

Contact patterns of inpatients in a regional healthcare system

PETTER HOLME

why? intro

our study object

observed quantities

summary

Contact patterns of inpatients in a regional healthcare system

Petter Holme, Fredrik Liljeros, Johan Giesecke

KTH, CSC, Computational Biology

May 17, 2008, PhyDIS Workshop

http://www.csc.kth.se/~pholme/

Epidemiology 101

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- *R*₀—the expectation value of number of others an infectious individual will infect in a susceptible population.
- The crudest approximation: There can be an epidemic in a population if $R_0 > 1$.

Epidemiology 101

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- *R*₀—the expectation value of number of others an infectious individual will infect in a susceptible population.
- The crudest approximation: There can be an epidemic in a population if R₀ > 1.

Epidemiology 101

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- *R*₀—the expectation value of number of others an infectious individual will infect in a susceptible population.
- The crudest approximation: There can be an epidemic in a population if $R_0 > 1$.

R_0 of Smallpox

Contact patterns of	Outbreak	R_0
inpatients in a regional	Boston, USA (1721)	4.3
healthcare system	Burford, UK (1758)	3.4
PETTER HOLME	Paris, France (1766)	4–5
	Warrington, UK (1773)	4.0–5.3
why? intro	Chester, UK (1774)	5.8
our study obiect	London, UK (1836–1870)	~ 5
observed quantities	Europe (1958–1973)	10–12
	Kosovo (1972)	10.8

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Infectious diseases are a big threat to public health.
- Hospitals have a key-role in spreading of many kinds of disease.
- In epidemics of smallpox, TB, Ebola and SARS hospitals have played a crucial role.
- Other pathogens like MRSA, norovirus or *Mycoplasma* pneumoniae can be endemic within a health care system.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• Infectious diseases are a big threat to public health.

- Hospitals have a key-role in spreading of many kinds of disease.
- In epidemics of smallpox, TB, Ebola and SARS hospitals have played a crucial role.
- Other pathogens like MRSA, norovirus or *Mycoplasma* pneumoniae can be endemic within a health care system.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Infectious diseases are a big threat to public health.
- Hospitals have a key-role in spreading of many kinds of disease.
- In epidemics of smallpox, TB, Ebola and SARS hospitals have played a crucial role.
- Other pathogens like MRSA, norovirus or *Mycoplasma* pneumoniae can be endemic within a health care system.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Infectious diseases are a big threat to public health.
- Hospitals have a key-role in spreading of many kinds of disease.
- In epidemics of smallpox, TB, Ebola and SARS hospitals have played a crucial role.
- Other pathogens like MRSA, norovirus or *Mycoplasma* pneumoniae can be endemic within a health care system.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Infectious diseases are a big threat to public health.
- Hospitals have a key-role in spreading of many kinds of disease.
- In epidemics of smallpox, TB, Ebola and SARS hospitals have played a crucial role.
- Other pathogens like MRSA, norovirus or *Mycoplasma pneumoniae* can be endemic within a health care system.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Hospitals change the contact patterns / network structure.
- Network epidemiology: How does network structure affect the spread of disease.
- This work: How does the relevant network look like for nosocomial infections.
- F. Liljeros, J. Giesecke and P. Holme. The contact network of inpatients in a regional health care system: A longitudinal case study. *Mathematical Population Studies* 14, 269–284, 2007.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• Hospitals change the contact patterns / network structure.

- Network epidemiology: How does network structure affect the spread of disease.
- This work: How does the relevant network look like for nosocomial infections.
- F. Liljeros, J. Giesecke and P. Holme. The contact network of inpatients in a regional health care system: A longitudinal case study. *Mathematical Population Studies* 14, 269–284, 2007.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Hospitals change the contact patterns / network structure.
- Network epidemiology: How does network structure affect the spread of disease.
- This work: How does the relevant network look like for nosocomial infections.
- F. Liljeros, J. Giesecke and P. Holme. The contact network of inpatients in a regional health care system: A longitudinal case study. *Mathematical Population Studies* 14, 269–284, 2007.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Hospitals change the contact patterns / network structure.
- Network epidemiology: How does network structure affect the spread of disease.
- This work: How does the relevant network look like for nosocomial infections.
- F. Liljeros, J. Giesecke and P. Holme. The contact network of inpatients in a regional health care system: A longitudinal case study. *Mathematical Population Studies* 14, 269–284, 2007.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Hospitals change the contact patterns / network structure.
- Network epidemiology: How does network structure affect the spread of disease.
- This work: How does the relevant network look like for nosocomial infections.
- F. Liljeros, J. Giesecke and P. Holme. The contact network of inpatients in a regional health care system: A longitudinal case study. *Mathematical Population Studies* 14, 269–284, 2007.

A health care system

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

A health care system

PETTER HOLME

why? intro

our study object

observed quantities

summary

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• All hospitalizations of people in the Stockholm region of Sweden the years 2001 and 2002.

- 1.7 million inhabitants.
- 570,382 hospitalizations.
- 295,108 patients.
- 702 wards.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- What we want: Construct simple graphs where edges represent "high enough" probability of disease transmission.
- Measure network structure → use theoretical results to say something about how contact patterns affect disease spread. "high enough" probability of disease transmission.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

-

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- What we want: Construct simple graphs where edges represent "high enough" probability of disease transmission.
- Measure network structure → use theoretical results to say something about how contact patterns affect disease spread. "high enough" probability of disease transmission.

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- What we want: Construct simple graphs where edges represent "high enough" probability of disease transmission.
- Measure network structure → use theoretical results to say something about how contact patterns affect disease spread. "high enough" probability of disease transmission.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- What we want: Construct simple graphs where edges represent "high enough" probability of disease transmission.
- Measure network structure → use theoretical results to say something about how contact patterns affect disease spread. "high enough" probability of disease transmission.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Corrected reproduction number

Contact patterns of inpatients in a regional healthcare system PETTER HOLME why? intro our study

object

observed quantities

summary

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• Measuring the density of triangles.

• High clustering coefficient — slow growth.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• Measuring the density of triangles.

• High clustering coefficient — slow growth.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• Measuring the density of triangles.

• High clustering coefficient — slow growth.

Contact patterns of inpatients in a regional healthcare system

PETTER HOLME

why? intro

our study object

observed quantities

summary

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Measuring the correlations of degree at either side of an edge.
- Large assortativity high probability of epidemic outbreaks, low outbreak sizes (if an outbreak occurs).
- Large disassortativity low probability of epidemic outbreaks, large outbreak sizes.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Measuring the correlations of degree at either side of an edge.
- Large assortativity high probability of epidemic outbreaks, low outbreak sizes (if an outbreak occurs).
- Large disassortativity low probability of epidemic outbreaks, large outbreak sizes.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Measuring the correlations of degree at either side of an edge.
- Large assortativity high probability of epidemic outbreaks, low outbreak sizes (if an outbreak occurs).
- Large disassortativity low probability of epidemic outbreaks, large outbreak sizes.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Measuring the correlations of degree at either side of an edge.
- Large assortativity high probability of epidemic outbreaks, low outbreak sizes (if an outbreak occurs).
- Large disassortativity low probability of epidemic outbreaks, large outbreak sizes.

Degree-degree correlations

Contact patterns of inpatients in a regional healthcare system

PETTER HOLME

why? intro

our study object

observed quantities

summary

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- A population of *N* individuals.
- A health care system with N_w wards of equal capacity.
- Each healthy (non-hospitalized) agent is, with probability p₁, hospitalized at a random ward.
- A hospitalized patient is assigned a duration *t* ∈ *P_t* of the hospital stay.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- A population of *N* individuals.
- A health care system with N_w wards of equal capacity.
- Each healthy (non-hospitalized) agent is, with probability p₁, hospitalized at a random ward.
- A hospitalized patient is assigned a duration *t* ∈ *P_t* of the hospital stay.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- A population of *N* individuals.
- A health care system with N_w wards of equal capacity.
- Each healthy (non-hospitalized) agent is, with probability p_1 , hospitalized at a random ward.
- A hospitalized patient is assigned a duration t ∈ Pt of the hospital stay.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

• A population of *N* individuals.

- A health care system with N_w wards of equal capacity.
- Each healthy (non-hospitalized) agent is, with probability *p*₁, hospitalized at a random ward.
- A hospitalized patient is assigned a duration *t* ∈ *P_t* of the hospital stay.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- A population of *N* individuals.
- A health care system with N_w wards of equal capacity.
- Each healthy (non-hospitalized) agent is, with probability p₁, hospitalized at a random ward.
- A hospitalized patient is assigned a duration *t* ∈ *P_t* of the hospital stay.

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• After a *t* days the patient is, with probability $p_2 > p_1$, rehospitalized at a random ward.

Results for the model

Contact patterns of inpatients in a regional healthcare system PETTER HOLME

why? intro

our study object

observed quantities

summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.

Contact patterns of inpatients in a regional healthcare system

> PETTER HOLME

why? intro

our study object

observed quantities

summary

- Disease spreading within a health care system is important.
- A health care system for a population of 1.7 million → proximity networks of patients.
- Power-law distribution of hospitalization times & a skewed degree distribution.
- Both clustering and assortative mixing coefficients increase with both sampling and overlap times.
- The differentiation of hospitalization times per ward is necessary to explain this
- Future work include e.g. dynamic modeling of disease spreading.