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Random fragmentation & coalescence

 a) Clustering in turbulent flows

 b) Caustics in turbulent
     flows

 c) Genetics (ancestral 
     recombination graphs)

 d) Conduction in disordered 
     solids 
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r̈ = γ
(

u(r, t) − ṙ

)

u(r, t) turbulent air flow (strength     ),

Stokes constant,

and  densities of air and water,

ν

a

kinematic viscosity,

and  particle size.

u0

a) Clustering in random flows
Rain droplets in a turbulent cloud:  drag force given by Stokes law

Shaw,  Annu. Rev. Fluid. Mech. 35 (2003) 183

γ = 9ρgν/(2ρpa2)

ρg ρp
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Model

am1. spherical particles of mass     and radius   move indepedently
   (until they come into contact),
2. particles do not affect the flow,           
3. drag force given by Stokes law                                  ,
4. velocity field            isotropic, homogenous, stationary, 
   and incompressible Gaussian random function.          

r̈ = γ
(

u(r, t) − ṙ

)

u(r, t)

Assumptions       

Dimensionless parameters

St =
1

γτ
, Ku =

u0τ

#
, n#d , a/#

St Stokes number,        Kubo number,     particle density,Ku

and      Kolmogorov length and time (correlation length and time).τ!

n



Mixing by random stirring
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Computer simulation of       particles (red) in two-dimensional 
random flow (periodic boundary conditions in space)        
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a initial distribution, b particle positions after random stirring.



`Unmixing´

Department of Physics

Department of Physics

Computer simulation of       particles (blue) in two-dimensional smooth
random incompressible flow            (periodic boundary conditions in space)        u(r, t)
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Inertial particles in turbulent flow
(statistical model, two-dimensional)
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Particles falling under gravity in 
turbulent flow
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Lycopodium particles in turbulent 
channel flow
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Lyapunov exponents

λ1 = lim
t→∞

t
−1 loge(δrt)

λ1 + λ2 = lim
t→∞

t
−1 loge(δAt)

λ1 + λ2 + λ3 = lim
t→∞

t
−1 loge(δVt) .

Exponents                        describe rate of contraction or expansion of 
small length element       , area element        , and volume element         

λ1 > λ2 > λ3

δrt δAt δVt

J. Sommerer & E. Ott, Science 259 (1993) 351
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Obtain series expansion for λ1 l cl

1 1

2 5

3 60

4 1105

5 27120

6 828250

7 30220800

8 1282031525

9 61999046400

10 3366961243750

λ1/γ = −

∞∑

l=1

clI
l

One-dimensional model
Determine exponent       for one-dimensional model                              . λ1 ẍ = γ(u(x, t)− ẋ)

where

Corresponding results in three spatial dimensions:

I =
1
2γ

∫ ∞

−∞
dt 〈∂xu(xt, t)∂xu(x0, 0)〉 ∝ Ku2St .

Duncan, Mehlig, Östlund & Wilkinson, Phys. Rev. Lett. 95 (2005) 165503
Wilkinson, Mehlig, Östlund & Duncan, Phys. Fluids 19 (2007) 113303

Mehlig & Wilkinson, Phys. Rev. Lett. 92 (2004) 250602

Falkovich, Gawedzki & Vergassola, Rev. Mod. Phys. 73 (2001) 913

As             obtain known results for advective limit                                                                                          I → 0
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Obtain series expansion for λ1 l cl
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λ1/γ = −

∞∑

l=1

clI
l

One-dimensional model
Determine exponent       for one-dimensional model                              . λ1 ẍ = γ(u(x, t)− ẋ)

.
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Janson, Random Structures & Algorithms 22 (2003) 337 

Wiener index
Wiener index      of a connected graph      of order    :  sum of all distances 
between all pairs of vertices

Distribution of Wiener index for 
simply generated random trees. Write
                                  with random 
variables    and   . Find                                                        .

Wiener, J. Am. Chem. Soc. 69 (1947) 17

1

32 4
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9 10 11 1312

14 15 16 17 18 19

W

W (Tn) = n3/2ξ + n5/2η

Tn n

ξ η 〈ξkηl〉 =
k! l!

√
π

2(5k+7l−4)/2 + Γ
(
(3k+5l−1)/2

)ω∗kl

W =
1
2

n∑

i,j

dij .        
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b) Caustics

Infinitesimal volume element       contracts or expands on average. 
But nothing prevents it from collapsing to zero for an instant of 
time: singularity in particle density   .    

δVt

ρ

Falkovich, Fouxon & Stepanov, Nature 419 (2002)151
Wilkinson & Mehlig, Phys. Rev. E 68 (2003) 04010

Consider one spatial 
dimension:                 
corresponds to singu-
larity in                    . X = δv/δx
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Caustics in two dimensions

Caustics in turbulent aerosols

Michael Wilkinson1 and Bernhard Mehlig2

1Faculty of Mathematics and Computing, The Open University,
Walton Hall, Milton Keynes, MK7 6AA, England.

2Physics and Engineering Physics, Gothenburg University/Chalmers, Gothenburg, Sweden.
(Dated: August 3, 2004)

Networks of caustics can occur in the distribution of particles suspended in a randomly moving
gas. These can facilitate coagulation of particles by bringing them into close proximity, even in cases
where the trajectories do not coalesce. We show that the long-time morphology of these caustic
patterns is determined by the Lyapunov exponents λ1, λ2 of the suspended particles, as well as the
rate J at which particles encounter caustics. We develop a theory determining the quantities J , λ1,
λ2 from the statistical properties of the gas flow, in the limit of short correlation times.

Aerosols are usually unstable systems, in that the sus-
pended particles eventually coagulate. Understanding
the process giving rise to this coagulation, and deter-
mining the time scale over which it occurs are important
questions in describing any aerosol system. If the gas
phase does not have macroscopic motion, the coagulation
may be effected by diffusion of the suspended particles,
or (if the suspended particles are of a volatile substance)
by Ostwald ripening. The coagulation process can be
greatly accelerated if the aerosol undergoes macroscopic
internal motion. Ultrasound, for example, has been used
to accelerate coagulation in aerosols [1]. Turbulent flow
could also play a role in the coagulation of suspended par-
ticles; this could be relevant in the coalescence of visible
moisture into rain droplets [2].

If suspended particles are simply advected in an in-
compressible flow, their density remains constant. Iner-
tial effects are therefore required for coagulation, unless
the flow exhibits significant compressibility. In earlier
work [3, 4] we discussed the motion of inertial particles
in a random velocity field. We showed that there is a
phase where the trajectories of the particles coalesce, so
that arbitrarily small particles coagulate. In the limit
where the correlation time τ of the flow approaches zero,
this path-coalescing phase only exists when the velocity
field is predominantly potential flow (such as the flow
due to sound waves) [4]. Turbulent fluid flow is expected
to be predominantly solenoidal, and it is of interest to
find alternative mechanisms of coagulation which oper-
ate outside the path-coalescence phase.

Here we describe an alternative mechanism facilitating
coagulation, illustrated in Fig. 1: we show the distribu-
tion of particles suspended in a randomly moving gas (the
equations of motion and statistics of the flow field are
given by eqns. (1) to (3) below). The large panel shows
the distribution of particles after a short time, starting
from a random scatter with uniform density. The parti-
cles cluster onto a network of caustic lines, analogous to
the networks of optical caustics that can be seen on the
bottom of a swimming pool [5]. The phenomenon we de-
scribe here is a new mechanism by which aerosol particles
are brought into close proximity. The remaining parts
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FIG. 1: Distribution of inertial particles suspended in a ran-
domly moving fluid (blue corresponds to lowest density, yellow
to highest). The initial distribution is a random scatter. The
large panel shows caustics at short time. Panels (a)-(c) show
the long-time behaviour. In all cases, the region is the unit
square, the mean particle density is 2.5 × 105, m = 1, and
there is potential flow (with parameters ξ = 0.03, σ = 0.01,
δt = 0.05, see text). Main panel: γ = 0.53, t = 5, (a):
γ = 1.18, t = 500, (b): γ = 0.72, t = 125, (c): γ = 0.21,
t = 125. The three cases correspond to: (a) λ2 < λ1 < 0, (b)
λ1 > 0, λ1 + λ2 < 0, and (c) λ1 > 0, λ1 + λ2 > 0, see text.

of Fig. 1 show the distribution of particles after a long
time, in three different cases: part (a) shows the path-
coalescence phase where the trajectories condense onto
points. Parts (b) and (c) show two cases where there is
no path coalescence, but a steady state with significant
inhomogeneities of density due to caustics: these have
very different morphologies, depending on the parameter
values, as we shall show.

Fig. 1 is surprising because it is be expected that ran-
dom movement of uniformly distributed particles would
leave the distribution uniform. The following questions
naturally arise. First, why do the particle trajectories
coalesce into points in Fig. 1(a)? This phenomenon was
first noted in [6] and subsequently analysed in detail in
[3, 4] (c.f. also the theory developed at the end of this pa-

Density of particles suspended in a 
random flow (compressible,                )u = −∇φ

Caustics of sun light in water

http://www.physics.utoronto.ca/~peet/

http://www.physics.utoronto.ca/~peet/
http://www.physics.utoronto.ca/~peet/
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An example Gardner, Sci. Amer. 238 (1978) 19
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c) Ancestral recombination graphs
Patterns of genetic variation in contiguous DNA segment close
to a locus     recently subject to selective sweep.
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To the right: shows patterns
of mutation (`genetic mosaic´)
for sample from neutral coales-
cent model.

How is this pattern affected by recent sweep at locus    close to segment? 
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Durrett & Schweinsberg (2004); 
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The coalescent process
Gene histories determine degree of association between patterns of 
genetic variation at different loci

Nordborg (2001) in: Handbook of Statistical Genetics, ch. 7
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d) Variable-range hopping
Temperature dependence of DC conductivity in disordered solid

σ(T ) ∼ exp

[
−

(
T0

T

)1/(d+1)
]     Mott, J. Non-crystalline Solids 1 (1968) 1

Ambegoakar, Langer & Halperin, Phys. Rev. B 4 (1971) 2612

Competition between near and far electron hops (variable range).

Simplest model analogous to random resistor network (percolation).

Long-standing problem: no exact solution.

Characterise sequence of 
hops as a hierarchical
stick-breaking process. 
Mehlig & Wilkinson, Prog. Theor. Phys. Suppl. 166 (2007) 136
Wilkinson, Mehlig & Bezuglyy, Phil. Mag. Lett. 88 (2008) 327
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