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Outline

Computer Science Physics

helps

helps

Models: Vertex Cover, Satisfiability

Analysis: neighbors-based clustering, hierarchical
clustering, ballistic networking

Results: complex/ very complex cluster structures

[AKH and H. Rieger, Optimization Algorithms in Physics, Wiley-VCH 2001]

[AKH and H. Rieger (eds.), New Optimization Algorithms in Physics, Wiley-VCH 2004]

[AKH and M. Weigt, Phase Transitions in Optimization Problems, Wiley-VCH 2005]
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Vertex-Cover Problem (VC)
Prototypical problem of theoretical Computer Science
Museum

ARE
THEY
SAFE?

Edvard Munch’s “Der

Schrei” stolen in Oslo

August 2004

crossroad

corridor

N crossroads
Nc/2 corridors

X = xN guards
guard only adjacent corridors
Mathematically: museum = graph G = (V , E)
Vertex cover A ⊂ V : ∀(i , j) ∈ E : (i ∈ A) ∨ (j ∈ A)

Optimization problem: minimize number X of guards
Vertex-cover problem = NP-complete
Random graphs: phase transition at connect. c = e ≈ 2.71
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Neighbor-based Clustering

Given: set of configurations {x i}
xα, xβ neigbors ⇔ dHamming(xα, xβ) ≤ dmax.

Example VC (dmax = 2):

d=4 d=2 d=2

Cluster: transitive closure of neighbour relation

Algorithm: grow clusters by adding neighbors (O(N2))

Wanted: # clusters as function of system size N
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Results VC

Neighbor-based clustering (dmax = 2)

100 1000
N

1

2

3

4

#c
lu

st
er

s

c = 6.0
c = 4.0
c = 3.0
c = 2.0
c = 1.0

(large N: Parallel tempering (PT) and ballistic-search clustering)

c < e: ONE cluster, independent of N
c > e: several clusters, logarithmic growth in N

[W. Barthel (Radenbach), AKH, Phys. Rev. E 70, 066120 (2004)]
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Hierarchical Clustering

Start: Z configs = Z single configuration clusters Cj = {x j}
initial distances d(Cj , Cl) = dHamming(x j , x l)

Merge iteratively nearest clusters Cnew = Cα ∪ Cβ , update
d(Cnew, Cj) (j 6= α, β), until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Any set of configs can be clustered → Does it match?
cophenetic correlation: K ≡ [d · dc]G − [d ][dc]G ,
(dc : distance along tree, [..]G: disorder average)
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VC: hierarchical clustering
(grand-canonical ensemble (chem. pot. µ) using PT)

any c (small µ) c = 1 (large µ) c = 3 (large µ)

(large µ): no structure (“paramagnet”)
c < e: solution cluster has no structure
c > e: hierarchy of solution clusters

cophenetic correlation K (N): decreases/grows for c < e/c > e
Complex phase space organization for c > e
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Satisfiability

Boolean circuit → function

boolean variables xi = 0, 1

Operators OR, AND, NOT

Output: f (x) = 0, 1

x1 x2 x3 x4 x5

f(x)

f (x) = (x1 ∨ x2︸︷︷︸
literal

∨x3) ∧ (x2 ∨ x3 ∨ x4)︸ ︷︷ ︸
clause

∧(x3 ∨ x4 ∨ x5)

Conjunctive normal form (CNF):
f = conjunction of disjunctions (clauses)

Satisfiability Problem (SAT): Is there a satisfying
assignment for given f?

SAT: “first” NP complete problem
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Random 3-SAT

K -SAT: CNF with K literals per clause

N: number variables
M: number of clauses

3-SAT is NP complete

Random 3-SAT:
literals chosen randomly.

Phase transition in α = M/N
[S. Mertens, M. Mézard, R. Zecchina, RSA 2006]
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Analytical predictions for solution-space structure
[F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G.Semerjian, L. Zdeborová, 2007]
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Average SAT (ASAT)

Stochastic algorithm [J.Ardelius, E.Aurell, PRE 2006]

E(x) = #(UNSAT clauses)
algorithm ASAT

initialise assignment randomly
while there are UNSAT clauses
begin

pick random UNSAT clause C
pick random variable xi from C
if flipping xi increases E(x)
then flip xi

else flip xi with prob. p
end

!

Cannot prove UNSAT.

Solves large instances (N = 106) close to αc (α ≤ 4.2).
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Statistical Properties of ASAT

For analyzing results:
Each solution must contribute with same weight/probability

How often each solution was found (sorted)
1 realization (N = 30, α = 3.0, 106 ASAT runs)
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Unbias !
Outline of algorithm [AKH, EPJ B 2000], [AKH, F. Ricci-Tersenghi, PRB 2002]

1. Generate set of solutions
(e.g. using ASAT)

2. Determine cluster structure
(C1, C2, . . . , CT )

3. Determine sizes |Ct | of clusters

4. Draw from each cluster Ct solutions
#(solutions) ∼ |Ct |
unbiased within cluster

5. ⇒ unbiased set of solutions!

Works well up to N = 256.

Details follow now!
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Ballistic search
Cluster := neighbor-based clusters with dmax = 1

Two solutions xα,xβ in same cluster ⇔
connected by zero-energy single-variable flips

Ballistic search:
1. Start at xα.

2. Flip zero-energy variables with
xα

i 6= xβ
i , each at most once

3. If arrival at xβ → same clusters
else ??

Improvement: Ballistic networking:
Per representing solution:
Generate additional (Nadd = 5)
attached solutions via T = 0 MC.
Perform ballistic search pairwise
for attached solutions.

Iterate until cluster structure is stable.
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Cluster Size

Given: any solution x0 from cluster C

Test Hamiltonian [AKH, F. Ricci-Tersenghi, PRB 2002]

Htest(x) = dHamming(x , x0) (x ∈ C)

S(β)=entropy ⇒ |C| = exp(S(β = 0))
From thermodynamic integration

S(0) = S(0)−S(∞) = −
∫ ∞

0
dS = . . . =

∫ ∞

0
[E(β)test−N] dβ

Peform T = 0 MC (orig.
system) at temp. β (Htest),
measure 〈Htest〉test

Adaptive choice of MC
sweeps and 25 different
values of β.
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Hierarchical Clustering SAT
1 sample

(N = 256)

small α:
1 cluster

α = 2.0 α = 3.5 α = 3.8

medium α:
hierarchy
(# levels ?)

larger α:
landscape
simplifies

α = 3.9 α = 4.0 α = 4.2
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Results SAT
Number of clusters
(so far small N)

(corr. to αd ,+ !?)
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(data collaps using α′ = (α− αd)N1/ν for
αd = 4.1(1), ν = 2.0(5))
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Frozen Variables

Frozen variables:

(makes it difficult
for stochastic algo-
rithms !?)
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currently: looking directly at variables for N ≈ 10000
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Summary

Computer Science

helps

helps

Physics

NP-hard combinatorial optimization
problems:

vertex cover (VC)
satisfiability (SAT)

Phase trans. on random ensembles
Cluster analysis

Ballistic search/networking
Count number of clusters
(neighbor based)
Hierarchical clustering
( → dendogram, ordering)

VC: complex structure (hard phase)

SAT: several transitions
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Finally ...

Thank you for the attention !
Post-doc position available

as soon as possible
for two years
computational physics: disordered systems, algorithms,
optimization problems, computational complexity,
large-deviation properties, biofinformatics, . . .
contact me: a.hartmann@uni-oldenburg.de
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