Gaussian Belief Propagation for
Solving Systems of Linear Equations:
Theory and Application

Danny Bickson (HUJI)

Danny Bickson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

15/5/08

GaBP Solver

PhysDis Workshop

1/40

uCSD: oS |
Jack K. Wolf Paul H. Siegel Ori Shental

4 s
HUJI: § A

Danny Dolev Danny Bickson

@ NSF Grant No. CCR-0514859
@ EVERGROW, IP 1935 of the EU Sixth Framework

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 2/40

Talk outline

Linear Graphical
) Models

e

1

Gaussian
BP

Weiss

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 3/40

Take-home message

@ New approach: solving a linear system of algebraic equations as
a probabilistic inference problem.
@ Gaussian belief propagation (GaBP) solver:

Iterative

Convergent

Exact

Efficient

Distributed message-passing implementation for very large systems
Superior to classical iterative methods

Countless applications in the mathematical sciences and
engineering

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 4/ 40

0 Theory
@ Introduction

@ Derivation
@ The GaBP solver algorithm
@ Properties

e Application
@ Linear Detection

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 5/40

Theory Introduction

Problem formulation

Definitions
@ A e R™" m>n e N* is a given data matrix.
@ b € R™ is a given observation vector.
@ x € R" is a vector of unknown variables.

System of linear equations

Ax

I
=

@ A unigue solution, x*, exists iff A has full column rank.

o x* = A'b, where AT 2 (ATA)'AT is the Moore-Penrose
pseudoinverse matrix.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 6 /40

Theory Introduction

Problem formulation (cont.)

The data matrix A is square (i.e., m = n) and symmetric.

x*=Afb=A"Tp

Related problems

@ Efficient distributed (large) matrix inversion or
@ Determinant computation.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 7140

Theory Introduction

GaBP solver and classical solution methods

Linear solvers

’ Direct solvers ‘ ’ Iterative solvers ‘

Relaxation methods ‘ ’ Optimization methods ‘

’ Message passing-based ‘

’ Gradient-based ‘

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 8/40

Theory Derivation

From linear algebra to probabilistic inference

Proposition [Bickson et al.,07]

The computation of the solution vector, x*, is equivalent to the
inference of the vector of marginal means, i € R”, over the graph G
with the associated joint Gaussian probability density function

p(x) ~ N(pn = A "b, A7),

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 9/40

Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Define a quadratic form: g(x) = x"Ax/2 — b”x.

@ A is symmetric = Jq(x)/0x|xx = Ax* — b = 0.

@ Define a joint Gaussian probability density function using the
quadratic form

p(x) o exp(—gq(x)) =exp(—x'Ax/2 +b'x)
o exp (= (x—p)A(x—p)/2) = N(u,A7,

where the mean y = A~'b = x*.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 10/40

Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Shift the solution problem from an algebraic to a probabilistic
domain.

@ A deterministic vector-matrix linear equation translates to an
inference problem in the corresponding graph.

@ Calls for the utilization of belief propagation (BP) as an efficient
inference engine.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 11/40

Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Shift the solution problem from an algebraic to a probabilistic
domain.

@ A deterministic vector-matrix linear equation translates to an
inference problem in the corresponding graph.

@ Calls for the utilization of belief propagation (BP) as an efficient
inference engine.

Data matrix A does not have to be positive semi-definite. \

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 11/40

Theory Derivation

Graphical model

@ Consider the graph G corresponding to the joint Gaussian p(x),
with edge potentials ; and self-potentials ¢;.
@ Determined according to the pairwise factorization

p(x) oc [Ty di(xi) [Ty (i x)-

@ where
Vixi,x) = exp(—xiAyx;),
(bi(x,') £ exp (b,'x,' — Aiixiz/2) X N(Hii = bi/Aii,Pi?I = A;l)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 12/40

Theory Derivation

Inference

@ We would like to infer the marginal densities, which must also be
Gaussian

p(xi) ~ N(ui = {A~'b}i = xj, P! = {A™1}a).

@ Now, (Gaussian) BP can come into action...

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 13/40

Theory Derivation

Discrete belief propagation (BP)

Sum-product rule

mj; x] E % Xiy Xj ¢z xl H My -xl

keEN()\j

Product rule

Pr(x;) o< ¢i(x;) H My (x;)

kEN(i)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 14/40

Theory Derivation

-product rule

mj(x;) o< / i (xi, x7) i (%) H myi (x;)dx;
i kEN()\j

Product rule

p(xi) oc gi(x)] muilxs)

kEN(i)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 15/40

Theory Derivation

Gaussian BP

@ Gaussian BP (GaBP) is a special case of continuous BP, where
the underlying distribution is Gaussian [Weiss and Freeman,01].

Lemma: product of Gaussian densities

Let fi(x) = N (u1, Py)andfz() = N (2, Py ').Then their product
f(x) = filx)fr(x) ocN(u, 1) where

PPyt + Paa),

(P1+P2)"!

!
p-!

1> i

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 16/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

mij(xj) o / b x)pi) [()i
i keN(i)\j

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 17740

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

(i) H My (x;)

keEN(i)\j

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 17/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

¢ix) [muale)

keEN(i)\j

@ p(x) is jointly Gaussian=

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 17/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

self- potentials
1 OCN(/’[’II =b; /Am ii

=A"

12

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 17740

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

self-potentials
i OCN(/’(’II =b; /Alh i —A,;l)
o Gaussian messages my(x;) o< N (i, Py ')

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 17740

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

@ Applying the multivariate version of the
Gaussian densities product lemma:

Danny Bickson (HUJI) GaBP Solver

PhysDis Workshop

18/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

mij xj f 7/}11 xlaxj N(/L,\], \]1) dx;

@ Applying the multivariate version of th
Gaussian densities product lemma:

@i(xi) i (x;)
e Precision Py; = P; +ZkeN(i)\; Py

®i(xi) my (x;)
(7 /—k’\
o Mean py; = Py; (Piiuii + 2 keni)\ Pki,uki)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 18/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

my(g) oc [) Ny, Py)dx

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 19/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

my(g) oc [) Ny, Py)dx

@ Using the Gaussian integral
[exp (—ax? + bx)dx = /7 [aexp (b* /4a):

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 19/40

Theory Derivation

Gaussian BP (cont.)

Integral-product rule

S5 exp (—ax® + bx)dx =
e Message precision P; = fA%jPl.\j
e Message mean u; = —Pj'Ajua;

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 19/40

Theory Derivation

Gaussian BP (cont.)

Product rule

®i(xi)
@ Marginal precision P; = P;; +

@ Marginal mean
®i(xi) my (x;)
(" —~ =
i = Py (Pii,uii + 2 keN() Pki#ki)
@ Mean and precision like in the product term

of the integral-product rule, but summing
over all incoming messages.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 20/ 40

Theory The GaBP solver algorithm

The GaBP solver algorithm

v Set the neighborhood N(i) to include
Vk # i such that Ay # 0.

v’ Fix the scalars
Pii = Aii and Mii = b,‘/A,',', Vi.

v Set the initial k— ik € N(i) scalar messages
Pri =0 and uy =0.

v’ Set a convergence thresholde.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 21/40

Theory The GaBP solver algorithm

The GaBP solver algorithm

lterate & check

v Compute thei—j,i € N(j) scalar messages
Py = —A3/ (Pi + Ykenyy Pui)»
pij = (Pisptii + Dgenoy Prittii) /Ay
v’ Propagate the N(i) >k — i messages
Py and g, Vi (under chosen scheduling).
v’ If the messages Pj and p; did not
converge (w.r.t. €), iterate again.
v' Else, continue next step.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 21/40

Theory The GaBP solver algorithm

The GaBP solver algorithm

v Compute the marginal means
pi = (Piipii + 2 keN() Piiia) [(Pii + D _keN() Py), Vi.

(v Optionally compute the marginal precisions
Pi = Pii+ > yengy Pri)

v’ Find the solution
X; = i, Vi.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 21/40

Theory Properties

Convergence and Exactness

@ We can use results from the literature on probabilistic inference in
graphical models:

Theorem [based on Weiss and Freeman,01,Claim 4]

If the matrix A is strictly diagonally dominant (i.e., |Ai| > .., [A4l, Vi),
then the GaBP solver converges and the marginal means converge to
the true solution.

@ This sufficient condition can be relaxed:

Theorem [based on Johnson et al.,/06,Proposition 2]

If the spectral radius (maximum of the absolute values of the
eigenvalues) p of the matrix |I, — A| satisfies p(|I, — A|) < 1, then the
GaBP solver converges and the marginal means converge to the true
solution.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 22 /40

Theory Properties

Convergence and Exactness (cont.)

@ Only sufficient (but not necessary) conditions are known.
@ Examples for convergence when sufficient conditions do not hold:
o Tree graphs;
o Graph representing Gaussian-signaling randomly-spread CDMA
system.
@ Either converging to the exact solution or diverging.
e Can not converge to a wrong solution.

@ Exact region of convergence and convergence rate are open
problems.

In contrast to ordinary BP:
@ Convergence guarantees exactness of the inferred probabilities.

@ Convergence is not limited to tree or sparse graphs, and can
occur even for dense (fully-connected) graphs.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 23 /40

Theory Properties

Message-passing efficiency

For a dense data matrix A

@ O(n?) unique messages per iteration.

@ Naive approach, because...

@ Messages transmitted from a node are very
much correlated:

o Differ only in one summation term.
@ Broadcast the aggregated sum messages: PO,

@ Reduces the number of unique messages to
O(n) per iteration.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 24/ 40

Theory Properties

Message-passing efficiency

v’ Broadcast the aggregated sum messages
Pi=P;+ >_kengi) Pris
i = B! (Piiftii + X gen(y Prikiki), Vi
(under chosen scheduling).

v Compute the N(j) i —jinternal scalars | ™
Py = —A2/(Pi — Py) By
o = (Pafiy— Pt [A

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 24/ 40

Theory Properties

Computational complexity

Well-conditioned dense data matrix (x(A) £ ||A|,||A~!]], = O(1))

Algorithm Operations per message | Unique messages | Operations per iteration | Iterations | Operations
Broadcast GaBP O(n) O(n) O(n?) o(1) O(n?)
Gaussian elimination 0 | " | ! | " | ow) |
Jacobi method ! | " | O(n?) | o | o@) |
v

Sparse (2-D Poisson) data matrix (k(A) = O(n))

Algorithm Operations per message | Unique messages | Operations per iteration | Iterations | Operations
Broadcast GaBP o(1) O(n) O(n) < O(yn) | < O(nyn)
Gaussian elimination " | " | " | | o@) |
Jacobi method " | " | O(n) | om | ow |
v

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 25/ 40

Application Linear Detection

Linear channels

y=Rx+n

@ x, input vector

@ n, additive noise vector

@ y, output of a bank of filters matched to the physical channel S
@ R = S'S, correlation matrix

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 26 /40

Application Linear Detection

Linear detection

%= A{x'} = A{A"'b}

@ x = {xj,...,xx}7, hidden input vector
@ b=y={y,...,yx}!, observed noisy output vector

@ A, K x K positive-definite symmetric matrix approximating the
channel transformation

@ x*, solutionto Ax =b
@ A{.}, clipping to input alphabet
@ x, decision

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 27/ 40

Application Linear Detection

Application examples (cont.)

<
T
B
g
5
3
‘@ & —e—Jacobi
g 10 vgs e 2
° —e—Parallel GaBP : N
E -~ Serial GaBP N 1
3 4 ‘ 5
2 10'- Ngisa-<y
10° :
[] 2 8 10
Iteration t
v

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 28 /40

Application Linear Detection

Linear detection (cont.)

o CDMA

@ Gold spreading sequences of length N = 7.

@ K = 3 and K = 4 users=-Correlation matrices R; and R4, which
are not diagonally dominant, but p(|Is — R3|) = 0.9008 < 1 and
p(|I; — Ry|) = 0.8747 < 1.

@ Decorrelator (A = R) detector.

@ b(=y=Rx+n)isall-ls.

@ Comparison to MUD based on classical iterative methods [Grant
& Schlegel,;99],[Tan & Rasmussen, 00],[Yener et al.,02].

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 29 /40

Application Linear Detection

Linear detection (cont.)

Algorithm | Iterations ¢ (R3) | Iterations (Ry) |
Jacobi 111 24
GS 26 26
Parallel GaBP 23 24
Optimal SOR 17 14
Serial GaBP 16 13
Jacobi+Steffensen 59 -
Parallel GaBP+Steffensen 13 13
Serial GaBP+Steffensen 9 7

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 29 /40

Future directions

@ Finding the exact region of convergence and convergence rate.
o Parallel vs. serial scheduling

@ Variety of applications.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 30/ 40

Take-home message

@ New approach: solving a linear system of algebraic equations as
a probabilistic inference problem.
@ Gaussian belief propagation (GaBP) solver:

Iterative

Convergent

Exact

Efficient

Distributed message-passing implementation for very large systems
Superior to classical iterative methods

Countless applications in the mathematical sciences and
engineering

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 31/40

References

[Bickson et al. [07]

"Gaussian belief propagation for solving systems of linear
equations: Theory and application" (Trans. IT submission).

"Gaussian belief propagation solver for systems of linear
equations" (ISIT ’08).

"Gaussian belief propagation based multiuser detection" (ISIT
'08).

“"Linear detection via belief propagation” (proc. of Allerton '07).
"A message-passing solver for linear systems" (proc. of ITA’08).
"Peer-to-Peer rating" (proc. of P2P computing '07)

"A unifying framework for rating users and data items in
Peer-to-Peer and social networks" (PPNA Journal "08)

"Large scale Gaussian BP solver for kernel ridge regression”
(NIPS workshop '07)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 32/ 40

References

[Weiss and Freeman,01] "Correctness of belief propagation in Gaus-
sian graphical models of arbitrary topology".
[Johnson et al. [/ 06]

@ "Walk-sum interpretation and analysis of Gaussian belief
propagation”.

@ "Walk-sums and belief propagation in Gaussian graphical
models".

[Plarre and Kumar, 04] "Extended message passing algorithm for infer-
ence in loopy Gaussian graphical models".

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 32/ 40

THANK YOU!

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 33/40

Toy linear system

Appendix

Numerical examples

An=1 Ay=-2 A,=3 x —6

Ap=-2 Ay=1 A,=0 y|=| o

Ap=3 Ay=0 A =1 z 2 ;
X /\‘X/—/ \T—/

Danny Bickson (HUJI)

GaBP Solver

PhysDis Workshop

34/40

Appendix Numerical examples

Toy linear system

3 x 3 equations

x* ~1/12 —-1/6 1/4 —6 1 WX\QQ

v =1 -1/6 2/3 1)2 0ol=(2 N

z* 1/4 1/2 1/4 2 ~1 : :
= ~~ ~——

x* Al b

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 34 /40

Appendix Numerical examples

Toy linear system

3 x 3 equations

| Message | Computation [=0 | t=1 | =2 | =3 |
Py, —AL,/(Pxx + Pyx) 0| —4[1/21/2
Py, —A3./(Py) 0| 4| —4| —4)
P.. —AZ/(P,) ol -9 3| 3 W
P.. —AZ [(Pey + Pyy) 0] =9 9| —9 N
e (Pxxtisx + Poxphex) [Axy | O 3 6 6 ’ :
Fyx Pyyiyy /Ayx 0 0 0 0
Hixz (Pxfhax + Pyx.uyx)/sz 0| 2| —2| -2
Hzx Pofize/Asx 0]2/312/3|2/3)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 34 /40

Appendix Numerical examples

Toy linear system

3 x 3 equations

‘ Solution ‘ Computation ‘

py = X* (Pxxﬂxx‘i‘sz,sz+Pyxﬂyx)/(Pxx+P2x+Pyx) =1
py =" (Pyyﬂyy"‘nyﬂxy)/(Pyy"‘ny) =2

pe=12" (Pzzﬂzz + sz:uxz)/(PZZ + sz) =-1 .
o Tree=

y z

P! = (PutPu+Py) ' =—1/12={A""},
Py_1 = (Pyy+ny)_1 =2/3= {A_l}yy
Pz_l = (Pzz+sz)_l :1/4:{A_1}ZZ

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 34 /40

Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

W N =
—_ NN
—_—

Danny Bickson (HUJI)

X1
X2
X3

Algorithm Iterations ¢
Jacobi,GS,SR,CG,Jacobi+Aitken,Jacobi -
l Parallel GaBP 38
1 Serial GaBP 25
1 Parallel GaBP- 21
Serial GaBP- 14

GaBP Solver PhysDis Workshop

35/40

Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

10" 10 -
—e— Jacobi+Aitken
] ——Gs —+— Jacobi+Steffensen
c —e—Jacobi € 102, | —oParallel GaBP+Steffensen |
= ——"Optimal" SR = -o-Serial GaBP+Steffensen |
T —o—Parallel GaBP 2
% -o-Serial GaBP %
L <
= 10' =
3 3
3 3
f- e b=}
g 10"]
& &
S L0 s
EY E
2 2
2
10 .. .
_______ ..
I S e
107 - = 10°
0 2 6 8 10 0 2 4 3 8 10
Iteration t Iteration t

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 35/ 40

Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

—e— Parallel GaBP

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 35/ 40

Appendix Numerical examples

Jacobi method

X(t+1) — D—l (b o (L + U)X(t))

Element-wise

P Yo=Y Ap) vi

JF

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 36 /40

Appendix Numerical examples

Jacobi method

xD =D~ (b — (L +U)x")

Convergence

e Sufficient condition: p(D~'(L 4+ U)) < 1
e holds, e.g., if A is diagonally dominant, or
e if A, Dand D — L — U are all positive definite.
@ Necessary condition: diagonal terms in the matrix are greater (in
magnitude) than other terms.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 36 /40

Appendix Numerical examples

Jacobi Algorithm

@ Given a system of linear equations of the form Ax = b, where A is
invertible, we have a unique solution x = A='b.
@ Looking at the i equation:

Za,-jxj = b,‘ (1)
J

@ Assuming a;; # 0 we get:

X = (bi — Zj;éi a;jx;))

dij

@ The algorithm Starting for an initial guess x(0),
compute fori=1,2,---

(r=1)
b,‘ — : l-a,-~x-
0 = (bi = > ayx;) @)

aij

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 37/ 40

Appendix Numerical examples

Jacobi Convergence

First equation: 2x,—x,=0

2 x{0)

X

(a)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 38/40

Appendix Numerical examples

Jacobi Divergence

Second equation: 2x, —x,=0

X2

First equation: x, —2x,=0

x(0) X,

(b)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 39/40

Appendix Numerical examples

Gauss-Seidel (GS) method

x*) = (D + L)~ (b — Ux®)

Element-wise

x§t+1) = A7 (bi — ZAUXJ(IH) - ZAUXJ@) vi

J<i J>i
v

GS method as an instance of the GaBP solver

A ‘serial scheduling’ version of Jacobi method=-Instance of the serial
GaBP solver.)

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 40/ 40

Appendix Numerical examples

Gauss-Seidel (GS) method

x*) = (D + L)~ (b — Ux®)

Convergence

@ Sufficient condition: p((D +L)~'U) < 1
e Holds, e.g., if A is diagonally dominant, or
@ positive definite.
@ Necessary condition: diagonal terms in the matrix are greater (in
magnitude) than other terms.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 40/ 40

Appendix Numerical examples

Successive over-relaxation method

XD = (D + wL) ™! (wb — (1 —w)D — wU)x(’)>

x§t+1) =(1- w)xl@ + wAZ (b — ZA,-jx](tH) — ZA,-jx}t)) Vi
Jj<i j>i
SOR method as an instance of the GaBP solver
Gauss-Seidel method averaged over two consecutive
iterations=-Instance of the serial GaBP solver with damping.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 41/ 40

Appendix Numerical examples

Successive over-relaxation method

XD = (D 4 wL)~ Qm—al—mn—wmﬂﬂ

Convergence

@ Necessary condition: w € (0,2)

@ Successive relaxation (SR) for w € (0, 1)
e Successive over-relaxation (SOR) for w € (1,2)

@ and sufficient for symmetric positive definite matrices.
@ If p((D+L)~'U) < 1, optimal convergence rate is given for

Wopt =
1+/1-p((D+L)"'U)

v

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 41/ 40

Appendix Numerical examples

Convergence acceleration: Aitken’s method

@ Consider a sequence {x,}, obtained by using GaBP iterations,
converging to the limit x.

@ According to Aitken’s method, if there exists a real number a such
that |a| < 1 and lim,,_ (x, — X)/(x,—1 — X) = a, then the sequence
{yn} defined by

2
(xn—l—] - xn)
Xn+2 — 2xn+l + Xn

Yn = Xn —

converges to x faster than {x,} in the sense that
limy oo [(X = yn) /(% — xa)| = 0.

@ A generalization of over-relaxation (3 consecutive iterations used
rather than 2).

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 42/ 40

Appendix Numerical examples

Convergence acceleration: Steffensen’s iterations

@ Encapsulate Aitken’s method

@ Starting with x,,, two iterations are run to get x,,.; and x,». Next,
Aitken’s method is used to compute y,, this value is replaced with
the original x,,, and GaBP is executed again to get a new value of
Xu+1. This process is repeated iteratively until convergence.

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 43 /40

	Theory
	Introduction
	Derivation
	The GaBP solver algorithm
	Properties

	Application
	Linear Detection

	
	

	Appendix
	Appendix
	Numerical examples

