Clusters and solution landscapes for vertex-cover and SAT problems

A.K. Hartmann
Institute of Physics, University of Oldenburg
with A. Mann, W. Radenbach (Göttingen)

PhysDIS Stockholm, 17. May 2008

Outline

Models: Vertex Cover, Satisfiability
Analysis: neighbors-based clustering, hierarchical clustering, ballistic networking
Results: complex/ very complex cluster structures
[AKH and H. Rieger, Optimization Algorithms in Physics, Wiley-VCH 2001]
[AKH and H. Rieger (eds.), New Optimization Algorithms in Physics, Wiley-VCH 2004]
[AKH and M. Weigt, Phase Transitions in Optimization Problems, Wiley-VCH 2005]

Vertex-Cover Problem (VC)

- Prototypical problem of theoretical Computer Science
- Museum

Vertex-Cover Problem (VC)

Prototypical problem of theoretical Computer Science

- Museum ARE THEY SAFE?

Edvard Munch's "Der
Schrei" stolen in Oslo August 2004

Vertex-Cover Problem (VC)

- Prototypical problem of theoretical Computer Science
- Museum ARE THEY SAFE?

Edvard Munch's "Der
Schrei" stolen in Oslo August 2004
$X=x N$ guards
 guard only adjacent corridors

Vertex-Cover Problem (VC)

- Prototypical problem of theoretical Computer Science
- Museum ARE THEY SAFE?

Edvard Munch's "Der
Schrei" stolen in Oslo August 2004
$X=x N$ guards
 guard only adjacent corridors

Vertex-Cover Problem (VC)

- Prototypical problem of theoretical Computer Science
- Museum ARE THEY SAFE?

Edvard Munch's "Der
Schrei" stolen in Oslo
August 2004
$X=x N$ guards

guard only adjacent corridors
. Mathematically: museum = graph $G=(V, E)$
Vertex cover $A \subset V: \forall(i, j) \in E:(i \in A) \vee(j \in A)$

- Optimization problem: minimize number X of guards
- Vertex-cover problem = NP-complete

Random graphs: phase transition at connect. $c=e \approx 2.71$

Neighbor-based Clustering

- Given: set of configurations $\left\{\underline{x}^{i}\right\}$
- $\underline{X}^{\alpha}, \underline{x}^{\beta}$ neigbors $\Leftrightarrow d_{\text {Hamming }}\left(\underline{X}^{\alpha}, \underline{X}^{\beta}\right) \leq d_{\text {max }}$.

Example VC ($d_{\max }=2$):

Neighbor-based Clustering

- Given: set of configurations $\left\{\underline{x}^{i}\right\}$
- $\underline{x}^{\alpha}, \underline{x}^{\beta}$ neigbors $\Leftrightarrow d_{\text {Hamming }}\left(\underline{X}^{\alpha}, \underline{x}^{\beta}\right) \leq d_{\text {max }}$.

Example VC $\left(d_{\max }=2\right)$:

Cluster: transitive closure of neighbour relation
Algorithm: grow clusters by adding neighbors $\left(O\left(N^{2}\right)\right)$

Neighbor-based Clustering

Wiven: set of configurations $\left\{\underline{x}^{i}\right\}$

- $\underline{x}^{\alpha}, \underline{x}^{\beta}$ neigbors $\Leftrightarrow d_{\text {Hamming }}\left(\underline{X}^{\alpha}, \underline{x}^{\beta}\right) \leq d_{\text {max }}$.

Example VC $\left(d_{\max }=2\right)$:

Cluster: transitive closure of neighbour relation

- Algorithm: grow clusters by adding neighbors $\left(O\left(N^{2}\right)\right)$

Wanted: \# clusters as function of system size N

Results VC

Neighbor-based clustering $\left(d_{\max }=2\right)$

(large N : Parallel tempering (PT) and ballistic-search clustering)
$c<e: \quad$ ONE cluster, independent of N
$c>e: \quad$ several clusters, logarithmic growth in N
[W. Barthel (Radenbach), AKH, Phys. Rev. E 70, 066120 (2004)]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x^{j}}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x^{j}}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

Hierarchical Clustering

- Start: Z configs $=Z$ single configuration clusters $C_{j}=\left\{\underline{x}^{j}\right\}$ initial distances $d\left(C_{j}, C_{l}\right)=d_{\text {Hamming }}\left(\underline{x}^{j}, \underline{x}^{\prime}\right)$
- Merge iteratively nearest clusters $C_{\text {new }}=C_{\alpha} \cup C_{\beta}$, update $d\left(C_{\text {new }}, C_{j}\right)(j \neq \alpha, \beta)$, until one cluster left.
[J.H. Ward, J. Am. Stat. Assoc. 1963]

. Any set of configs can be clustered \rightarrow Does it match? cophenetic correlation: $\mathcal{K} \equiv\left[d \cdot d_{c}\right]_{G}-[d]\left[d_{c}\right]_{G}$, (d_{c} : distance along tree, [..] $]_{G}$: disorder average)

VC: hierarchical clustering
(grand-canonical ensemble (chem. pot. μ) using PT)

(large μ): no structure ("paramagnet")
$c<e: \quad$ solution cluster has no structure
$c>e$: hierarchy of solution clusters
cophenetic correlation $K(N)$: decreases/grows for $c<e / c>e$ Complex phase space organization for $c>e$

Satisfiability

- Boolean circuit \rightarrow function
boolean variables $x_{i}=0,1$
Operators OR, AND, NOT
- Output: $f(\underline{x})=0,1$

$$
f(\underline{x})=(x_{1} \vee \underbrace{\overline{x_{2}}}_{\text {literal }} \vee x_{3}) \wedge \underbrace{\left(x_{2} \vee x_{3} \vee \overline{x_{4}}\right)}_{\text {clause }} \wedge\left(x_{3} \vee x_{4} \vee \overline{x_{5}}\right)
$$

- Conjunctive normal form (CNF): $f=$ conjunction of disjunctions (clauses)
- Satisfiability Problem (SAT): Is there a satisfying assignment for given f ?
. SAT: "first" NP complete problem

Random 3-SAT

- K-SAT: CNF with K literals per clause
- N : number variables
M : number of clauses
- 3-SAT is NP complete
- Random 3-SAT: literals chosen randomly.
- Phase transition in $\alpha=M / N$

[S. Mertens, M. Mézard, R. Zecchina, RSA 2006]
- Analytical predictions for solution-space structure
[F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G.Semerjian, L. Zdeborová, 2007]

Average SAT (ASAT)

- Stochastic algorithm [J.Ardelius, E.Aurell, PRE 2006]
$E(\underline{x})=\#($ UNSAT clauses) algorithm ASAT
initialise assignment randomly while there are UNSAT clauses begin
pick random UNSAT clause C pick random variable x_{i} from C if flipping x_{i} increases $E(\underline{x})$ then flip x_{i}
else flip x_{i} with prob. p
end
- Cannot prove UNSAT.

Solves large instances $\left(N=10^{6}\right)$ close to $\alpha_{C}(\alpha \leq 4.2)$.

Statistical Properties of ASAT

- For analyzing results:

Each solution must contribute with same weight/probability

- How often each solution was found (sorted) 1 realization ($N=30, \alpha=3.0,10^{6}$ ASAT runs)

- ASAT is biased!

Unbias!

Outline of algorithm [AKH, EPJ B 2000], [AKH, F. Ricci-Tersenghi, PRB 2002]

1. Generate set of solutions (e.g. using ASAT)
2. Determine cluster structure $\left(C^{1}, C^{2}, \ldots, C^{T}\right)$
3. Determine sizes $\left|C^{t}\right|$ of clusters
4. Draw from each cluster C^{t} solutions \#(solutions) $\sim\left|C^{t}\right|$ unbiased within cluster
5 . \Rightarrow unbiased set of solutions!

Works well up to $N=256$.
Details follow now!

Ballistic search

Cluster := neighbor-based clusters with $d_{\max }=1$

- Two solutions $\underline{x}^{\alpha}, \underline{x}^{\beta}$ in same cluster \Leftrightarrow connected by zero-energy single-variable flips
․ Ballistic search:

1. Start at \underline{x}^{α}.
2. Flip zero-energy variables with $\underline{x}_{i}^{\alpha} \neq \underline{x}_{i}^{\beta}$, each at most once
3. If arrival at $\underline{x}^{\beta} \rightarrow$ same clusters else??

\square Improvement: Ballistic networking: Per representing solution:
Generate additional ($N_{\text {add }}=5$) attached solutions via $T=0 \mathrm{MC}$. Perform ballistic search pairwise for attached solutions.

E. Iterate until cluster structure is stable.

Cluster Size

- Given: any solution \underline{x}^{0} from cluster C

Test Hamiltonian [AKH, F. Ricci-Tersenghi, PRB 2002]

$$
H_{\text {test }}(\underline{x})=d_{\text {Hamming }}\left(\underline{x}, \underline{x}^{0}\right) \quad(\underline{x} \in C)
$$

$S(\beta)=$ entropy $\Rightarrow|C|=\exp (S(\beta=0))$
From thermodynamic integration
$S(0)=S(0)-S(\infty)=-\int_{0}^{\infty} d S=\ldots=\int_{0}^{\infty}\left[E(\beta)_{\text {test }}-N\right] d \beta$

- Peform $T=0 \mathrm{MC}$ (orig. system) at temp. β ($\left.H_{\text {test }}\right)$, measure $\left\langle H_{\text {test }}\right\rangle_{\text {test }}$
- Adaptive choice of MC sweeps and 25 different values of β.

Hierarchical Clustering SAT

1 sample
($N=256$)
small α :
1 cluster
medium α : hierarchy (\# levels ?)
larger α : landscape simplifies

$\alpha=3.8$

Results SAT

Number of clusters (so far small N)
(corr. to $\alpha_{d,+}$!?)

Relative weight of largest cluster (so far small N)
(corr. to α_{d} !?)

(data collaps using $\alpha^{\prime}=\left(\alpha-\alpha_{d}\right) N^{1 / \nu}$ for $\left.\alpha_{d}=4.1(1), \nu=2.0(5)\right)$

Frozen Variables

Frozen variables:
(makes it difficult for stochastic algorithms !?)

currently: looking directly at variables for $N \stackrel{\alpha}{\approx} 10000$

Summary

NP-hard combinatorial optimization problems:
vertex cover (VC)
natisfiability (SAT)

- Phase trans. on random ensembles
- Cluster analysis
- Ballistic search/networking

Count number of clusters (neighbor based)

- Hierarchical clustering (\rightarrow dendogram, ordering)
- VC: complex structure (hard phase)

SAT: several transitions

Finally ...

Thank you for the attention!

- Post-doc position available
as soon as possible for two years
. computational physics: disordered systems, algorithms, optimization problems, computational complexity, large-deviation properties, biofinformatics, ... contact me: a.hartmann@uni-oldenburg.de

