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Computer Science Physics

M Models: Vertex Cover, Satisfiability

B Analysis: neighbors-based clustering, hierarchical
clustering, ballistic networking

M Results: complex/ very complex cluster structures

[AKH and H. Rieger, Optimization Algorithms in Physics, Wiley-VCH 2001]
[AKH and H. Rieger (eds.), New Optimization Algorithms in Physics, Wiley-VCH 2004]
[AKH and M. Weigt, Phase Transitions in Optimization Problems, Wiley-VCH 2005]
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Vertex-Cover Problem (VC)

B Prototypical problem of theoretical Computer Science
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Vertex-Cover Problem (VC)

Prototypical problem of theoretical Computer Science
Museum E& :
ARE
THEY
SAFE?

Edvard Munch's “Der

Schrei” stolen in Oslo

August 2004

N crossroads
Nc/2 corridors

X = xN guards
guard only adjacent corridors

Mathematically: museum = graph G = (V,E)

Vertex cover AC V :V(i,j) e E: (i€ A)V(j € A)
Optimization problem: minimize number X of guards
Vertex-cover problem = NP-complete

Random graphs: phase transition at connect.c = e ~ 2.71
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Neighbor-based Clustering

Given: set of configurations {x'}
X, x? neigbors < dHamming(laaKg) < dmax-
Example VC (dmax = 2):
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Neighbor-based Clustering

Given: set of configurations {x'}
x, x” neigbors « duamming X, X”) < dmax.
Example VC (dmax = 2):

M Cluster: transitive closure of neighbour relation
M Algorithm: grow clusters by adding neighbors (O(N?))
M Wanted: # clusters as function of system size N
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Results VC

Neighbor-based clustering (dmax = 2)

4+

| i
cooo

I
coooo

)
T
o

#clusters
N
\
\
R~

S
T
\
L4
)
\
a4
\
\
A
i
HH
\
\
=
i
=
\
|

(large N: Parallel tempering (PT) and ballistic-search clustering)

c < e: ONE cluster, independent of N
c > e: several clusters, logarithmic growth in N

[W. Barthel (Radenbach), AKH, Phys. Rev. E 70, 066120 (2004)]
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Hierarchical Clustering

M Start: Z configs = Z single configuration clusters C; = {x1}
initial distances d(Cj, C|) = duammindX!, ")
B Merge iteratively nearest clusters Cpew = C, U Cg, update
d(Chew Cj) (j # a, 3), until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]
e o
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Hierarchical Clustering

M Start: Z configs = Z single configuration clusters C; = {x1}

initial distances d(C;j, C) = dammindX/, ")

B Merge iteratively nearest clusters Cpew = C, U Cg, update
d(Chew Cj) (j # a, 3), until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]
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Hierarchical Clustering

M Start: Z configs = Z single configuration clusters C; = {x1}
initial distances d(Cj, C|) = duammindX!, ")

B Merge iteratively nearest clusters Cpew = C, U Cg, update
d(Chew Cj) (j # a, 3), until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

L1

B Any set of configs can be clustered — Does it match?
cophenetic correlation: £ = [d - d¢]g — [d][dc]6 ,
(dc: distance along tree, [..]g: disorder average)
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VC: hierarchical clustering
(grand-canonical ensemble (chem. pot. u) using PT)
any c¢ (small 1)

c =1 (large )

¢ = 3 (large

(large p): no structure (“paramagnet”)
c<e: solution cluster has no structure
cC>e: hierarchy of solution clusters

cophenetic correlation K(N): decreases/grows forc < e/c > e
Complex phase space organization for c > e
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Satisfiability

Xy Xp Xz X4 Xg

Boolean circuit — function

boolean variables x; = 0, 1
Operators OR, AND, NOT
Output: f(x) =0,1

f(l):(Xl\/ X2 \/X3)/\(X2\/X3 \/ﬁ)/\(Xg\/X4 \/E)
~~ —_—
literal clause

Conjunctive normal form (CNF):
f = conjunction of disjunctions (clauses)

Satisfiability Problem (SAT): Is there a satisfying
assignment for given f?

SAT: “first” NP complete problem
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Random 3-SAT

K-SAT: CNF with K literals per clause

N: number variables Y e

M: number of clauses R\ :

3-SAT is NP complete PISAT) N

Random 3-SAT: 0 \\

literals chosen randomly. i S
o

Phase transition in « = M/N

[S. Mertens, M. Mézard, R. Zecchina, RSA 2006]

Analytical predictions for solution-space structure

[F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G.Semerjian, L. Zdeborova, 2007]
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Average SAT (ASAT)

M Stochastic algorithm [J.Ardelius, E.Aurell, PRE 2006]
E(x) = #(UNSAT clauses)
algorithm ASAT
initialise assignment randomly
while there are UNSAT clauses
begin
pick random UNSAT clause C
pick random variable x; from C

if flipping x; increases E (x) !
then flip x;
else flip x; with prob. p

end

B Cannot prove UNSAT.
M Solves large instances (N = 108) close to ac (a < 4.2).
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Statistical Properties of ASAT

M For analyzing results:
Each solution must contribute with same weight/probability

B How often each solution was found (sorted)
1 realization (N = 30, o = 3.0, 10% ASAT runs)

1600
1400

0 1 1
0 2000 4000 6000 8000

solution
B — ASAT is biased!
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Outline of algorithm [AKH, EPJ B 2000], [AKH, F. Ricci-Tersenghi, PRB 2002]
1. Generate set of solutions
(e.g. using ASAT)
2. Determine cluster structure
(Cl,CZ,...,CT) T

|

3. Determine sizes |C!| of clusters

4. Draw from each cluster C! solutions Y .;
#(solutions) ~ |C!| ® “®
unbiased within cluster .

5. = unbiased set of solutions! |

Works well up to N = 256.

Details follow now!
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Ballistic search

Cluster := neighbor-based clusters with dmax = 1
Two solutions x,x? in same cluster <
connected by zero-energy single-variable flips

Ballistic search:
1. Start at x“.

2. Flip zero-energy variables with ¢ o, _© 0 []°[]
oy
o

x{ # x, each at most once

3. If arrival at x° — same clusters
else ??

Improvement: Ballistic networking:
Per representing solution:
Generate additional (Nagq = 5)
attached solutions via T = 0 MC.
Perform ballistic search pairwise
for attached solutions.

Iterate until cluster structure is stable.
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Cluster Size

MW Given: any solution x° from cluster C
B Test Hamiltonian [AKH, F. Ricci-Tersenghi, PRB 2002]

Hies(X) = dHamming(ly lo) (x €eC)

S(pB)=entropy = |C| = exp(S(5 = 0))
From thermodynamic integration

$(0) = S(0)-S(x) = = [ ds =...= [ [E(DesrN] 45

M Peform T = 0 MC (orig.  ©°F"

PRI POO®,

a=3, N
system) at temp. 3 (Hees), S ', :E
measure (Hestest =
W Adaptive choice of MC §
sweeps and 25 different 10 ‘ ‘ ‘ ‘ ‘ ‘
100 10" 102 10 10*  10°  10°

values of . real |C|
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Hierarchical Clustering SAT

1 sample a=20 = a=35 a=3.8

(N = 256)

small a:
1 cluster

medium a:
hierarchy
(# levels ?)

larger a:
landscape
simplifies
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Results SAT

MW Number of clusters o °° N-22 ds N
2 L = 45, dist
(so far small N) g 3 N= 64 dist —— /
IS e
[<)) = s 7 AN
(corr. to agq + 1?) R //
ol 2 15 // / T \'\Qg
2 - / T
g L L 3
0.5 L 1
2 25 3 3.5 4 45
o
M Relative weight of 0.; — T 3
largest cluster 0.8 OO\
(so far small N) 5 2; ¥ N s
E ool NBESCNNL S
(corr. to ag 1?) o4b  NIShaR o TN
0.3 N = 128, dist .
02 N= 1?8I,data e :
T2 25 3 35 4 45
o

(data collaps using o/ = (a — ag)NY/¥ for
ag = 4.1(1),v = 2.0(5))
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Frozen Variables

B Frozen variables: L pa— "\1\
g o8 \} \¥\
(makes it difficult 3 os
for stochastic algo- 3 , \
. k]
rithms 1?) S onl N=32
= N = 64 Y
0 N =128 T T~
2 25 3 3.5 4

currently: looking directly at variables for N ~ 10000
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Computer Science M NP-hard combinatorial optimization
T e problems:

B vertex cover (VC)
M satisfiability (SAT)

B Phase trans. on random ensembles

M Cluster analysis
helps M Ballistic search/networking
M Count number of clusters
(neighbor based)
M Hierarchical clustering
( — dendogram, ordering)

M VC: complex structure (hard phase)
B SAT: several transitions

Eog g

Physics
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M Thank you for the attention !
M Post-doc position available
M as soon as possible
M for two years
B computational physics: disordered systems, algorithms,
optimization problems, computational complexity,
large-deviation properties, biofinformatics, ...
B contact me: a.hartmann@uni-oldenburg.de
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