mathrm{D} Y_{k}}{\mathrm{D} t}\left(\frac{R}{m_{k}}-\frac{h_{k}}{T}\right)-\frac{R}{m} \nabla \cdot u+\frac{2 v S^{2}}{T}-\frac{\nabla \cdot \mathbf{q}}{\rho T}+q_{c}+S_{T}
$$

Roadmap

- Implementation of a model with two-way coupling between particle and gas phase
- Mass
- Momentum
- Species
- Energy
- Application and verification with DNS

Questions?

What we need (preliminary)

- Particle radius module $\quad \frac{d r_{p}}{d t}= \begin{cases}0 & \text { if } t<\tau_{c}, \\ \frac{d m_{p}}{d t} \frac{4-\eta}{4 r_{p} p_{p} p_{p}} & \text { if } t \geq \tau_{c c}\end{cases}$
- Particle chemistry
- Particle mass (together with particle radius will be particle density)
- Particle temperature
- Particle adsorbed species
- Source term in momentum equation $\frac{\mathrm{D} u}{\mathrm{D} t}=\frac{1}{\rho}\left(-\nabla p+F_{v s}\right)+f+S_{u}$

