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Optimization theory as a modeling tool

• Decoding over noisy channels

• Optimal routing

• Scheduling

• Resource allocation

• Solving Linear Systems

• MAP inference

Can be formulated as a (combinatorial) 
optimization problem 



Optimization Theory and Convexity

“...the great watershed in optimization isn’t between linearity 
and nonlinearity, but convexity and nonconvexity.”

R. Tyrrell Rockafellar (SIAM Review, 2003)
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Optimization Theory and Distributed Solutions

Decomposition framework

Dual decomposition (prices)Primal decomposition (resources)



Sorting as a Mathematical Program

Given a list of numbers

{u1, u2, . . . , uN}

find a permutation such that

uπ(1) ≤ uπ(2) ≤ . . . ≤ uπ(N)

Optimization problem

fu : SN → R
π !→ fu(π)

fu reaches the maximum when the permutation sorts the list



Sorting as a Mathematical Program

S3

cTx

c

Ax = b
x ≥ 0

N∑

i=1

Pij =
N∑

j=1

Pij = 1

Permutation matrices

Pij ∈ {0, 1}



Sorting as a Mathematical Program

Birkhoff-von Neumann Theorem: The convex hull 
of the set of permutation matrices is the set of doubly 
stochastic matrices
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Pij = 1

Permutation matrices

Pij ≥ 0



Sorting as a Mathematical Program

maximize
∑N

i=1 i
∑N

j=1 Pijuj

subject to
∑N

j=1 Pij = 1, i = 1, . . . , N,
∑N

i=1 Pij = 1, j = 1, . . . , N,

Pij ≥ 0, i, j = 1, . . . , N.

Linear program

All the structure of the permutation is encoded 
on the constraints

DUALITY:  Relax the original problem by transfering the 
constraints to the objective function

Convex relaxation

fu(π) = 1uπ(1) + 2uπ(2) + · · · + Nuπ(N)



Sorting as a Mathematical Program

Dual linear program

minimize
∑N

i=1 ri +
∑N

j=1 cj

subject to ri + cj ≥ iuj i, j = 1, . . . , N.

1

2

3

4

5

u1

u2

u3

u4

u5

Auction algorithm

Best value→ vij∗ = max
j

(iuj − cj),

Second best value→ wij∗ = max
j !=j∗

(iuj − cj),

Bid→ bi = pi + vij∗ − wij∗ + ε

cj = max
i

bij ,

ij = arg max
i

bij ⇒ Pij :=

{
1, if i = ij ,

0, otherwise.

Bidding phase:

Assignment phase:



Sorting as a Mathematical Program

maximize fu(π) = [1, 2, . . . , N ]EN/2ON/2 · · · E1O1u
subject to 0 ≤ ckl ≤ 1, k = 1, . . . , N/2, l = 1, . . . , N.

Gauss-Seidel iteration

O(t+1)
k = arg min

O
[1, 2, . . . , N ]E(t)

N/2O
(t)
N/2 · · · E(t)

k+1O
(t)
k+1E

(t)
k︸ ︷︷ ︸

(t)

O E(t+1)
k−1 O(t+1)

k−1 · · · E(t+1)
1 O(t+1)

1︸ ︷︷ ︸
(t+1)

u

E(t+1)
k = arg min

E
[1, 2, . . . , N ]E(t)

N/2O
(t)
N/2 · · · E(t)

k+1O
(t)
k+1︸ ︷︷ ︸

(t)

E O(t+1)
k E(t+1)

k−1 O(t+1)
k−1 · · · E(t+1)

1 O(t+1)
1︸ ︷︷ ︸

(t+1)

u

Another approach
(Permutation as a product of standard transpositions)

Convex Relaxation
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Sudoku as a Linear Program

x11k = δ2k, x14k = δ4k, x16k = δ9k, . . .

Blank Sudoku

cells:

rows:

cols:

blocks:



Sudoku as a Linear Program

Givens:

Formulation 1:
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Sudoku as a Linear Program

Formulation 2:

cijk =






−1 if there is a given k in cell (i, j),
1 if there is a given "= k at (i, j) or = k at (i, "= j) or at ("= i, j),
0 otherwise
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Sudoku as a Linear Program

Algorithms:

1. Simplex (several flavours)

2. Interior point (primal-dual)

GLPK (GNU Linear Programming Kit)
http://www.gnu.org/software/glpk/

Transformations:

minimize f(x)
subject to Ax = b

x ≥ 0

minimize f(x)
subject to APx = b

x ≥ 0

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/


Sudoku as a Lattice Gas

Multicomponent non-additive hard-core lattice gas



Sudoku as a Lattice Gas

F [ρijk] =
∑

{φ(ROWik) + φ(COLjk) + φ(BLOCKIJ) + φ(POINTij)

−φ(rowik:IJ)− φ(coljk:IJ)− φ(pointijk)
}

Free-energy density Functional Theory

φ(η) = η ln η + (1− η) ln(1− η)

ρijk(1− ρijk)
(
1−

∑

l:B(i,j)

ρilk

)(
1−

∑

l:B(i,j)

ρljk

)
= zijk

(
1−

∑

l

ρijl

)(
1−

∑

l

ρilk

)

×
(
1−

∑

l

ρljk

)(
1−

∑

l,m:B(i,j)

ρlmk

)

Euler-Lagrange Eqs.:



Sudoku as a Quadratic Program

maximize ‖x‖22
subject to x ∈ B ∩ G

x ≥ 0

Non-convex problem!

NP-hard if the quadratic term matrix is 
definite negative



Some Final Comments

• LP vs. Semidefinite Relaxations.

• Distributed Solvers.

• Optimization methods as a tool to derive local 
Message Passing algortihms.

• Connections with BP-like algorithms


