Searching for Scalable Solutions to really Large Problems: Theory

Luis Lafuente and Scott Kirkpatrick Center for Bits and Atoms Massachusetts Institute of Technology

Optimization theory as a modeling tool

- Decoding over noisy channels
- Optimal routing
- Scheduling
- Resource allocation
- Solving Linear Systems
- MAP inference

Can be formulated as a (combinatorial) optimization problem

Optimization Theory and Convexity

"...the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." R.Tyrrell Rockafellar (SIAM Review, 2003)

Optimization Theory and Convexity

"...the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." R.Tyrrell Rockafellar (SIAM Review, 2003)

Optimization Theory and Convexity

"...the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity." R.Tyrrell Rockafellar (SIAM Review, 2003)

Optimization Theory and Distributed Solutions

Decomposition framework

 $\begin{array}{ll} \text{minimize} & f_1(x_1) + f_2(x_2) \\ \text{subject to} & x_1 \in \mathcal{C}_1, \quad x_2 \in \mathcal{C}_2 \\ & h_1(x_1) + h_2(x_2) \preceq 0 \end{array}$

Primal decomposition (resources)

$$\begin{array}{ll} \text{minimize} & f_1(x_1) \\ \text{subject to} & x_1 \in \mathcal{C}_1, \quad h_1(x_1) \preceq t, \\ \\ \text{minimize} & f_2(x_2) \\ \\ \text{subject to} & x_2 \in \mathcal{C}_2, \quad h_2(x_2) \preceq -t. \end{array}$$

Dual decomposition (prices)

Given a list of numbers

$$\{u_1, u_2, \ldots, u_N\}$$

find a permutation such that

$$u_{\pi(1)} \le u_{\pi(2)} \le \ldots \le u_{\pi(N)}$$

Optimization problem

$$f_{\mathbf{u}} \colon \mathcal{S}_N \to \mathbb{R}$$

 $\pi \mapsto f_{\mathbf{u}}(\pi)$

 $f_{\mathbf{u}}$ reaches the maximum when the permutation sorts the list

Permutation matrices

Birkhoff-von Neumann Theorem: The convex hull of the set of permutation matrices is the set of doubly stochastic matrices

Linear program $f_{\mathbf{u}}(\pi) = 1u_{\pi(1)} + 2u_{\pi(2)} + \dots + Nu_{\pi(N)}$

 $\begin{array}{ll} \mbox{maximize} & \sum_{i=1}^{N} i \sum_{j=1}^{N} \mathsf{P}_{ij} u_j \\ \mbox{subject to} & \sum_{j=1}^{N} \mathsf{P}_{ij} = 1, \, i = 1, \dots, N, \\ & \sum_{i=1}^{N} \mathsf{P}_{ij} = 1, \, j = 1, \dots, N, \\ & \mathsf{P}_{ij} \geq 0, \, i, j = 1, \dots, N. \end{array}$

All the structure of the permutation is encoded on the constraints

DUALITY: Relax the original problem by transfering the constraints to the objective function

Dual linear program

$$\begin{array}{ll} \mbox{minimize} & \sum_{i=1}^N r_i + \sum_{j=1}^N c_j \\ \mbox{subject to} & r_i + c_j \geq i u_j \quad i, j = 1, \dots, N. \end{array}$$

Auction algorithm

Bidding phase:

Best value
$$\rightarrow v_{ij^*} = \max_j (iu_j - c_j),$$

Second best value $\rightarrow w_{ij^*} = \max_{j \neq j^*} (iu_j - c_j)$
Bid $\rightarrow b_i = p_i + v_{ij^*} - w_{ij^*} + \epsilon$

Assignment phase:

$$c_{j} = \max_{i} b_{ij},$$

$$i_{j} = \arg\max_{i} b_{ij} \Rightarrow \mathsf{P}_{ij} := \begin{cases} 1, & \text{if } i = i_{j}, \\ 0, & \text{otherwise.} \end{cases}$$

Another approach (Permutation as a product of standard transpositions)

maximize $f_{\mathbf{u}}(\pi) = [1, 2, ..., N] \mathsf{E}_{N/2} \mathsf{O}_{N/2} \cdots \mathsf{E}_1 \mathsf{O}_1 \mathbf{u}$ subject to $0 \le c_{kl} \le 1, \ k = 1, ..., N/2, \ l = 1, ..., N.$ Convex Relaxation

Gauss-Seidel iteration

$$O_{k}^{(t+1)} = \arg\min_{O}[1, 2, \dots, N] \underbrace{\mathsf{E}_{N/2}^{(t)} \mathsf{O}_{N/2}^{(t)} \cdots \mathsf{E}_{k+1}^{(t)} \mathsf{O}_{k+1}^{(t)} \mathsf{E}_{k}^{(t)}}_{(t)} O \underbrace{\mathsf{E}_{k-1}^{(t+1)} \mathsf{O}_{k-1}^{(t+1)} \cdots \mathsf{E}_{1}^{(t+1)} \mathsf{O}_{1}^{(t+1)}}_{(t+1)} \mathbf{u}}_{(t+1)}$$

$$\mathsf{E}_{k}^{(t+1)} = \arg\min_{\mathsf{E}}[1, 2, \dots, N] \underbrace{\mathsf{E}_{N/2}^{(t)} \mathsf{O}_{N/2}^{(t)} \cdots \mathsf{E}_{k+1}^{(t)} \mathsf{O}_{k+1}^{(t)}}_{(t)} \mathsf{E} \underbrace{\mathsf{O}_{k}^{(t+1)} \mathsf{E}_{k-1}^{(t+1)} \mathsf{O}_{k-1}^{(t+1)} \cdots \mathsf{E}_{1}^{(t+1)} \mathsf{O}_{1}^{(t+1)}}_{(t+1)} \mathbf{u}}_{(t+1)}$$

Another approach (Permutation as a product of standard transpositions)

maximize subject to

$$f_{\mathbf{u}}(\pi) = [1, 2, \dots, N] \mathsf{E}_{N/2} \mathsf{O}_{N/2} \cdots \mathsf{E}_1 \mathsf{O}_1 \mathbf{u}$$
$$0 \le c_{kl} \le 1, \ k = 1, \dots, N/2, \ l = 1, \dots, N.$$
Convex Relaxation

$$c_{ijk} = \begin{cases} 1 & \text{if symbol in cell } (i,j) \text{ is } s_k, \\ 0 & \text{otherwise.} \end{cases}$$
Blank Sudoku

2			4		9		7	5
						8	2	
	8		1		5	9		3
9	2	7		4		6		8
8		3		9		5	4	1
5		2	3		6		8	
	9	8						
6	4		9		8			2

$$\begin{array}{ll} \text{cells:} & \sum_{k=1}^{n} x_{ijk} = 1, & \text{for all } i, j = 1, \dots, n. \\ \text{rows:} & \sum_{j=1}^{n} x_{ijk} = 1, & \text{for all } i, k = 1, \dots, n. \\ \text{cols:} & \sum_{i=1}^{n} x_{ijk} = 1, & \text{for all } j, k = 1, \dots, n. \\ \text{blocks:} & \sum_{i=(I-1)m+1}^{Im} \sum_{j=(J-1)m+1}^{Jm} x_{ijk} = 1, & \text{for all } I, J = 1, \dots, m \\ & k = 1, \dots, n. \end{array}$$

$$x_{11k} = \delta_{2k}, \ x_{14k} = \delta_{4k}, \ x_{16k} = \delta_{9k}, \dots$$

Formulation I:

Givens:

$$\begin{aligned} x_{pqr} &= 0, \quad \text{if any of these} \begin{cases} p = i, q = j, r \neq k \quad (\text{cell}), \\ p \neq i, q = j, r = k \quad (\text{row}), \\ p = i, q \neq j, r = k \quad (\text{column}), \\ \lfloor p/m \rfloor &= \lfloor i/m \rfloor, \lfloor q/m \rfloor = \lfloor j/m \rfloor, r = k \quad (\text{block}), \end{cases} \end{aligned}$$

$$x_{pqr} = 1$$
, if $p = i, q = j, r = k$.

Formulation I:

Givens:

$$\begin{aligned} x_{pqr} &= 0, \quad \text{if any of these} \begin{cases} p = i, q = j, r \neq k \quad (\text{cell}), \\ p \neq i, q = j, r = k \quad (\text{row}), \\ p = i, q \neq j, r = k \quad (\text{column}), \\ \lfloor p/m \rfloor &= \lfloor i/m \rfloor, \lfloor q/m \rfloor = \lfloor j/m \rfloor, r = k \quad (\text{block}), \end{cases} \end{aligned}$$

$$x_{pqr} = 1$$
, if $p = i, q = j, r = k$.

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \equiv 0 \\ \mbox{subject to} & \mathbf{x} \in \mathcal{B} \cap \mathcal{G}, \\ & \mathbf{x} \in \{0,1\}^{n^2}. \end{array}$

Formulation I:

Givens:

$$x_{pqr} = 0, \quad \text{if any of these} \begin{cases} p = i, q = j, r \neq k \quad (\text{cell}), \\ p \neq i, q = j, r = k \quad (\text{row}), \\ p = i, q \neq j, r = k \quad (\text{column}), \\ \lfloor p/m \rfloor = \lfloor i/m \rfloor, \lfloor q/m \rfloor = \lfloor j/m \rfloor, r = k \quad (\text{block}), \end{cases}$$

$$x_{pqr} = 1$$
, if $p = i, q = j, r = k$

Formulation 2:

$$f_G(\mathbf{x}) \equiv \sum_{i,j,k=1}^n c_{ijk} x_{ijk}$$

 $c_{ijk} = \begin{cases} -1 & \text{if there is a given } k \text{ in cell } (i,j), \\ 1 & \text{if there is a given } \neq k \text{ at } (i,j) \text{ or } = k \text{ at } (i,\neq j) \text{ or at } (\neq i,j), \\ 0 & \text{otherwise} \end{cases}$

Formulation 2:

$$f_G(\mathbf{x}) \equiv \sum_{i,j,k=1}^n c_{ijk} x_{ijk}$$

 $c_{ijk} = \begin{cases} -1 & \text{if there is a given } k \text{ in cell } (i,j), \\ 1 & \text{if there is a given } \neq k \text{ at } (i,j) \text{ or } = k \text{ at } (i,\neq j) \text{ or at } (\neq i,j), \\ 0 & \text{otherwise} \end{cases}$

Algorithms:

GLPK (GNU Linear Programming Kit) http://www.gnu.org/software/glpk/

I. Simplex (several flavours)

2. Interior point (primal-dual)

Transformations:

Sudoku as a Lattice Gas

Multicomponent non-additive hard-core lattice gas

2			4		9		7	5
						8	2	
	8		1		5	9		3
9	2	7		4		6		8
8		3		9		5	4	1
5		2	3		6		8	
	9	8						
6	4		9		8			2

Sudoku as a Lattice Gas

Free-energy density Functional Theory

 $\mathcal{F}[\rho_{ijk}] = \sum \left\{ \phi(\text{ROW}_{ik}) + \phi(\text{COL}_{jk}) + \phi(\text{BLOCK}_{IJ}) + \phi(\text{POINT}_{ij}) - \phi(\text{row}_{ik:IJ}) - \phi(\text{col}_{jk:IJ}) - \phi(\text{point}_{ijk}) \right\}$

$$\phi(\eta) = \eta \ln \eta + (1 - \eta) \ln(1 - \eta)$$

Euler-Lagrange Eqs.:

$$\rho_{ijk}(1-\rho_{ijk})\left(1-\sum_{l:B(i,j)}\rho_{ilk}\right)\left(1-\sum_{l:B(i,j)}\rho_{ljk}\right) = z_{ijk}\left(1-\sum_{l}\rho_{ijl}\right)\left(1-\sum_{l}\rho_{ilk}\right) \times \left(1-\sum_{l}\rho_{ljk}\right)\left(1-\sum_{l,m:B(i,j)}\rho_{lmk}\right)$$

Sudoku as a Quadratic Program

maximize $\|\mathbf{x}\|_2^2$ subject to $\mathbf{x} \in \mathcal{B} \cap \mathcal{G}$ $\mathbf{x} \geq \mathbf{0}$

Non-convex problem! NP-hard if the quadratic term matrix is definite negative

Some Final Comments

- LP vs. Semidefinite Relaxations.
- Distributed Solvers.

- Optimization methods as a tool to derive local Message Passing algortihms.
- Connections with BP-like algorithms