Random fragmentation \& coalescence

Bernhard Mehlig, Department of Physics, Göteborg University, Sweden
a) Clustering in turbulent flows
b) Caustics in turbulent flows
c) Genetics (ancestral recombination graphs)
d) Conduction in disordered solids

b)

References

a) Clustering in turbulent flows

Mehlig \& Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) 165503
Arvedson, Wilkinson, Mehlig \& Nakamura, Phys. Rev. Lett. 96 (2006) 03060।
b) Caustics and collisions in turbulent flows

Wilkinson \& Mehlig, Europhys. Lett. 7I (2005) 186
Wilkinson, Mehlig \& Bezuglyy, Phys. Rev. Lett. 97 (2006) 04850I
Andersson, Gustavsson, Mehlig \& Wilkinson, Europhys. Lett. 80 (2007) 6900।
Gustavsson, Mehlig \& Wilkinson, New Journal of Physics (2008), in press
c) Genetics (ancestral recombination graphs)
A. Eriksson \& B. Mehlig, Genetics 169 (2005) II75
A. Eriksson, P. Fernström, B. Mehlig \& S. Sagitov, Genetics in press (2008)
d) Conduction in disordered solids

Mehlig \& Wilkinson, Prog. Theor. Phys. Suppl. 166 (2007) 136
Wilkinson, Mehlig \& Bezuglyy, Phil. Mag. Lett. 88 (2008) 327

a) Clustering in random flows

Rain droplets in a turbulent cloud: drag force given by Stokes law

$$
\ddot{\boldsymbol{r}}=\gamma(\boldsymbol{u}(\boldsymbol{r}, t)-\dot{\boldsymbol{r}})
$$

$\boldsymbol{u}(\boldsymbol{r}, t) \quad$ turbulent air flow (strength u_{0}), $\gamma=9 \rho_{\mathrm{g}} \nu /\left(2 \rho_{\mathrm{p}} a^{2}\right)$ Stokes constant, ρ_{g} and ρ_{p} densities of air and water,
ν kinematic viscosity, and a particle size.

Model

Assumptions
I. spherical particles of mass m and radius a move indepedently (until they come into contact),
2. particles do not affect the flow,
3. drag force given by Stokes law $\ddot{\boldsymbol{r}}=\gamma(\boldsymbol{u}(\boldsymbol{r}, t)-\dot{\boldsymbol{r}})$,
4. velocity field $u(r, t)$ isotropic, homogenous, stationary, and incompressible Gaussian random function.

Dimensionless parameters

$$
\mathrm{St}=\frac{1}{\gamma \tau}, \quad \mathrm{Ku}=\frac{u_{0} \tau}{\ell}, \quad n \ell^{d}, \quad a / \ell
$$

St Stokes number, Ku Kubo number, n particle density,
ℓ and τ Kolmogorov length and time (correlation length and time).

Mixing by random stirring

Computer simulation of 10^{4} particles (red) in two-dimensional random flow (periodic boundary conditions in space)

\mathbf{a} initial distribution, \mathbf{b} particle positions after random stirring.

'Unmixing'

Computer simulation of 10^{4} particles (blue) in two-dimensional smooth random incompressible flow $u(r, t)$ (periodic boundary conditions in space)

Inertial particles in turbulent flow (statistical model, two-dimensional)

Sigurgeisson \& Stuart, Phys. Fluids 14 (2002) 4352
Bec, Phys. Fluids I5 (2003) L8I

Particles falling under gravity in turbulent flow

Wang \& Maxey, J. Fluid. Mech. 256 (1993) 27

Lycopodium particles in turbulent channel flow

Fessler, Kulick \& Eaton, Phys. Fluids 6 (1994) 3742

Lyapunov exponents

Exponents $\lambda_{1}>\lambda_{2}>\lambda_{3}$ describe rate of contraction or expansion of small length element δr_{t}, area element $\delta \mathcal{A}_{t}$, and volume element $\delta \mathcal{V}_{t}$

$$
\begin{aligned}
\lambda_{1} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta r_{t}\right) \\
\lambda_{1}+\lambda_{2} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta \mathcal{A}_{t}\right) \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & =\lim _{t \rightarrow \infty} t^{-1} \log _{\mathrm{e}}\left(\delta \mathcal{V}_{t}\right)
\end{aligned}
$$

One-dimensional model

Determine exponent λ_{1} for one-dimensional model $\ddot{x}=\gamma(u(x, t)-\dot{x})$.
Obtain series expansion for λ_{1}
where

$$
\lambda_{1} / \gamma=-\sum_{l=1}^{\infty} c_{l} \mathcal{I}^{l}
$$

$$
\mathcal{I}=\frac{1}{2 \gamma} \int_{-\infty}^{\infty} \mathrm{d} t\left\langle\partial_{x} u\left(x_{t}, t\right) \partial_{x} u\left(x_{0}, 0\right)\right\rangle \propto \mathrm{Ku}^{2} \mathrm{St}
$$

l	c_{l}
1	1
2	5
3	60
4	1105
5	27120
6	828250
7	30220800
8	1282031525
9	61999046400
10	3366961243750

Mehlig \& Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Corresponding results in three spatial dimensions:
Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) I65503
Wilkinson, Mehlig, Östlund \& Duncan, Phys. Fluids I9 (2007) II3303
As $\mathcal{I} \rightarrow 0$ obtain known results for advective limit
Falkovich, Gawedzki \& Vergassola, Rev. Mod. Phys. 73 (200I) 913

One-dimensional model

Determine exponent λ_{1} for one-dimensional model $\ddot{x}=\gamma(u(x, t)-\dot{x})$.
Obtain series expansion for λ_{1}

$$
\lambda_{1} / \gamma=-\sum_{l=1}^{\infty} c_{l} \mathcal{I}^{l}
$$

l	c_{l}
1	1
2	5
3	60
4	105
5	27120
6	828250
7	30220800
8	1282031525
9	61999046400
10	3366961243750

Aldous, Brownian excursions, critical random graphs, and the multiplicative coalescent (I996) Spencer, Enumerating Graphs and Brownian Motion, Comm. Pure Appl. Math. I (I997) 0291 Flajolet and P. Poblete \&Viola, On the analysis of linear probing hashing,

Algorithmica 22 (I998) 490
Janson, Random Structures \& Algorithms 22 (2003) 337

Wiener index

Wiener index W of a connected graph I_{n}^{\prime} of order n : sum of all distances between all pairs of vertices

$$
W=\frac{1}{2} \sum_{i, j}^{n} d_{i j} .
$$

Distribution of Wiener index for simply generated random trees. Write
 $W\left(T_{n}\right)=n^{3 / 2} \xi+n^{5 / 2} \eta$ with random variables ξ and η. Find $\left\langle\xi^{k} \eta^{l}\right\rangle=\frac{k!l!\sqrt{\pi}}{2^{(5 k+7 l-4) / 2}+\Gamma((3 k+5 l-1) / 2)} \omega_{k l}^{*}$.

TABLE 1. The Constants $\boldsymbol{\omega}_{\boldsymbol{k} \boldsymbol{l}}^{*}$					
k, l	0	1	2	3	4
0	$-1 / 2$	1	49	9800	4412401
1	1	26	4308	1752652	1313146320
2	5	776	300966	217588128	252515984662
3	60	27052	20324608	23856758216	40646627470976
4	1105	1086576	1406019822	2510422982912	6022491449087070
5	27120	49568684	101869846464	263304392184360	860045720189315072

b) Caustics

Falkovich, Fouxon \& Stepanov, Nature 419 (2002) I 51 Wilkinson \& Mehlig, Phys. Rev. E 68 (2003) 04010

Infinitesimal volume element $\delta \mathcal{V}_{t}$ contracts or expands on average. But nothing prevents it from collapsing to zero for an instant of time: singularity in particle density ρ.

Consider one spatial dimension: $\delta x_{t}=0$ corresponds to singularity in $X=\delta v / \delta x$.

Caustics in two dimensions

Density of particles suspended in a random flow (compressible, $u=-\nabla \phi$)

Caustics of sun light in water http://www.physics.utoronto.ca/~peet/

Caustic purge

A summer afternoon: the air is hot, and a flock of cumulus clouds hover in the blue sly. Suddenlyit pours down. Such an abrupt onset of raintall troen these cloads might be das to the formation of so-called fold caustics in the velocity field of the raindrops, report Michael Wikinson and colleagues (Frys. Rev. Lot. in the press; httpe//arxivarg/cond-mat/0s04166).

It has been accepted for soene time that small-scale turbulenoe, typical in cumulus clouds, is involved in the prooess of initlating rain showers. But most studiss have assumsd that cluster formation might be the relevant mechanism. Wilkinson of al follow a ditterent path. They argue that when the intensily of the turhulence increases, at some point fast droplests suddenly start to overtake slower ones. Then, at certain locations inside the cloud, the velocity field of the droplets takes several values - a caustic forms. This relative motion betwsen the droplets oculd produce asuddenincrease in colision rate, resembling an activation process, where the intersity of the turbulence plays the role of temperature.

And once the intensity passes a cerfain threshold, you get wet.

HOME
CONTACT US
NEWS
ADVERTISING
Browse the archive 2006 *
02006 Nature Publishing Group

Science
aAas subscribe feedback SEARCH: Daily News : Go: Advanced

AIAAAS
 >All Free Articles PTop 10 Last Month > ScienceShots PDaily News Archive PAbout ScienceNow
Home > News > Daily News Archive > $2006>$ July >14 July (Cho)

Downpours Demystified?
By Adrian Cho
ScienceNOW Daily News
14 July 2006
As anyone who's been caught without an umbrella knows, even a fluffy, innocuous looking cloud can unleash a sudden torrent of rain. A new theory may explain why.
Raindrops form as micrometer-sized droplets of moisture in a cloud collide and merge Although researchers can reproduce this process in computer simulations, they aren't
sure why the droplets merge. Many theories sure why the droplets merge. Many theories
focus on clustering of droplets, but those focus on clustering of droplets, but those theories face some fundamental problems in explaining the sudden onset of rain, says
Bernhard Mehlig, a physicist at the Göteborg University in Sweden. For one thing, the density of droplets is so small--less than one drodlet der cubic millimeter--that such

Delivered
to your
computer

Physics news, jobs and resources
hysorg.com

It's raining again

Home	Electronic Devices	General Science	Nanotechnology	Physics	Space and Earth science	Technology
Published August 15, 2006 in Physics > Physics						

een out on a summer picnic will know to wers can very suddenly appear if there are ig "cumulus" clouds around. Rain, however, more slowly from the featureless, grey ; that often blanket the entire sky. Now a and mathematicians from the UK and have solved this meteorolonical mvstery,

Physics World alerts

 Register or sign in to our news alerting service or to alter your alertScientists explain causes of abrupt rain storms a

An example

Gardner, Sci.Amer. 238 (1978) I9

c) Ancestral recombination graphs

Patterns of genetic variation in contiguous DNA segment close to a locus \mathcal{B} recently subject to selective sweep.

-	ACTTTCGGAA
	ACTTTCGCAA
	ACTGTCGGAA
	ACTGTCGCAA
	position along chr

To the right: shows patterns of mutation ('genetic mosaic') for sample from neutral coalescent model.

How is this pattern affected by recent sweep at locus \mathcal{B} close to segment? Durrett \& Schweinsberg (2004);

The coalescent process

Gene histories determine degree of association between patterns of genetic variation at different loci

Nordborg (200I) in: Handbook of Statistical Genetics, ch. 7

d) Variable-range hopping

Temperature dependence of DC conductivity in disordered solid

$$
\sigma(T) \sim \exp \left[-\left(\frac{T_{0}}{T}\right)^{1 /(d+1)}\right]
$$

Mott, J. Non-crystalline Solids I (1968) I

Competition between near and far electron hops (variable range).
Simplest model analogous to random resistor network (percolation).
Ambegoakar, Langer \& Halperin, Phys. Rev. B 4 (I97I) 2612
Long-standing problem: no exact solution.
Characterise sequence of hops as a hierarchical stick-breaking process.
Mehlig \& Wilkinson, Prog. Theor. Phys. Suppl. I66 (2007) I36 Wilkinson, Mehlig \& Bezuglyy, Phil. Mag. Lett. 88 (2008) 327

References

a) Clustering in turbulent flows

Mehlig \& Wilkinson, Phys. Rev. Lett. 92 (2004) 250602
Duncan, Mehlig, Östlund \& Wilkinson, Phys. Rev. Lett. 95 (2005) 165503
Arvedson, Wilkinson, Mehlig \& Nakamura, Phys. Rev. Lett. 96 (2006) 03060।
b) Caustics and collisions in turbulent flows

Wilkinson \& Mehlig, Europhys. Lett. 7I (2005) 186
Wilkinson, Mehlig \& Bezuglyy, Phys. Rev. Lett. 97 (2006) 04850I
Andersson, Gustavsson, Mehlig \& Wilkinson, Europhys. Lett. 80 (2007) 6900।
Gustavsson, Mehlig \& Wilkinson, New Journal of Physics (2008), in press
c) Genetics (ancestral recombination graphs)
A. Eriksson \& B. Mehlig, Genetics 169 (2005) II75
A. Eriksson, P. Fernström, B. Mehlig \& S. Sagitov, Genetics in press (2008)
d) Conduction in disordered solids

Mehlig \& Wilkinson, Prog. Theor. Phys. Suppl. 166 (2007) 136
Wilkinson, Mehlig \& Bezuglyy, Phil. Mag. Lett. 88 (2008) 327

