Implementation of reactive particles into Pencil Code DNS

Jonas Krüger, EPT NTNU, Norway

Nils Haugen, Sintef, Norway

Göttingen, 2014/07/08

Solid fuel reactions

Stand-alone model (or sub model for CFD)

Stand-alone model

Heterogeneous reaction mechanism

Nr	Reaction	A_k	E_k	σ_k
1	$2Cf + H2O \Leftrightarrow C(OH) + C(H)$	2.10e12	105.	
2	$C(OH) + Cf \Leftrightarrow C(O) + C(H)$	4.10e14	80.	
3	$2C(H) \Leftrightarrow 2Cf + H2$	1.40e14	67.	
4	$C(O) \Rightarrow Cf + CO$	1.00e13	353.	28e6
5	$C(OH) \Leftrightarrow HCO + Cf$	1.00e13	393.	28e6
6	$Cf + C(H) + H2O \Leftrightarrow CH3 + C(O) + Cf$	1.00e19	300.	
7	$Cf + C(H) + H2 \Leftrightarrow CH3 + 2Cf$	1.00e19	300.	
8	$Cf + C(H) + CO \Rightarrow HCO + 2Cf$	1.00e19	300.	
9	$2C(H) \Rightarrow CH2 + Cf$	3.00e14	426.	
10	$Cf + CO2 \Leftrightarrow C(O) + CO$	3.70e06	161.	
11	$C(O) + CO2 \Rightarrow C(O) + 2CO$	1.26e11	276.	
12	$Cf + CO \Leftrightarrow C(CO)$	1.00e16	455.	53e6
13	$CO + C(CO) \Rightarrow CO2 + 2Cf$	9.80e09	270.	
14	$2Cf + O2 \Rightarrow C(O) + CO$	5.00e16	150.	
15	$2Cf + O2 \Rightarrow C2(O2)$	4.00e13	93.	
16	$Cf + C(O) + O2 \Rightarrow CO2 + C(O) + Cf$	1.50 e13	78.	
17	$Cf + C(O) + O2 \Rightarrow CO + 2C(O)$	2.10e13	103.	
18	$C2(O2) \Rightarrow CO2 + 2Cf$	1.00e13	304.	33e6

Reversible reactions are calculated by using the equilibrium constant

The project

Quiescent gas, uniform behaviour for all particles

Flow turbulence coupling, behaviour unique for each particle

Reactions throughout the particle, Reactions on the surface, mass loss by decrease in apparent density mass loss due to radius decrease

Case simulated in standalone model

Property		Case A	Case B
Carbon to gas mass ratio	m_p/m_g	0.3	0.2
Particle number density	n_p	$3.1 imes 10^9$	2.1×10^9
Equivalence ratio	ϕ	2.76	1.84

Results

lacksquare Norwegian University of Science and Technology

Adding of source terms into the equations

- Mass $\frac{D \ln \rho}{Dt} = -\nabla \cdot \boldsymbol{u} + S_{\rho}$
- Momentum $\frac{\mathrm{D}u}{\mathrm{D}t} = \frac{1}{\rho} \left(-\nabla p + F_{vs}\right) + f + S_u$
- Species $\rho \frac{\mathrm{D}Y_k}{\mathrm{D}t} = -\nabla \cdot \boldsymbol{J}_k + \dot{\omega}_k + S_{y,k}$
- Energy $\left(c_p \frac{R}{m}\right) \frac{D \ln T}{Dt} = \sum \frac{DY_k}{Dt} \left(\frac{R}{m_k} \frac{h_k}{T}\right) \frac{R}{m} \nabla \cdot \boldsymbol{u} + \frac{2\nu S^2}{T} \frac{\nabla \cdot \boldsymbol{q}}{\rho T} + q_c + S_T$

Roadmap

- Implementation of a model with two-way coupling between particle and gas phase
 - Mass
 - Momentum
 - Species
 - Energy
- Application and verification with DNS

Questions?

What we need (preliminary)

• Particle radius module

$$\frac{dr_p}{dt} = \begin{cases} 0 & \text{if } t < \tau_c, \\ \frac{dm_p}{dt} \frac{1-\eta}{4\pi r_p^2 \rho_p} & \text{if } t \ge \tau_c. \end{cases}$$

- Particle chemistry
 - Particle mass (together with particle radius will be particle density)
 - Particle temperature
 - Particle adsorbed species
- Source term in momentum equation $\frac{Du}{Dt} = \frac{1}{\rho}(-\nabla p + F_{vs}) + f + S_u$