Gaussian Belief Propagation for Solving Systems of Linear Equations: Theory and Application

Danny Bickson

School of Computer Science and Engineering The Hebrew University of Jerusalem

15/5/08

4 3 5 4 3 5 5 3

Joint work

UCSD:

Jack K. Wolf

Paul H. Siegel

Ori Shental

HUJI:

Danny Dolev Danny Bickson

- NSF Grant No. CCR-0514859
- EVERGROW, IP 1935 of the EU Sixth Framework

Danny Bickson (HUJI)

GaBP Solver

PhysDis Workshop 2 / 40

Talk outline

Danny Bickson (HUJI)

GaBP Solver

- New approach: solving a linear system of algebraic equations as a probabilistic inference problem.
- Gaussian belief propagation (GaBP) solver:
 - Iterative
 - Convergent
 - Exact
 - Efficient
 - Distributed message-passing implementation for very large systems
 - Superior to classical iterative methods
 - Countless applications in the mathematical sciences and engineering

소리 에 소문에 이 것 같아. 소문 이 모님의

Outline

Theory

- Introduction
- Derivation
- The GaBP solver algorithm
- Properties

Linear Detection

3 > 4 3

Problem formulation

Definitions

- $\mathbf{A} \in \mathbb{R}^{m \times n}$, $m \ge n \in \mathbb{N}^*$, is a given data matrix.
- $\mathbf{b} \in \mathbb{R}^m$ is a given observation vector.
- $\mathbf{x} \in \mathbb{R}^n$ is a vector of unknown variables.

System of linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

Solution

- A unique solution, x*, exists iff A has full column rank.
- $\mathbf{x}^* = \mathbf{A}^{\dagger}\mathbf{b}$, where $\mathbf{A}^{\dagger} \triangleq (\mathbf{A}^T\mathbf{A})^{-1}\mathbf{A}^T$ is the Moore-Penrose pseudoinverse matrix.

Introduction

Problem formulation (cont.)

Assumption

The data matrix A is square (*i.e.*, m = n) and symmetric.

Solution

$$\mathbf{x}^* = \mathbf{A}^{\dagger} \mathbf{b} = \mathbf{A}^{-1} \mathbf{b}$$

Related problems

- Efficient distributed (large) matrix inversion or
- Determinant computation.

Introduction

GaBP solver and classical solution methods

Derivation

From linear algebra to probabilistic inference

Proposition [Bickson et al., '07]

The computation of the solution vector, \mathbf{x}^* , is equivalent to the inference of the vector of marginal means, $\mu \in \mathbb{R}^n$, over the graph \mathcal{G} with the associated joint Gaussian probability density function $p(\mathbf{x}) \sim \mathcal{N}(\mu \triangleq \mathbf{A}^{-1}\mathbf{b}, \mathbf{A}^{-1}).$

(김 글 제 김 교 글) 그 그 그

Derivation

From linear algebra to probabilistic inference (cont.)

Proof.

- Define a quadratic form: $q(\mathbf{x}) \triangleq \mathbf{x}^T \mathbf{A} \mathbf{x}/2 \mathbf{b}^T \mathbf{x}$.
- A is symmetric $\Rightarrow \partial q(\mathbf{x})/\partial \mathbf{x}|_{\mathbf{x}^*} = \mathbf{A}\mathbf{x}^* \mathbf{b} = \mathbf{0}.$
- Define a joint Gaussian probability density function using the guadratic form

$$p(\mathbf{x}) \propto \exp(-q(\mathbf{x})) = \exp(-\mathbf{x}^T \mathbf{A} \mathbf{x}/2 + \mathbf{b}^T \mathbf{x})$$

$$\propto \exp(-(\mathbf{x}-\mu)^T \mathbf{A} (\mathbf{x}-\mu)/2) = \mathcal{N}(\mu, \mathbf{A}^{-1}),$$

where the mean $\mu = \mathbf{A}^{-1}\mathbf{b} = \mathbf{x}^*$.

From linear algebra to probabilistic inference (cont.)

- Shift the solution problem from an algebraic to a probabilistic domain.
- A deterministic vector-matrix linear equation translates to an inference problem in the corresponding graph.
- Calls for the utilization of belief propagation (BP) as an efficient inference engine.

From linear algebra to probabilistic inference (cont.)

- Shift the solution problem from an algebraic to a probabilistic domain.
- A deterministic vector-matrix linear equation translates to an inference problem in the corresponding graph.
- Calls for the utilization of belief propagation (BP) as an efficient inference engine.

Remark

Data matrix A does **not** have to be positive semi-definite.

Theory Derivation

Graphical model

- Consider the graph *G* corresponding to the joint Gaussian *p*(**x**), with edge potentials ψ_{ij} and self-potentials φ_i.
- Determined according to the pairwise factorization
 - $p(\mathbf{x}) \propto \prod_{i=1}^{n} \phi_i(x_i) \prod_{\{i,j\}} \psi_{ij}(x_i, x_j).$

where

$$\begin{array}{rcl} \psi_{ij}(x_i, x_j) & \triangleq & \exp(-x_i A_{ij} x_j), \\ \phi_i(x_i) & \triangleq & \exp\left(b_i x_i - A_{ii} x_i^2/2\right) \propto \mathcal{N}(\mu_{ii} = b_i/A_{ii}, P_{ii}^{-1} = A_{ii}^{-1}). \end{array}$$

• We would like to infer the marginal densities, which must also be Gaussian

$$p(x_i) \sim \mathcal{N}(\mu_i = \{\mathbf{A}^{-1}\mathbf{b}\}_i = x_i^*, P_i^{-1} = \{\mathbf{A}^{-1}\}_{ii}).$$

• Now, (Gaussian) BP can come into action...

< E

Derivation

Discrete belief propagation (BP)

《曰》《圖》《曰》《曰》 되는

Theory [

Derivation

Continuous BP

 Gaussian BP (GaBP) is a special case of continuous BP, where the underlying distribution is Gaussian [Weiss and Freeman,'01].

Lemma: product of Gaussian densities

Let $f_1(x) = \mathcal{N}(\mu_1, P_1^{-1})$ and $f_2(x) = \mathcal{N}(\mu_2, P_2^{-1})$. Then their product $f(x) = f_1(x)f_2(x) \propto \mathcal{N}(\mu, P^{-1})$ where

$$\mu \triangleq P^{-1}(P_1\mu_1 + P_2\mu_2), P^{-1} \triangleq (P_1 + P_2)^{-1}.$$

Derivation

Gaussian BP (cont.)

Integral-product rule $m_{ij}(x_j) \propto \int_{x_i} \psi_{ij}(x_i, x_j) \phi_i(x_i) \prod_{k \in \mathbb{N}(i) \setminus j} m_{ki}(x_i) dx_i$ m_{ij}

315

 $k \in N(i) \setminus j$

Derivation

Gaussian BP (cont.)

- 문 (문)

Derivation

Gaussian BP (cont.)

고나님

A B F A B F

Derivation

Gaussian BP (cont.)

315

A B A A B A

Derivation

Gaussian BP (cont.)

A B F A B F

< 47 ▶

Derivation

Gaussian BP (cont.)

Integral-product rule

• Applying the multivariate version of the Gaussian densities product lemma:

∃ ► < ∃ ►</p>

< 47 ▶

Derivation

Gaussian BP (cont.)

Integral-product rule $m_{ij}(x_j) \propto \int_{x_i} \psi_{ij}(x_i, x_j) \qquad \mathcal{N}(\mu_{i \setminus j}, P_{i \setminus j}^{-1})$ dx_i Applying the multivariate version of the m Gaussian densities product lemma: $X_k(\phi)$ $\phi_i(x_i)$ $m_{ki}(x_i)$ • Precision $P_{i\setminus j} = P_{ii} + \sum_{k \in N(i)\setminus j} P_{ki}$ $k \in N(i) \setminus j$ • Mean $\mu_{i\setminus j} = P_{i\setminus j}^{-1} \left(\overbrace{P_{ii}\mu_{ii}}^{\phi_i(x_i)} + \sum_{k\in \mathbf{N}(i)\setminus j} \overbrace{P_{ki}\mu_{ki}}^{m_{ki}(x_i)} \right)$

Derivation

Gaussian BP (cont.)

- 문 (권

Derivation

Gaussian BP (cont.)

Integral-product rule $m_{ij}(x_j) \propto \int_{x_i} \psi_{ij}(x_i, x_j) \qquad \mathcal{N}(\mu_{i\setminus j}, P_{i\setminus j}^{-1}) dx_i$ • Using the Gaussian integral $\int_{-\infty}^{\infty} \exp(-ax^2 + bx) dx = \sqrt{\pi/a} \exp(b^2/4a):$ $k \in \mathbb{N}(i) \setminus i$

12

Image: A mathematical states in the second states in the second

Derivation

Gaussian BP (cont.)

∃ ► < ∃ ►</p>

Derivation

Gaussian BP (cont.)

over all incoming messages.

The GaBP solver algorithm

Initialize

✓ Set the neighborhood N(i) to include
 ∀k ≠ i such that
$$A_{ki} ≠ 0$$
.
✓ Fix the scalars
 $P_{ii} = A_{ii}$ and $\mu_{ii} = b_i/A_{ii}$, ∀i.
✓ Set the initial $k → i, k ∈ N(i)$ scalar messages
 $P_{ki} = 0$ and $\mu_{ki} = 0$.
✓ Set a convergence threshold ϵ .

- 문 (권

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The GaBP solver algorithm

Iterate & check

- $\begin{array}{l} \checkmark \quad \text{Compute the } i \to j, i \in \mathrm{N}(j) \text{ scalar messages} \\ P_{ij} = -A_{ij}^2 / (P_{ii} + \sum_{k \in \mathrm{N}(i) \setminus j} P_{ki}), \\ \mu_{ij} = (P_{ii} \mu_{ii} + \sum_{k \in \mathrm{N}(i) \setminus j} P_{ki} \mu_{ki}) / A_{ij}. \end{array}$
- ✓ Propagate the $N(i) \ni k \to i$ messages P_{ki} and μ_{ki} , $\forall i$ (under chosen scheduling).
- ✓ If the messages P_{ij} and μ_{ij} did not converge (w.r.t. ϵ), iterate again.
- \checkmark Else, continue next step.

The GaBP solver algorithm

Infer & solve

 $\begin{array}{l} \checkmark \quad \text{Compute the marginal means} \\ \mu_i = \left(P_{ii}\mu_{ii} + \sum_{k \in \mathbf{N}(i)} P_{ki}\mu_{ki}\right) / \left(P_{ii} + \sum_{k \in \mathbf{N}(i)} P_{ki}\right), \forall i. \\ (\checkmark \quad \text{Optionally compute the marginal precisions} \\ P_i = P_{ii} + \sum_{k \in \mathbf{N}(i)} P_{ki} \quad) \\ \checkmark \quad \text{Find the solution} \\ x_i^* = \mu_i, \forall i. \end{array}$

Convergence and Exactness

 We can use results from the literature on probabilistic inference in graphical models:

Theorem [based on Weiss and Freeman,'01,Claim 4]

If the matrix **A** is strictly diagonally dominant (*i.e.*, $|A_{ii}| > \sum_{j \neq i} |A_{ij}|, \forall i$), then the GaBP solver converges and the marginal means converge to the true solution.

• This sufficient condition can be relaxed:

Theorem [based on Johnson et al.,'06, Proposition 2]

If the spectral radius (maximum of the absolute values of the eigenvalues) ρ of the matrix $|\mathbf{I}_n - \mathbf{A}|$ satisfies $\rho(|\mathbf{I}_n - \mathbf{A}|) < 1$, then the GaBP solver converges and the marginal means converge to the true solution.

Convergence and Exactness (cont.)

- Only sufficient (but not necessary) conditions are known.
- Examples for convergence when sufficient conditions do not hold:
 - Tree graphs;
 - Graph representing Gaussian-signaling randomly-spread CDMA system.
- Either converging to the exact solution or diverging.
 - Can not converge to a wrong solution.
- Exact region of convergence and convergence rate are open problems.

In contrast to ordinary BP:

- Convergence guarantees exactness of the inferred probabilities.
- Convergence is not limited to tree or sparse graphs, and can occur even for dense (fully-connected) graphs.

Properties

Message-passing efficiency

For a dense data matrix A

- $\mathcal{O}(n^2)$ unique messages per iteration.
- Naive approach, because...
- Messages transmitted from a node are very much correlated:
 - Differ only in one summation term.
- Broadcast the aggregated sum messages:
 - Reduces the number of unique messages to $\mathcal{O}(n)$ per iteration.

Properties

Message-passing efficiency

Iterate

$$\begin{array}{l} \checkmark \quad & \text{Broadcast the aggregated sum messages} \\ \tilde{P}_i = P_{ii} + \sum_{k \in \mathrm{N}(i)} P_{ki}, \\ \tilde{\mu}_i = \tilde{P}_i^{-1}(P_{ii}\mu_{ii} + \sum_{k \in \mathrm{N}(i)} P_{ki}\mu_{ki}), \forall i \\ & (\text{under chosen scheduling}). \\ \forall \quad & \text{Compute the } \mathrm{N}(j) \ni i \to j \text{ internal scalars} \\ P_{ij} = -A_{ij}^2/(\tilde{P}_i - P_{ji}), \\ & \mu_{ij} = (\tilde{P}_i\tilde{\mu}_i - P_{ji}\mu_{ji})/A_{ij}. \end{array}$$

- 문 (문)

・ロト ・ 四ト ・ ヨト ・ ヨト

Properties

Computational complexity

Well-conditioned dense data matrix $(\kappa(\mathbf{A}) \triangleq ||\mathbf{A}||_p ||\mathbf{A}^{-1}||_p = \mathcal{O}(1))$

(2)(4)	(C)
$\mathcal{O}(1)$	$O(n^2)$
"	$O(n^3)$
$\mathcal{O}(1)$	$O(n^2)$
	"

Sparse (2-D Poisson) data matrix (κ (A) = O(n))

Algorithm	Operations per message	Unique messages	Operations per iteration	Iterations	Operations
Broadcast GaBP	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\leq O(\sqrt{n})$	$\leq O(n, \sqrt{n})$
Broaddaor Gabr		C ()	C ()	< C (VII)	
Gaussian elimination	"	"	"		$O(n^3)$
Jacobi method	"		O(n)	$\mathcal{O}(n)$	$O(n^2)$

イロト 不得 トイヨト イヨト 正言 ろくの

Linear channels

 $\mathbf{y} = \mathbf{R}\mathbf{x} + \mathbf{n}$

- x, input vector
- n, additive noise vector
- y, output of a bank of filters matched to the physical channel S
- $\mathbf{R} = \mathbf{S}^T \mathbf{S}$, correlation matrix

315

12 N A 12

Linear detection

$$\hat{\mathbf{x}} = \Delta\{\mathbf{x}^*\} = \Delta\{\mathbf{A}^{-1}\mathbf{b}\}$$

•
$$\mathbf{x} = \{x_1, \dots, x_K\}^T$$
, hidden input vector

- $\mathbf{b} = \mathbf{y} = \{y_1, \dots, y_K\}^T$, observed noisy output vector
- A, *K* × *K* positive-definite symmetric matrix approximating the channel transformation
- \mathbf{x}^* , solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$
- $\Delta\{\cdot\}$, clipping to input alphabet
- x, decision

Linear Detection

Application examples (cont.)

Linear detection (decorrelation) in CDMA:

- 문 (권

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Linear detection (cont.)

Setup

- CDMA
- Gold spreading sequences of length N = 7.
- K = 3 and K = 4 users \Rightarrow Correlation matrices \mathbf{R}_3 and \mathbf{R}_4 , which are not diagonally dominant, but $\rho(|\mathbf{I}_3 \mathbf{R}_3|) = 0.9008 < 1$ and $\rho(|\mathbf{I}_4 \mathbf{R}_4|) = 0.8747 < 1$.
- Decorrelator $(\mathbf{A} = \mathbf{R})$ detector.
- $\mathbf{b}(=\mathbf{y}=\mathbf{R}\mathbf{x}+\mathbf{n})$ is all-1's.
- Comparison to MUD based on classical iterative methods [Grant & Schlegel,'99],[Tan & Rasmussen,'00],[Yener *et al.*,'02].

Linear detection (cont.)

Algorithm	Iterations t (\mathbf{R}_3)	Iterations t (\mathbf{R}_4)
Jacobi	111	24
GS	26	26
Parallel GaBP	23	24
Optimal SOR	17	14
Serial GaBP	16	13
Jacobi+Steffensen	59	_
Parallel GaBP+Steffensen	13	13
Serial GaBP+Steffensen	9	7

문 문

イロト イヨト イヨト イヨト

- Finding the exact region of convergence and convergence rate.
 - Parallel vs. serial scheduling
- Variety of applications.

12

BAR 4 BA

- New approach: solving a linear system of algebraic equations as a probabilistic inference problem.
- Gaussian belief propagation (GaBP) solver:
 - Iterative
 - Convergent
 - Exact
 - Efficient
 - Distributed message-passing implementation for very large systems
 - Superior to classical iterative methods
 - Countless applications in the mathematical sciences and engineering

References

[Bickson et al.,'07]

- "Gaussian belief propagation for solving systems of linear equations: Theory and application" (Trans. IT submission).
- "Gaussian belief propagation solver for systems of linear equations" (ISIT '08).
- "Gaussian belief propagation based multiuser detection" (ISIT '08).
- "Linear detection via belief propagation" (proc. of Allerton '07).
- "A message-passing solver for linear systems" (proc. of ITA '08).
- "Peer-to-Peer rating" (proc. of P2P computing '07)
- "A unifying framework for rating users and data items in Peer-to-Peer and social networks" (PPNA Journal '08)
- "Large scale Gaussian BP solver for kernel ridge regression" (NIPS workshop '07)

< < >>

References

[Weiss and Freeman,'01] "Correctness of belief propagation in Gaussian graphical models of arbitrary topology".

[Johnson et al.,'06]

- "Walk-sum interpretation and analysis of Gaussian belief propagation".
- "Walk-sums and belief propagation in Gaussian graphical models".

[Plarre and Kumar,'04] "Extended message passing algorithm for inference in loopy Gaussian graphical models".

THANK YOU!

3×3 equations

3×3 equations

3×3 equations

Message	Computation	t=0	t=1	t=2	t=3
P_{xy}	$-A_{xy}^2/(P_{xx}+P_{zx})$	0	-4	1/2	1/2
P_{yx}	$-A_{yx}^2/(P_{yy})$	0	-4	-4	-4
P_{xz}	$-A_{xz}^2/(P_{zz})$	0	-9	3	3
P_{zx}	$-A_{zx}^2/(P_{xx}+P_{yx})$	0	-9	-9	-9
μ_{xy}	$(P_{xx}\mu_{xx}+P_{zx}\mu_{zx})/A_{xy}$	0	3	6	6
μ_{yx}	$P_{yy}\mu_{yy}/A_{yx}$	0	0	0	0
μ_{xz}	$(P_{xx}\mu_{xx}+P_{yx}\mu_{yx})/A_{xz}$	0	-2	-2	-2
μ_{zx}	$P_{zz}\mu_{zz}/A_{zx}$	0	2/3	2/3	2/3

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

3×3 equations

Solution
 Computation

$$\mu_x = x^*$$
 $(P_{xx}\mu_{xx} + P_{zx}\mu_{zx} + P_{yx}\mu_{yx})/(P_{xx} + P_{zx} + P_{yx}) = 1$
 $\mu_y = y^*$
 $(P_{yy}\mu_{yy} + P_{xy}\mu_{xy})/(P_{yy} + P_{xy}) = 2$
 $\mu_z = z^*$
 $(P_{zz}\mu_{zz} + P_{xz}\mu_{xz})/(P_{zz} + P_{xz}) = -1$

• Tree \Rightarrow

$$P_x^{-1} = (P_{xx} + P_{yx} + P_{zx})^{-1} = -1/12 = \{\mathbf{A}^{-1}\}_{xx}$$

$$P_y^{-1} = (P_{yy} + P_{xy})^{-1} = 2/3 = \{\mathbf{A}^{-1}\}_{yy}$$

$$P_z^{-1} = (P_{zz} + P_{xz})^{-1} = 1/4 = \{\mathbf{A}^{-1}\}_{zz}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Numerical examples

Symmetric, but not positive semi-definite, data matrix

$$\left(\begin{array}{rrrr}1&2&3\\2&2&1\\3&1&1\end{array}\right)\left(\begin{array}{r}x_1\\x_2\\x_3\end{array}\right) = \left(\begin{array}{r}1\\1\\1\end{array}\right)$$

Algorithm	Iterations t
Jacobi,GS,SR,CG,Jacobi+Aitken,Jacobi+Steffensen	_
Parallel GaBP	38
Serial GaBP	25
Parallel GaBP+Steffensen	21
Serial GaBP+Steffensen	14

Numerical examples

Symmetric, but not positive semi-definite, data matrix

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Numerical examples

Symmetric, but not positive semi-definite, data matrix

Danny Bickson (HUJI)

GaBP Solver

-

Jacobi method

Vector-wise

$$\mathbf{x}^{(t+1)} = \mathbf{D}^{-1} \big(\mathbf{b} - (\mathbf{L} + \mathbf{U}) \mathbf{x}^{(t)} \big)$$

Element-wise

$$x_i^{(t+1)} = A_{ii}^{-1} (b_i - \sum_{j \neq i} A_{ij} x_j^{(t)}) \quad \forall i$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Jacobi method

Vector-wise

$$\mathbf{x}^{(t+1)} = \mathbf{D}^{-1} \big(\mathbf{b} - (\mathbf{L} + \mathbf{U}) \mathbf{x}^{(t)} \big)$$

Convergence

- Sufficient condition: $\rho(\mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})) < 1$
 - holds, e.g., if A is diagonally dominant, or
 - if A, D and D L U are all positive definite.
- Necessary condition: diagonal terms in the matrix are greater (in magnitude) than other terms.

A D > A A P >

Jacobi Algorithm

- Given a system of linear equations of the form *Ax* = *b*, where *A* is invertible, we have a unique solution *x* = *A*⁻¹*b*.
- Looking at the *i* equation:

$$\sum_{j} a_{ij} x_j = b_i \tag{1}$$

• Assuming $a_{ii} \neq 0$ we get:

$$x_i = \frac{(b_i - \sum_{j \neq i} a_{ij} x_j)}{a_{ii}}$$
(2)

• **The algorithm** Starting for an initial guess *x*(0), compute for *i* = 1, 2, ···

$$x_i^{(t)} = \frac{(b_i - \sum_{j \neq i} a_{ij} x_j^{(t-1)})}{a_{ii}}$$
(3)

Numerical examples

Jacobi Convergence

Numerical examples

Jacobi Divergence

Gauss-Seidel (GS) method

Vector-wise

$$\mathbf{x}^{(t+1)} = (\mathbf{D} + \mathbf{L})^{-1}(\mathbf{b} - \mathbf{U}\mathbf{x}^{(t)})$$

Element-wise

$$x_i^{(t+1)} = A_{ii}^{-1} \left(b_i - \sum_{j < i} A_{ij} x_j^{(t+1)} - \sum_{j > i} A_{ij} x_j^{(t)} \right) \quad \forall i$$

GS method as an instance of the GaBP solver

A 'serial scheduling' version of Jacobi method \Rightarrow Instance of the serial GaBP solver.

Gauss-Seidel (GS) method

Vector-wise

$$\mathbf{x}^{(t+1)} = (\mathbf{D} + \mathbf{L})^{-1}(\mathbf{b} - \mathbf{U}\mathbf{x}^{(t)})$$

Convergence

- Sufficient condition: $\rho((\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}) < 1$
 - Holds, e.g., if A is diagonally dominant, or
 - positive definite.
- Necessary condition: diagonal terms in the matrix are greater (in magnitude) than other terms.

《曰》《圖》《曰》《曰》 되는

Numerical examples

Successive over-relaxation method

Vector-wise

$$\mathbf{x}^{(t+1)} = (\mathbf{D} + \omega \mathbf{L})^{-1} \Big(\omega \mathbf{b} - \big((1-\omega)\mathbf{D} - \omega \mathbf{U} \big) \mathbf{x}^{(t)} \Big)$$

Element-wise

$$x_i^{(t+1)} = (1-\omega)x_i^{(t)} + \omega A_{ii}^{-1}(b_i - \sum_{j < i} A_{ij}x_j^{(t+1)} - \sum_{j > i} A_{ij}x_j^{(t)}) \quad \forall i$$

SOR method as an instance of the GaBP solver

Gauss-Seidel method averaged over two consecutive iterations⇒Instance of the serial GaBP solver with damping.

《曰》《圖》《曰》《曰》 되는

Numerical examples

Successive over-relaxation method

Vector-wise

$$\mathbf{x}^{(t+1)} = (\mathbf{D} + \omega \mathbf{L})^{-1} \Big(\omega \mathbf{b} - \big((1-\omega)\mathbf{D} - \omega \mathbf{U} \big) \mathbf{x}^{(t)} \Big)$$

Convergence

- Necessary condition: $\omega \in (0,2)$
 - Successive relaxation (SR) for $\omega \in (0,1)$
 - Successive over-relaxation (SOR) for $\omega \in (1,2)$
- and sufficient for symmetric positive definite matrices.
- If $\rho((\mathbf{D} + \mathbf{L})^{-1}\mathbf{U}) < 1$, optimal convergence rate is given for

$$\omega_{opt} = \frac{2}{1 + \sqrt{1 - \rho((\mathbf{D} + \mathbf{L})^{-1}\mathbf{U})}}$$

イロン 不通 と イヨン イヨン 正正 ろくの

Convergence acceleration: Aitken's method

- Consider a sequence {*x_n*}, obtained by using GaBP iterations, converging to the limit *x̂*.
- According to Aitken's method, if there exists a real number *a* such that |a| < 1 and $\lim_{n\to\infty} (x_n \hat{x})/(x_{n-1} \hat{x}) = a$, then the sequence $\{y_n\}$ defined by

$$y_n = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

converges to \hat{x} faster than $\{x_n\}$ in the sense that $\lim_{n\to\infty} |(\hat{x} - y_n)/(\hat{x} - x_n)| = 0.$

• A generalization of over-relaxation (3 consecutive iterations used rather than 2).

Convergence acceleration: Steffensen's iterations

- Encapsulate Aitken's method
- Starting with x_n , two iterations are run to get x_{n+1} and x_{n+2} . Next, Aitken's method is used to compute y_n , this value is replaced with the original x_n , and GaBP is executed again to get a new value of x_{n+1} . This process is repeated iteratively until convergence.