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// What was known & is unknown

® Networks have no finite dimensionality (d = oo), which

can be considered as the case of d > dyc (MF).

T he validity of the MF theory?

Any critical phenomena in networks??

® Critical phenomena and scaling exponents may depend
on the network heterogeneity, i.e., the value of the decay

exponent ~ in the degree distribution P(k) ~ k7.

FSS exponents in networks?
Any cutoff dependence??



/ Controversial issues ®

for critical behavior of the on scale-free networks

Critical Behavior of the CP on SFNs (MF versus non-MF)?

Castellano and Pastor-Satorras (PRL “06): Non-MF behaviors on SFNs
w/ large density fluctuations at highly connected nodes

However, it turns out that

(Ha, Hong, and Park; Hong, Ha, and Park, PRL " 07)

Upper cutoff dependence on FSS exponents?
k Natural cutoff vs. Forced sharp cutoff

all of their numerical results can be explained well by the proper MF treatment.

In particular, the unbounded density fluctuations are not critical fluctuations,
which are just due to the multiplicative nature of the noise in DP systems.

/




/ Controversial issues ® \

for critical behavior of the on scale-free networks

Critical Behavior of the CP on SFNs (MF versus non-MF)?

MF : ry = Apg/pr ~ NYf(k/N),
where ¢c = 1/\, y = (B/v — 1/A)/2, and

Fla) ~ zAX-1/2 as z — 0O,
:c_l/2 as x — oo.
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/ Finite Size Scaling in Low Dimensions \

Ferromagnetic Ising model H=-J> 88 -HY S,

<ij>

A

m
ordered disordered
phase phase

()

m~(T,-T)", C,~|T,-T[*
el Ul el b il

Scaling theory

HYPERSCALING

f(e,h)=b"f(b"&,b""h) h=HIT

e=(T -T)/T a=Q2y,—d)/y,

E(e,h) = b E(B &, b" h)
v=1/y,

— |f=d-yy) ¥
y=Qyy—d)/ y;

Correlation exponents versus Thermodynamic exponents
\ dly,=2p+y=2-a => dv=20+y=2-« /




Standard Finite Size Scaling Theory  f (g, A, L) =b"" f(b’",b”" h(p'L"'

m= i =b “im(bg,0,bL )Y =L (L7 ¢)
éh, .

Ve =1/v

m=L""o(L"g)=L""(L"¢)

It works perfectly well for “isotropic” equilibrium models in low dimensions
and even nonequilibrium ("anisotropic”) models with appropriate modifications!!!

FSS variable u:LyTgN(L/g)yT & competes with [

What happens if the hyperscaling breaks down?|V # 1/ y;

A new length scale competing with system size ?
Standard FSS theory is still valid ?




"

MF approach

for the Ising model in regular lattices

./

#" theory f(m) :])@%%32 —entt +um’ +- - -

Disordered droplet excitation
out of uniformly ordered region

Droplet fluctuation

576“{ (Af) ~k T = & N(Af)_l/d ~g?

Gaussian fluctuation

m'/EL~emt = & ~¢

-1/2

In high dimensions (d >d_  =4):

*

m~&7 (f=1/2)
| fm)|~&

—

v, =2/d=1/y,

dv, =2p+y=2-«

v.=1/2

Ve >Vr (66 >>67) = Ve =V
Hyperscaling is broken in the MF regime.



Finite Size Scaling in High Dimensions \

fe,h, LY =b"" f(b &,b" h,b' L") y, #21/v=2

In high dimensions, the hyperscaling breaks down and the MF theory is correct.
Dangerous irrelevant variahle hypothesis
Gaussian Fluctuation vs. Thermodynamic Droplet Excitation

a=Q2y,—d)/ y =0

:L—ﬁyTgD(LyTg) B=(d-y,)y,=1/2

=Qyy—d) y; =1
d/y,=2+y=2-a=2

FSS variable u:ETg N(L/ éYT

éNgl/yT_ /

with y =d/2, y, =3d/4




Why do we care this droplet length?

For well-known equilibrium models and some nonequilibrium models,
it is known that
this thermodynamic droplet length scale
competes with system size in high dimensions
and governs FSS as —

It implies that the FSS exponent for d > dc
isnotvy, =v.=1/2 but v =v, =2/d,
d=2 for {, =¢¢— N.

equivalently to v =v

FSS

m — N-,B/;II)(SNI/;).

-Binder, Nauenberg, Privman, and Young, PRB (1985): 5D Ising model test

-Luebeck and Jassen, PRE (2005): 5D DP model test
-Botet, Jullien, and Pfeuty, PRL (1982): FSS in infinite systems




Generalization: FSS for the @ Theory

f(m)=—em” +um? +---

m = N-,B/;ll)(gNI/;)

V = ‘d‘/FVGduc =(1/2)*(29)(q-2)=q/(q-2) : d—ihdependent

v, =v.(d, /d)=d /(2d)

¢ Droplet excitation length scale _
¢ Hyperscaling relation dVT B 216 e

e.g., Isingig=4,v, =1/2,and dy. =4 so that v = 2.

MF




/ FSS of Ising model on SFNs )
v=dv,=20+y P(k)~k

\

Using the phenomenological theory (Goltsev et al. PRE ‘03)
for the Ising model in SF networks,

f(m) ~ _Em2 -+ %m4 -+ cy|m|>‘_1.

2
For A>5, back to ¢* theory ,6’ =1/2 for 1>5
For 5 1 - > J V=2

m~&” with f=1/(1-3) p=IA=3) for 3<A<5
Af ~ £ L VvA-D/IA-3)

E ~(Af) ~e =7 with v =1+28 y=1 for 1>3

\ fm)=D(Vm) —em*+v|m/"" = V=v.d,

/

Our conjecture for FSS exponents is network (cutoff)-independent.
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4 A

FSS of CP/SIS on SFNs ]

Directed Percolation

dip = ap — bp® — |dp? |+ /pn(t)

Note that @ = A4 —1 for (CP) and 0=A1-2 for (SI1S).

In the CP, the stationary solution of the Fokker-Planck equation
for P(p,t), is similar to P ~ e~/ in the Ising case. Then the droplet
excitation probability of &, should obey

[P, ~ e TP ~ O(1).

Consequently, we get 7, = % for 2 < A< 3; 2 for \ > 3.

\For the SIS case, the only one change )\ — (A — 1) is needed. /
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Phenomenological remedy for DP on SFNs

~

d ]
d—f=8p—0p2—dp" "+ P

For 8>3, back to ordmary theory
For 2<6 <3,

D e iith s (=)

Af—sp — 5

gL~ (Af) ~e7 with ¥ =1+p

V=dv,=pf+y—-max{v,— B0}
' :1
_ for >3
< V=2
=1/(6-2
'{ (6=2) for 2<6<3
v=O-1)/(0-2)

y=1, v,=1 for 6>2

d
K d_f:V2p+ap—cp2—dp0‘1+\/;77 = V=V, J

Our conjecture for FSS exponents is network (cutoff)-independent.




CP on UCM

X0

UCM

L AQ@%A@A A=2.75

0.2 0.4
(pc_p)N1/2.44

(B/v, v)

B=1/(A-2), v=

Ours

C&P-S yd

prediction

(0.571, 2.33)

(12, 2.67)

Data

(0.59(2), 2.44(10))

(0.63(4), 2.4(2))

Qurs (PRL ‘08) vs. Castellano and Pastor-Satorros (PRL "06)



Network Cutoff Dependence Tests

Degree k should be bounded for finite N as

1/(A-1)
ke ~ N for “static” natural cutoff
1
N?  for “UCM" forced cutoff

(Goh et al. PRL "01 for static; Cantanzaro et a/. PRE "05 for UCM)

T _<__I_€__2__>_ |:‘> ]-;(N)__ ];(CD) . kc—(/l‘3) . N—é‘(/l—3) 1 ]\7—1/17
Numerical results show

v=A-1)/(A1-3) fo =1/ [natural cutoff]
v =2/(1-3) 5=1/2 [UCM
no cutoff dependence

V=(A-1)/(1-3) for Ising (3<1<5)
for Ising and DP models Vv=(A-2)/(1-3) for SIS (3<i<4)
for any A .




Take-home messages

“Mean-Field theory” is still valid on scale-free networks:
The heterogeneity(\)-dependent MF theory is working perfectly well.

We conjecture finite size scaling (FSS) exponents for various models
on scale-free networks and other exponential networks, which are
all confirmed reasonably well in numerical simulations. NOISE !!

Our FSS conjecture is based on droplet excitation argument
and/or hyperscaling.

No cutoff dependence on finite size scaling exponents
if not too strong!

Ongoing issues

* Degree (k)-dependent FSS & its cutoff dependence
* FSS in Networks (Quenched vs. Annealed)




Thank You?



Contact Process (CP) ® ® O
- Courtesy to HP

A typical single absorbing state model

absorbing state:
vacuum [single absorbing state]

O
o
o

Dynamic Rule:

a particle is annihilated with prob. (1-p) (A - 0)
or creates another one at a n.n. site with prob. p (A — 2A)

o0 A

Po | p ~(p=p) c~lp-p.[™ t~p-p.["
P
“ | absorbing phase active phase Directed Percolation (DP)

P, p universality class

DP conjecture: .Contlnu?us transmo_ns from an active phase
into a single absorbing state should belong to DP class.
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Unbounded density fluctuations in DP systems

\$ Relative density fluctuations at sites of degree k  |r, =Apk /,Ok

10— FICTeR site fluctuations multiplicative nature of noise
o ‘ | | | |N,: # of sites of degree k
& | NO"MU@ | |M,: # of occupied sites of degree k

“Criticatfiggfuations | |AM, ~ /M, with p, =M, /N,

Us gﬁwﬁ ceP-si| (= r, =Ap,/p, =1/ N,p, =1/\/NPkpk

1 L1 1 1111 1 11 1 111 1 1111
0 1 1 3

10 v 0= r, ~ (Np)—l/z k(ﬂ—l)/z wih D, ~ pk

(=1

r=N"D2 f (V") with f(x)~x"D" for small x

~x"*  for large x

Scaling with o~ N “ with a=p/v, (criticality), O (active), 1 (absorbing)
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Simulation data for 5D Ising model

Binder, Nauenberg, Privman, Young , PRB (1985)

symbol L

or

vi=d, /(2d)=2/5 T s




Ising model on scale-free networks

Langevin eq. for Ising system on regular lattice Degree distribution

dm‘(l-;cat) = DVim +tm —cm’® +n(%,t)| |P(k) ~ k=" (A :degree exponent)

Dorogovtsev-type remedy for SFN theory

dm‘(lx,t) =DVim+tm—-—cm’® —dm** + n(x,t) Conjecture !
t
= || B=1/2 for A>5|([v=véd_=@1/2)*4=2 for 1>5
B=1/(A-3) for 3<A<5|||lv=(A-1D/(A1-3) for 3<A<5
power counting power counting
x~[&l"s t~Ix1?, m~[x”"” =[] x~[x]", t~[x]7, m~|xP" =[x['*

at d=d_, m3 ~ n = Kls ~ K](2+duc)/2 at d=d_, mr 2~ n = K]2(/1—2)/(/1—3) ~[ K](2+d,,c)/2




Fokker-Plank equation (lto sense) for

P(p,1)

‘;—’to=gp—cp2+\/;n
dP 0 B 2 0
» _6,0{ (6‘,0 cp )P+6 (pP)}

Steady-state probability distribution

P* ~ eI dplap—cp’) p P P2 g T ()

e

Droplet excitation (in the active phase)

P*(p=p’)

{ P*(p=0) r' N

e—Aff%l _ 0(1) —>

>0 p ~¢&
(=1
Af ~gp  ~¢”
Sr ~ &
p=1 r=1 v =




Directed Percolation (DP) Systems &

Langevin eq. for DP systems on reqgular lattice

dp(x,t)
dt

= DVip+tp—cp’+pn(z,e)

Dorogovtsev-type remedy for SFN theory for SIS

dp(x,t)
dt

=DVip+tp—cp’—dp* ™+ pn(z,1)

=) [ g=1 for 1> 4 v=vid =1/2)*4=2 for 1>4
f=1/(1-3) for 3<Ai<4|||v=(1-2)/(1-3) for 3<1<4

power counting power counting
x~[xl", t~Ic]?, p~I&l’" =[] x~xl”, t~[x[7, p~[xV" =[x]
at d=d ,02’“\/;77 — [K]4~[K]1+(d"“+2)/2 at d=d Pl_ZN\/;ﬂ — [K]Z(}{—Z)/(/?,—3)N[K_]l/(/%—3)+(duc+2)/2

2/(A-3)
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