Gaussian Belief Propagation for
Solving Systems of Linear Equations:
Theory and Application

Danny Bickson (HUJI)

Danny Bickson

School of Computer Science and Engineering
The Hebrew University of Jerusalem

15/5/08

GaBP Solver

PhysDis Workshop

1/40



uCSD: oS |
Jack K. Wolf  Paul H. Siegel  Ori Shental

4 s
HUJI: § A

Danny Dolev Danny Bickson

@ NSF Grant No. CCR-0514859
@ EVERGROW, IP 1935 of the EU Sixth Framework

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 2/40



Talk outline

Linear Graphical
) Models

e

1

Gaussian
BP

Weiss

Danny Bickson (HUJI) GaBP Solver PhysDis Workshop 3/40



Take-home message

@ New approach: solving a linear system of algebraic equations as
a probabilistic inference problem.
@ Gaussian belief propagation (GaBP) solver:

Iterative

Convergent

Exact

Efficient

Distributed message-passing implementation for very large systems
Superior to classical iterative methods

Countless applications in the mathematical sciences and
engineering
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0 Theory
@ Introduction

@ Derivation
@ The GaBP solver algorithm
@ Properties

e Application
@ Linear Detection
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Theory Introduction

Problem formulation

Definitions
@ A e R™" m>n e N* is a given data matrix.
@ b € R™ is a given observation vector.
@ x € R" is a vector of unknown variables.

System of linear equations

Ax

I
=

@ A unigue solution, x*, exists iff A has full column rank.

o x* = A'b, where AT 2 (ATA)'AT is the Moore-Penrose
pseudoinverse matrix.
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Theory Introduction

Problem formulation (cont.)

The data matrix A is square (i.e., m = n) and symmetric.

x*=Afb=A"Tp

Related problems

@ Efficient distributed (large) matrix inversion or
@ Determinant computation.
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Theory Introduction

GaBP solver and classical solution methods

Linear solvers

’ Direct solvers ‘ ’ Iterative solvers ‘

Relaxation methods ‘ ’ Optimization methods ‘

’ Message passing-based ‘

’ Gradient-based ‘
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Theory Derivation

From linear algebra to probabilistic inference

Proposition [Bickson et al.,07]

The computation of the solution vector, x*, is equivalent to the
inference of the vector of marginal means, i € R”, over the graph G
with the associated joint Gaussian probability density function

p(x) ~ N(pn = A "b, A7),
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Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Define a quadratic form: g(x) = x"Ax/2 — b”x.

@ A is symmetric = Jq(x)/0x|xx = Ax* — b = 0.

@ Define a joint Gaussian probability density function using the
quadratic form

p(x) o exp(—gq(x)) =exp(—x'Ax/2 +b'x)
o exp (= (x—p)A(x—p)/2) = N(u,A7,

where the mean y = A~'b = x*.
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Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Shift the solution problem from an algebraic to a probabilistic
domain.

@ A deterministic vector-matrix linear equation translates to an
inference problem in the corresponding graph.

@ Calls for the utilization of belief propagation (BP) as an efficient
inference engine.
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Theory Derivation

From linear algebra to probabilistic inference (cont.)

@ Shift the solution problem from an algebraic to a probabilistic
domain.

@ A deterministic vector-matrix linear equation translates to an
inference problem in the corresponding graph.

@ Calls for the utilization of belief propagation (BP) as an efficient
inference engine.

Data matrix A does not have to be positive semi-definite. \
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Theory Derivation

Graphical model

@ Consider the graph G corresponding to the joint Gaussian p(x),
with edge potentials ; and self-potentials ¢;.
@ Determined according to the pairwise factorization

p(x) oc [Ty di(xi) [Ty (i x)-

@ where
Vixi,x) = exp(—xiAyx;),
(bi(x,') £ exp (b,'x,' — Aiixiz/2) X N(Hii = bi/Aii,Pi?I = A;l)
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Theory Derivation

Inference

@ We would like to infer the marginal densities, which must also be
Gaussian

p(xi) ~ N(ui = {A~'b}i = xj, P! = {A™1}a).

@ Now, (Gaussian) BP can come into action...
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Theory Derivation

Discrete belief propagation (BP)

Sum-product rule

mj; x] E % Xiy Xj ¢z xl H My -xl

keEN()\j

Product rule

Pr(x;) o< ¢i(x;) H My (x;)

kEN(i)
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Theory Derivation

-product rule

mj(x;) o< / i (xi, x7) i (%) H myi (x;)dx;
i kEN()\j

Product rule

p(xi) oc gi(x) ] muilxs)

kEN(i)
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Theory Derivation

Gaussian BP

@ Gaussian BP (GaBP) is a special case of continuous BP, where
the underlying distribution is Gaussian [Weiss and Freeman,01].

Lemma: product of Gaussian densities

Let fi(x) = N (u1, Py )andfz( ) = N (2, Py ').Then their product
f(x) = filx)fr(x) ocN(u, 1) where

PPyt + Paa),

(P1+P2)"!

!
p-!

1> i
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

mij(xj) o / b x)pi) [ ()i
i keN(i)\j
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

(i) H My (x;)

keEN(i)\j
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

¢ix) [ muale)

keEN(i)\j

@ p(x) is jointly Gaussian=
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

self- potentials
1 OCN(/’[’II =b; /Am ii

=A"

12
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

self-potentials
i OCN(/’(’II =b; /Alh i —A,;l)
o Gaussian messages my(x;) o< N (i, Py ')
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

@ Applying the multivariate version of the
Gaussian densities product lemma:
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

mij xj f 7/}11 xlaxj N(/L,\], \]1) dx;

@ Applying the multivariate version of th
Gaussian densities product lemma:

@i(xi) i (x;)
e Precision Py; = P; +ZkeN(i)\; Py

®i(xi) my (x;)
(7 /—k’\
o Mean py; = Py; (Piiuii + 2 keni)\ Pki,uki)
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

my(g) oc [ ) Ny, Py )dx
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

my(g) oc [ ) Ny, Py )dx

@ Using the Gaussian integral
[ exp (—ax? + bx)dx = /7 [aexp (b* /4a):
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Theory Derivation

Gaussian BP (cont.)

Integral-product rule

S5 exp (—ax® + bx)dx =
e Message precision P; = fA%jPl.\j
e Message mean u; = —Pj'Ajua;
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Theory Derivation

Gaussian BP (cont.)

Product rule

®i(xi)
@ Marginal precision P; = P;; +

@ Marginal mean
®i(xi) my (x;)
(" —~ =
i = Py (Pii,uii + 2 keN() Pki#ki)
@ Mean and precision like in the product term

of the integral-product rule, but summing
over all incoming messages.
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Theory The GaBP solver algorithm

The GaBP solver algorithm

v Set the neighborhood N(i) to include
Vk # i such that Ay # 0.

v’ Fix the scalars
Pii = Aii and Mii = b,‘/A,',', Vi.

v Set the initial k— ik € N(i) scalar messages
Pri =0 and uy =0.

v’ Set a convergence thresholde.
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Theory The GaBP solver algorithm

The GaBP solver algorithm

lterate & check

v Compute thei—j,i € N(j) scalar messages
Py = —A3/ (Pi + Ykenyy Pui)»
pij = (Pisptii + Dgenoy Prittii) /Ay
v’ Propagate the N(i) >k — i messages
Py and g, Vi (under chosen scheduling).
v’ If the messages Pj and p; did not
converge (w.r.t. €), iterate again.
v' Else, continue next step.
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Theory The GaBP solver algorithm

The GaBP solver algorithm

v Compute the marginal means
pi = (Piipii + 2 keN() Piiia) [ (Pii + D _keN() Py), Vi.

(v Optionally compute the marginal precisions
Pi = Pii+ > yengy Pri )

v’ Find the solution
X; = i, Vi.
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Theory Properties

Convergence and Exactness

@ We can use results from the literature on probabilistic inference in
graphical models:

Theorem [based on Weiss and Freeman,01,Claim 4]

If the matrix A is strictly diagonally dominant (i.e., |Ai| > .., [A4l, Vi),
then the GaBP solver converges and the marginal means converge to
the true solution.

@ This sufficient condition can be relaxed:

Theorem [based on Johnson et al.,/06,Proposition 2]

If the spectral radius (maximum of the absolute values of the
eigenvalues) p of the matrix |I, — A| satisfies p(|I, — A|) < 1, then the
GaBP solver converges and the marginal means converge to the true
solution.
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Theory Properties

Convergence and Exactness (cont.)

@ Only sufficient (but not necessary) conditions are known.
@ Examples for convergence when sufficient conditions do not hold:
o Tree graphs;
o Graph representing Gaussian-signaling randomly-spread CDMA
system.
@ Either converging to the exact solution or diverging.
e Can not converge to a wrong solution.

@ Exact region of convergence and convergence rate are open
problems.

In contrast to ordinary BP:
@ Convergence guarantees exactness of the inferred probabilities.

@ Convergence is not limited to tree or sparse graphs, and can
occur even for dense (fully-connected) graphs.
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Theory Properties

Message-passing efficiency

For a dense data matrix A

@ O(n?) unique messages per iteration.

@ Naive approach, because...

@ Messages transmitted from a node are very
much correlated:

o Differ only in one summation term.
@ Broadcast the aggregated sum messages: PO,

@ Reduces the number of unique messages to
O(n) per iteration.
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Theory Properties

Message-passing efficiency

v’ Broadcast the aggregated sum messages
Pi=P;+ >_kengi) Pris
i = B! (Piiftii + X gen(y Prikiki), Vi
(under chosen scheduling).

v Compute the N(j) i —jinternal scalars | ™
Py = —A2/(Pi — Py) By
o = (Pafiy— Pt [ A
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Theory Properties

Computational complexity

Well-conditioned dense data matrix (x(A) £ ||A|,||A~!]], = O(1))

Algorithm Operations per message | Unique messages | Operations per iteration | Iterations | Operations
Broadcast GaBP O(n) O(n) O(n?) o(1) O(n?)
Gaussian elimination 0 | " | ! | " | ow) |
Jacobi method ! | " | O(n?) | o | o@) |
v

Sparse (2-D Poisson) data matrix (k(A) = O(n))

Algorithm Operations per message | Unique messages | Operations per iteration | Iterations | Operations
Broadcast GaBP o(1) O(n) O(n) < O(yn) | < O(nyn)
Gaussian elimination " | " | " | | o@) |
Jacobi method " | " | O(n) | om | ow |
v
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Application Linear Detection

Linear channels

y=Rx+n

@ x, input vector

@ n, additive noise vector

@ y, output of a bank of filters matched to the physical channel S
@ R = S'S, correlation matrix
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Application Linear Detection

Linear detection

%= A{x'} = A{A"'b}

@ x = {xj,...,xx}7, hidden input vector
@ b=y={y,...,yx}!, observed noisy output vector

@ A, K x K positive-definite symmetric matrix approximating the
channel transformation

@ x*, solutionto Ax =b
@ A{.}, clipping to input alphabet
@ x, decision
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Application Linear Detection

Application examples (cont.)

<
T
B
g
5
3
‘@ & —e—Jacobi
g 10 vgs e 2
° —e—Parallel GaBP : N
E -~ Serial GaBP N 1
3 4 ‘ 5
2 10'- Ngisa-<y
10° :
[] 2 8 10
Iteration t
v
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Application Linear Detection

Linear detection (cont.)

o CDMA

@ Gold spreading sequences of length N = 7.

@ K = 3 and K = 4 users=-Correlation matrices R; and R4, which
are not diagonally dominant, but p(|Is — R3|) = 0.9008 < 1 and
p(|I; — Ry|) = 0.8747 < 1.

@ Decorrelator (A = R) detector.

@ b(=y=Rx+n)isall-ls.

@ Comparison to MUD based on classical iterative methods [Grant
& Schlegel,;99],[Tan & Rasmussen, 00],[Yener et al.,02].
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Application Linear Detection

Linear detection (cont.)

Algorithm | Iterations ¢ (R3) | Iterations  (Ry) |
Jacobi 111 24
GS 26 26
Parallel GaBP 23 24
Optimal SOR 17 14
Serial GaBP 16 13
Jacobi+Steffensen 59 -
Parallel GaBP+Steffensen 13 13
Serial GaBP+Steffensen 9 7
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Future directions

@ Finding the exact region of convergence and convergence rate.
o Parallel vs. serial scheduling

@ Variety of applications.
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Take-home message

@ New approach: solving a linear system of algebraic equations as
a probabilistic inference problem.
@ Gaussian belief propagation (GaBP) solver:

Iterative

Convergent

Exact

Efficient

Distributed message-passing implementation for very large systems
Superior to classical iterative methods

Countless applications in the mathematical sciences and
engineering
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Toy linear system

Appendix

Numerical examples

An=1 Ay=-2 A,=3 x —6

Ap=-2 Ay=1 A,=0 y|=| o

Ap=3 Ay=0 A =1 z 2 ;
X /\‘X/—/ \T—/
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Appendix Numerical examples

Toy linear system

3 x 3 equations

x* ~1/12 —-1/6 1/4 —6 1 WX\QQ

v =1 -1/6 2/3 1)2 0ol=( 2 N

z* 1/4  1/2 1/4 2 ~1 : :
= ~~ ~——

x* Al b
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Appendix Numerical examples

Toy linear system

3 x 3 equations

| Message | Computation [=0 | t=1 | =2 | =3 |
Py, —AL,/(Pxx + Pyx) 0| —4[1/21/2
Py, —A3./(Py) 0| 4| —4| —4 )
P.. —AZ/(P,) ol -9 3| 3 W
P.. —AZ [(Pey + Pyy) 0] =9 9| —9 N
e (Pxxtisx + Poxphex) [Axy | O 3 6 6 ’ :
Fyx Pyyiyy /Ayx 0 0 0 0
Hixz (Pxfhax + Pyx.uyx)/sz 0| 2| —2| -2
Hzx Pofize/Asx 0]2/312/3|2/3 )
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Appendix Numerical examples

Toy linear system

3 x 3 equations

‘ Solution ‘ Computation ‘

py = X* (Pxxﬂxx‘i‘sz,sz+Pyxﬂyx)/(Pxx+P2x+Pyx) =1
py =" (Pyyﬂyy"‘nyﬂxy)/(Pyy"‘ny) =2

pe=12" (Pzzﬂzz + sz:uxz)/(PZZ + sz) =-1 .
o Tree=

y z

P! = (PutPu+Py) ' =—1/12={A""},
Py_1 = (Pyy+ny)_1 =2/3= {A_l}yy
Pz_l = (Pzz+sz)_l :1/4:{A_1}ZZ
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Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

W N =
—_ NN
—_—

Danny Bickson (HUJI)

X1
X2
X3

Algorithm Iterations ¢
Jacobi,GS,SR,CG,Jacobi+Aitken,Jacobi -
l Parallel GaBP 38
1 Serial GaBP 25
1 Parallel GaBP- 21
Serial GaBP- 14
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Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

10" 10 -
—e— Jacobi+Aitken
] ——Gs —+— Jacobi+Steffensen
c —e—Jacobi € 102, | —oParallel GaBP+Steffensen |
= ——"Optimal" SR = -o-Serial GaBP+Steffensen |
T —o—Parallel GaBP 2
% -o-Serial GaBP %
L <
= 10' =
3 3
3 3
f- e b=}
g 10" ]
& &
S L0 s
EY E
2 2
2
10 .. .
_______ ..
I S e
107 - = 10°
0 2 6 8 10 0 2 4 3 8 10
Iteration t Iteration t
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Appendix Numerical examples

Symmetric, but not positive semi-definite, data matrix

—e— Parallel GaBP
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Appendix Numerical examples

Jacobi method

X(t+1) — D—l (b o (L + U)X(t))

Element-wise

P Yo=Y Ap) vi

JF
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Appendix Numerical examples

Jacobi method

xD =D~ (b — (L +U)x")

Convergence

e Sufficient condition: p(D~'(L 4+ U)) < 1
e holds, e.g., if A is diagonally dominant, or
e if A, Dand D — L — U are all positive definite.
@ Necessary condition: diagonal terms in the matrix are greater (in
magnitude) than other terms.
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Appendix Numerical examples

Jacobi Algorithm

@ Given a system of linear equations of the form Ax = b, where A is
invertible, we have a unique solution x = A='b.
@ Looking at the i equation:

Za,-jxj = b,‘ (1)
J

@ Assuming a;; # 0 we get:

X = (bi — Zj;éi a;jx;) )

dij

@ The algorithm Starting for an initial guess x(0),
compute fori=1,2,---

(r=1)
b,‘ — : l-a,-~x-
0 = (bi = > ayx; ) @)

aij
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Appendix Numerical examples

Jacobi Convergence

First equation: 2x,—x,=0

2 x{0)

X

(a)
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Appendix Numerical examples

Jacobi Divergence

Second equation: 2x, —x,=0

X2

First equation: x, —2x,=0

x(0) X,

(b)
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Appendix Numerical examples

Gauss-Seidel (GS) method

x*) = (D + L)~ (b — Ux®)

Element-wise

x§t+1) = A7 (bi — ZAUXJ(IH) - ZAUXJ@) vi

J<i J>i
v

GS method as an instance of the GaBP solver

A ‘serial scheduling’ version of Jacobi method=-Instance of the serial
GaBP solver. )
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Appendix Numerical examples

Gauss-Seidel (GS) method

x*) = (D + L)~ (b — Ux®)

Convergence

@ Sufficient condition: p((D +L)~'U) < 1
e Holds, e.g., if A is diagonally dominant, or
@ positive definite.
@ Necessary condition: diagonal terms in the matrix are greater (in
magnitude) than other terms.
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Appendix Numerical examples

Successive over-relaxation method

XD = (D + wL) ™! (wb — (1 —w)D — wU)x(’)>

x§t+1) =(1- w)xl@ + wAZ (b — ZA,-jx](tH) — ZA,-jx}t)) Vi
Jj<i j>i
SOR method as an instance of the GaBP solver
Gauss-Seidel method averaged over two consecutive
iterations=-Instance of the serial GaBP solver with damping.
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Appendix Numerical examples

Successive over-relaxation method

XD = (D 4 wL)~ Qm—al—mn—wmﬂﬂ

Convergence

@ Necessary condition: w € (0,2)

@ Successive relaxation (SR) for w € (0, 1)
e Successive over-relaxation (SOR) for w € (1,2)

@ and sufficient for symmetric positive definite matrices.
@ If p((D+L)~'U) < 1, optimal convergence rate is given for

Wopt =
1+/1-p((D+L)"'U)

v
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Appendix Numerical examples

Convergence acceleration: Aitken’s method

@ Consider a sequence {x,}, obtained by using GaBP iterations,
converging to the limit x.

@ According to Aitken’s method, if there exists a real number a such
that |a| < 1 and lim,,_ (x, — X)/(x,—1 — X) = a, then the sequence
{yn} defined by

2
(xn—l—] - xn)
Xn+2 — 2xn+l + Xn

Yn = Xn —

converges to x faster than {x,} in the sense that
limy oo [(X = yn) /(% — xa)| = 0.

@ A generalization of over-relaxation (3 consecutive iterations used
rather than 2).
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Appendix Numerical examples

Convergence acceleration: Steffensen’s iterations

@ Encapsulate Aitken’s method

@ Starting with x,,, two iterations are run to get x,,.; and x,». Next,
Aitken’s method is used to compute y,, this value is replaced with
the original x,,, and GaBP is executed again to get a new value of
Xu+1. This process is repeated iteratively until convergence.
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