Capacity Analysis of Collaborative Wireless Transmission

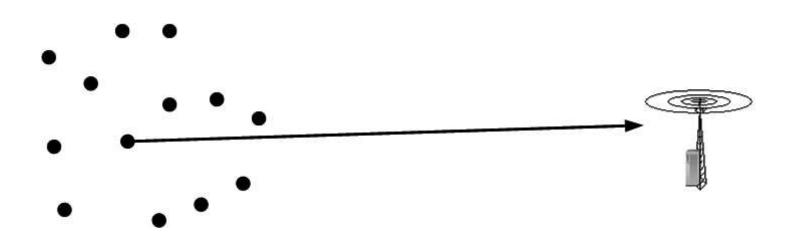
Olav Tirkkonen

Department of Communications and Networking Helsinki University of Technology (TKK) and

Nokia Research Center, Helsinki

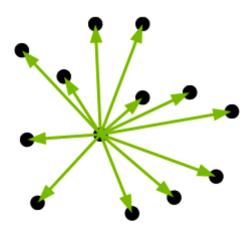
Physics of Distributed Information Systems Workshop Nordita 15.5. 2008

- system model
- random matrices
- results

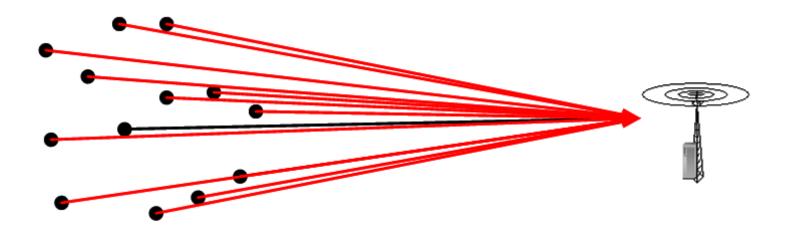


- The source (user) transmits, the destination (BS) receives
- The BS has $N_{\rm r}$ receive antennas, performs optimum antenna processing
- user at cell edge not too happy

- [Laneman & al 2000, Sendonaris & al 2003, etc, etc]
- clusters of users collaborate to transmit messages
- formation of a virtual antenna array giving rise to matrix (MIMO) channels
- branch of widely investigated relaying field



- There are $N_{\rm t}$ users, one is the source
- The $N_{\rm t}-1$ other users act as relay nodes
- The source *broadcasts* content to relays
- Assumptions:
 - source knows channel gains $ilde{\gamma}_j$ between source and relays
 - distance to destination >> distance to relays, direct link in 1:st hop discarded



- two-hop decode and forward relaying
- Relays (and source) transmit content to destination
- Matrix channel, collaborative array transmission from $N_{\rm t}$ nodes:

$$\mathbf{y}_{\mathbf{v}_{\mathbf{r}} imes 1} \;=\; \mathbf{H}_{N_{\mathbf{r}} imes N_{\mathbf{t}}} \;\; \mathbf{w}_{\mathbf{t} imes 1} \;\; x \;\; + \; \mathbf{n}_{N_{\mathbf{r}} imes 1}$$

• matrix channel SVD:

$$egin{array}{ccc} \mathbf{H} & = & \mathbf{U} & \sum \ _{N_{\mathrm{r}} imes N_{\mathrm{r}}} & \sum \ _{N_{\mathrm{r}} imes N_{\mathrm{t}}} & \mathbf{V}^{\mathrm{H}} \end{array}$$

- collective knowledge of optimum beamforming vector: w maximum eigenvalue vector of $\mathbf{H}^{\mathrm{H}}\mathbf{H}$
 - relays phase and weight transmissions—signals combine coherently at destination, power optimally distributed over channel
 - each relay node knows w_j

• effective channel becomes
$$\mathbf{H}\mathbf{w} = \mathbf{U}\begin{bmatrix} \sigma_{\max} \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{u}_1 \sigma_{\max}$$

- σ_{\max} largest singular value of channel
- receiver sees channel gain $\lambda_{\max} = \sigma_{\max}^2$

- Capacity of hop j is C_j [nats/s]
- Distribution of C_j is $p_j(C_j)$
- Source decides division of resources between 1:st and 2:nd hop:

$$T_1C_1 = T_2C_2$$

Capacity of relay link is

$$C = \frac{T_2 C_2}{T_1 + T_2} = \frac{C_1 C_2}{C_1 + C_2}$$

• distribution of C is

$$p(C) = \int dC_2 \left(\frac{C_2}{C_2 - C}\right)^2 p_1 \left(\frac{CC_2}{C_2 - C}\right) p_2(C_2)$$

• broadcast channel capacity: capacity of worst link

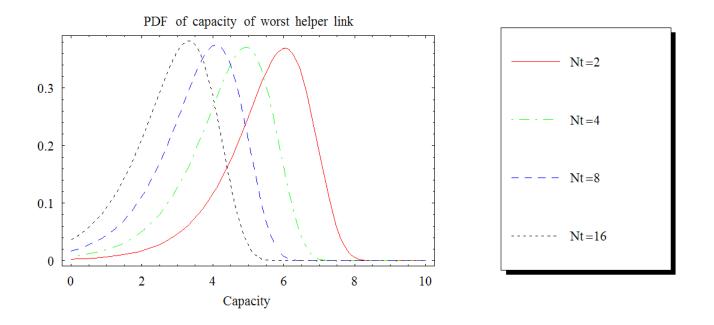
$$C_2 = \min_j \log\left(1 + \tilde{\gamma}_j\right)$$

• order statistics, worst of $N_{\rm t}-1$

$$f(\gamma_{\min}) = (N_{t} - 1)F(\gamma)^{(N_{t}-2)}f(\gamma)$$

- channels distributed as $\sqrt{g_1} \times$ i.i.d complex Gaussian, variance 1: $\tilde{\gamma}_j = g_1 \gamma_j$ where $p(\gamma_j) = e^{-\gamma_j}$
- \Rightarrow capacity distribution in closed form

9



 The more friends you want to have, the more likely a bad friend is, the more you have to pay

• H distributed as $\sqrt{g_2}$ times correlated Gaussian

$$p(\mathbf{H}) = \frac{\mathrm{e}^{-\mathrm{Tr}\left[\mathbf{R}_{r}^{-1}\mathbf{H}\mathbf{H}^{\mathrm{H}}\right]}}{\pi^{N_{\mathrm{t}}N_{\mathrm{r}}} \det^{N_{\mathrm{t}}}\mathbf{R}_{r}}$$
(1)

- correlation only at destination end (realistic)
- assume $N_{
 m r} \geq N_{
 m t}$: ${f H}{f H}^{
 m H}$ is Wishart
- eigendecompose

$$p(\Lambda, U) \sim \frac{\mathrm{e}^{-\mathrm{Tr}\left[\mathbf{R}_{r}^{-1}\mathbf{U}^{\mathrm{H}}\Lambda\mathbf{U}\right]} \mathrm{det}^{N_{\mathrm{r}}-N_{\mathrm{t}}}(\Lambda)\Delta^{2}(\Lambda)}{\mathrm{det}^{N_{\mathrm{t}}}\mathbf{R}_{r}}$$

- now integrate out U
 - an *exactly solvable* partition function on compact phase space
 - Integrability theory: Duistermaat-Heckman can be applied [Morozov 1995]

- for correlation in smaller dimension [Harish-Chandra 1957, Itzykson-Zuber 1992]
- for correlation in larger dimension [Gao-Smith 2000]

• here HCIZ:

$$p(\Lambda) \sim \frac{\det \mathbf{A} \det^{N_{r}-N_{t}}(\Lambda)\Delta(\Lambda)}{\Delta(\mathbf{R}_{r}^{-1}) \det^{N_{t}} \mathbf{R}_{r}}$$
A is a matrix of exps. $a = e^{-\lambda_{i}/\rho_{j}}$

A is a matrix of exps, $a_{ij} = e^{-\lambda_i/
ho_j}$

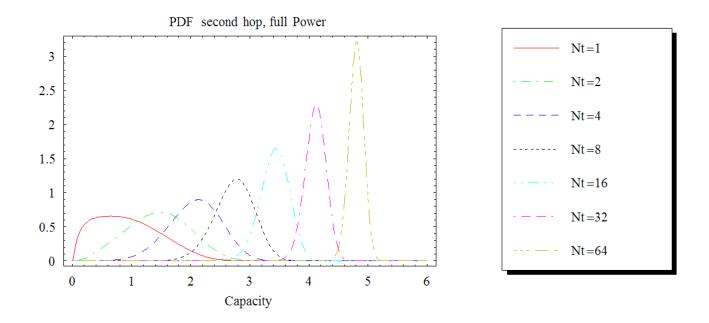
• $\det \mathbf{A}$ carries a contribution from each of the extremal points of the integrand on compact phase space

• CDF of alrgest eigenvalue is

$$F(u) = \prod_{j=1}^{N_{\rm t}} \left(\int_0^u \mathrm{d}\lambda_j \right) p(\Lambda)$$

- [Dighe & al 2003] integrated non-correlated case, use same trick
- $\det A$ is a sum (over permutations of correlation eigenvalues) of integration measures. Treat one-by-one.
- expression to integrate is $\det \mathbf{E} \equiv \det \left(\Lambda^{N_{r}-N_{t}} \mathbf{D}(\Lambda) \right)$
 - $\mathbf{D}(\Lambda)$ is the VanDermonde matrix, $d_{mn} = \lambda_m^{n-1}$.
 - elements of \mathbf{E} are thus $e_{mn} = \lambda_m^{N_{\mathrm{r}} N_{\mathrm{t}} + n 1}$.
 - each row of ${f E}$ depends only on one λ_j
 - integration decouples to product of trivial 1D integrals

 $\Rightarrow \lambda_{\max}$ distribution in closed form

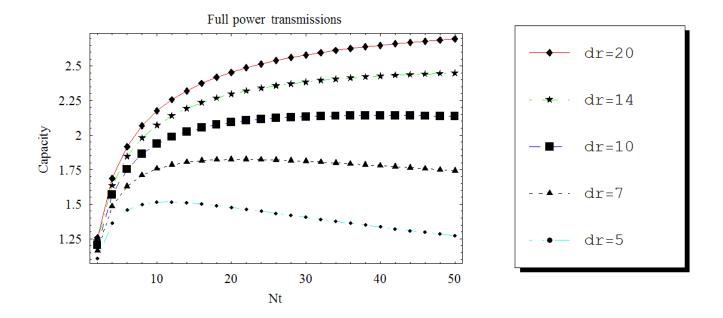


- $C_2 = \log\left(1 + g_2 \lambda_{\max}\right)$
- closed form distriburtion $p_2(C_2)$
- The more friends you have, the more they may help you
- with numerous friends, mean-field bahavior

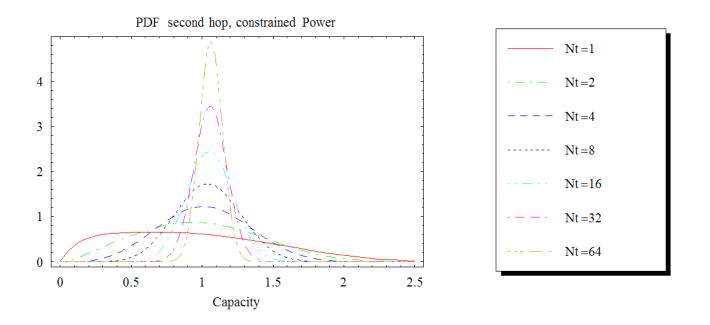
- $g_2 = 1$ (Signal-to-Noise Ratio on relay link)
 - Relay links are weak, cluster far from destination
- same power used by the source in the first hop, and on the average by the source and relays in the second hop
 - the more relay nodes, the more power radiated into air

•
$$g_2 = d_r^{\alpha}/G_r$$

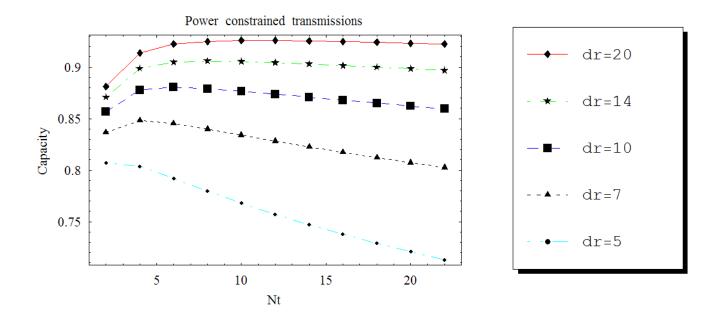
- Path-loss exponent $\alpha = 3.75$
- destination antenna gain $G_r = 10$
- d_r ratio between radius of cluster and distance b/w cluster and destination



- without relaying, the capacity is 0.94
- cost vs benefit tradeoff
- the furhter away you search for friends, the more you pay



- Strict control on interference: constrained total power usage in cell
- some array gain visible (optimum usage of differnet channels)



- without relaying, the capacity is 0.94
- The cost outweights the gains
- outage analysis (reliability) would look different

- Analyzed cost-benefit tradeoff on collaborative relaying for cell-edge users
- No gain if not allowed to radiate more power into cell
- this would improve with instantaneous selection of relay cluster
- gains come at a cost of the batteries of friends
- allowing increased power usage, significant iprovements to cell-edge service