Solving K-SAT by going slowly down

Mikko Alava

Helsinki University of Technology, Finland

Department of Engineering Physics

In collaboration with: Erik Aurell, John Ardelius, Supriya Krishnamurty here Petteri Kaski, Pekka Orponen, Sakari Seitz in Helsinki

Why or background

Solving K-Satisfiability problems: why and why do not algorithms work?

Structure of "energy landscape"? Or, solution landscape?

Here, a Focused Stocastic Local Search, ChainSAT.

Energy landscape?

There are local and global minima (solutions).
How does a local algorithm

("flipping spins" or variables) utilize local landscapes?

Simulated annualing

Simulated annealing,

Focused Metropolis Search, ASAT,

Focused Walk-SAT vs.

Survey Propagation....

Phase Diagram

Dynamic, clustering transitions. Rigidity transition? (Krzakala et al., PNAS 104, 10318 (2007)). Effect of these on algorithms?

ChainSAT

(Focused) ChainSAT

Idea of an algorithm:
go down - accept or
create slack.
Never Goes Up in Energy

More Detail

- 1: S = random assignment of values to the variables
- 2: chaining = FALSE
- 3: while S is not a solution do
- 4: **if not** chaining **then**
- 5: C = a clause not satisfied by S selected uniformly at random
- 6: V = a variable in C selected u.a.r.
- 8: end if
- 9: $\Delta E = \text{change in number of unsatisfied clauses if } V \text{ is}$ flipped in S
- 10: chaining = FALSE
- 11: if $\Delta E = 0$ then
- 12: flip V in S

```
else if \Delta E < 0
13:
14:
         with probability p_1
           flip V in S
15:
16:
         end with
17:
      else
18:
         with probability 1 - p_2
           C = a clause satisfied only by V selected u.a.r.
19:
           V' = a variable in C other than V selected u.a.r.
20:
          V=V'
21:
22:
           chaining = TRUE
23:
         end with
      end if
24:
25: end while
```

Studying ChainSAT

What is the optimal parameter value for p_1 , p_2 ?
ChainSAT seems to be robust... compared to ASAT, FMS?

Chain/K-SAT

ChainSAT is linear in

 $N \text{ for } K = 4 \dots 5 \dots 6.$

It works beyond the dynamical and condensation transitions.

FMS comparison

For FMS (Focused Metropolis), $\alpha = 9.6$ and K = 4 similar behavior is found.

Here one can go over barriers.

Solution space

Trials: solve, flip a fraction of variables to get to $d_{initial}$ from original. Re-solve.

 d_{final} continuous, concentrates.

Here $\alpha = 9.6, K = 4$.

Chain/K-SAT

How does the ChainSAT work? White solutions (with slack). Chain lengths do not diverge: "chainable" variables found.

Conclusions

SLS algorithms find regardless of solution space structures "white" solutions.

Local minima irrelevant in K-SAT.

"rigid" solutions? Finite correlation length: mosaic solution - linearity?

ChainSAT: extensions to other members of the CSP family. See arXiv:0711.4902.

Understanding algorithms in the average sense? RandomWalkSAT, J. Ardelius lic. defence last Wed.